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We calculate the characters ofthe Poincare group P as solutions of differential equations in a way which 
is valid for a large class of Lie groups. We discuss the solutions of linear differential equations on an 
analytic manifold in a space of distributions. Then, we calculate the characters of SL(2, R) and the central 
distributions on P. Finally, we give the characters of all unitary irreducible representations of P, including 
mass 0, and some expressions which may be "characters" of nonunitary representations. 

INTRODUCTION 

The calculation of the characters of the irreducible 
representations of semisimple complex Lie groups as 
solutions of differential equations has already been 
carried out by Berezin.1 His method, however, rests on 
specific properties of these groups. 

We shall calculate the characters of the Poincare 
group P using the following method, which is valid 
for a large class of Lie groups. We look for distributions 
(a) which are on P [E !I)' (P)] , (b) which are central 
(class) distributions, (c) which are eigendistributions 
of the Laplace operators P2 and W2 of P, and 
(d) finally, for unitary representations, which are 
extremal distributions of positive type. 

In Sec. 1, we justify and discuss our method; we 
show how to handle distributions and differential 
operators on a group; we give some general results 
and a theorem on the solutions of a system of partial 
derivative equations of first order in the space of dis
tributions. 

In Sec. 2, as a first application, we calculate the 
characters of SL(2, R) (for which Berezin's method 
already does not work). In Sec. 3, we give a local 
expression of the central distributions on P, some of 
which appear to have a nonzero transversal order. 

Section 4 is devoted to the explicit calculation of the 
characters of P: (a) Outside m2 = w2 = 0, we get the 
characters of all unitary irreducible representations 
and, in addition, other solutions which can be looked 
at as the characters of some known non unitary repre
sentations. (b) For m2 = w2 = 0, the initial program 
fails. We have not only to add to p2 and W2 the 
helicity operator but, moreover, to change our space 
of solutions, which we take to be the dual of a sub
space of !)(P). We then get such pathologies as central 
"distributions," which are no longer constant on 
conjugation classes, and "distributions" of positive 
type which are not bounded. 

We obtain the characters of the unitary helicity 
representations up to an unknown factor. 

Appendices A and C contain some technical calcu
lations of limits, which appear from the fact that we 
have to give a meaning to distributions whose supports 
are singular surfaces. Appendix B gives some formulas 
related to our parametrization of P. 

1. GENERALITIES 

A. Definition of a Character 

Let G be any locally compact group and U a 
strongly continuous representation of G in a Banach 
space 58. 

For any positive measure fl on G such that 

Lli U(g) II dfl(g) < 00 (1.1) 

[II II is the norm in 1:(58)], we define the continuous 
linear operator 

By means of linearity, we can extend this definition 
to the complex vector space generated by the fl satis
fying condition (1.1); this space is an algebra for 
convolution: the algebra Mh(G) of the U-bounded 
measures on G. 

For some of these fl, the operators U(fl) may have a 
trace, i.e., be such that there exist two sequences 
Xi E 58 and x; E 58' (dual of 58) with lXii, Ix;1 < A, 
V i,j, such that we have, for any x in 58, 

U(fl)X = 1: Alx;, X)Xi' 
i 

with 

By definition, then, 

Tr U(fl) = ! A;(X~, Xi)' 
i 

The space of these fl, which we call A u(G), is a vector 
space and a 2-sided ideal of Mh(G) (the product of a 

2617 

Copyrillht © 1970 by the American Institute of Physics 



                                                                                                                                    

2618 G. FUCHS AND P. RENOUARD 

trace-class operator by a bounded operator is again a 
trace-class operator). 

The mapping t-t ~ Tr U(t-t) is a linear form from 
Au(G) to C. This form is called the character of U, if 
U is a completely irreducible representation. 

If U is an unitary representation (on Hilbert space 
Je), Mh(G) = Ml(G) (bounded measures on G). In 
the case where G is a Lie group, we can consider the 
subspace :3)(G) c Ml(G) of infinitely differentiable 
functions with compact support (the injection being 
made with help of the left-invariant Haar measure dg). 

But we do not yet know all general conditions on G 
and U such that :3)(G) c Au(G). We know that the 
inclusion is true if G is semisimple and U a UIR 
(unitary irreducible representation). 2 In this case, we 
even know that the restriction of X to :3)(G) is a locally 
integrable function, which is analytic on the regular 
elements of G. We also know that for the Poincare 
group there are representations for which the inclusion 
does not hold.3 

When :3)(G) c A u(G), then the restriction X of a 
character to :3)(G) is continuous for the topology of 
:3)( G), i.e., the restriction is a distribution. 

B. Properties of Characters 

When the character of a representation U is a dis
tribution given by 

<X, rp) = Tr U(rp), 

U(rp) = LU(g)rp(g) dg, 

with G any Lie group (we take it as unimodular, for 
simplicity), dg the (right- and left-)invariant Haar 
measure on G, and rp(g) E :3)(G), it has the following 
properties: 

(a) X is a central distribution. Ifwe call t5y the Dirac 
measure on G with support y, 

(t5y, rp) = rp(y), 
we have 

or 
(by-l * X * by, rp) = (X, rp), V rp, (1.2) 

where * means convolution. For any y in a neighbor
hood of the identity, we have y = etX (X in the Lie 
algebra G3 of G); we define 

Wx" rp) = :t rp(e-tXi)Lo' 

where Xi is a basis of (fj. The infinitesimal form of (1.2) 
is equivalent to the set of n differential equations 

(t5'Xi * X - X * t5x" rp) = 0, V rp. (1.3) 

(b) X is an eigenvector of Laplace operators. More 
generally, we have an isomorphism between the 
enveloping algebra U«fj) of (fj and the algebra (for 
convolution) of distributions on G with support 
identity. In particular, a Casimir operator Qi of G 
[center of U(Q)] of degree ni acts on :3)' (G) by means 
of t5g'i) * T, where T E :3)'(G) and t5~:) is the distri
bution of order n with support e. The differential 
operators DQ, associated with the t5g'i) are called the 
Laplace operators of G. We have for a character 

(t5~:) * X, rp) = qi(X, rp), V rp, (1.4) 

where the qi E C are given by U(Qi) = qil. 
(c) Translation by the elements of the center of G: 

If go E C(G), the operators U(go) commute with the 
representation and, thus, are multiples of the identity 

U(go) = ocl. 

With rpyo(g) = rp(gog), we have 

(X, rpgo) = oc(X, rp). (1.5) 

Now if the representation U is unitary, the character 
has additional properties. 

(d) X is a distribution of positive type, X »0. With 

cP(g) = rp(g-l), we have 

(X, rp * cp) ~ 0, (1.6) 

because U( rp * cp) is a positive operator. As a conse
quence, X has Hermitian symmetry, i.e., 

(X, rp) = (X, cp). (1.7) 

( e) X is a bounded distribution. That means that X 
is a linear form on the space :3)L1(G) of infinitely 
differentiable functions belonging as also their deriv
atives (defined by left invariant vector fields) to the 
space V(G) (integrable functions). It is a consequence 
of (d) (see Ref. 4; the proof given for Rn can be carried 
over to a Lie group). Since we have not found a 
practical way to take the condition X » 0 into account, 
the condition that X is bounded, weaker but easier to 
handle, will be very useful. 

(f) X is an extremal distribution. If X = Xl + X2 
with Xl' X2 » 0, then5 

Xl = aX, X2 = (1 - a)x, ° < a < 1. (1.8) 

(g) The eigenvalues of Laplace operators [chosen to 
be symmetric, i.e., Qi == P(Xi ) = P( -Xi)' P a poly
nomial] are real. 

C. The Rules of the Game 

In the case of the Poincare group P and some sub
groups, we look for the distribution solutions of (1.3) 
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and (1.4), obeying (1.5); if some solutions are bounded, 
we shall investigate properties (1.6)-(1.8). 

Now the only thing we can assert is that, given a 
solution X of (1.3) and (1.4) obeying (1.5) of positive 
type and extremal, we know how to build a factorial 
unitary representation, quasi-equivalent to an irre
ducible unitary representation whose character is X 
(G is of type I; see Ref. 6); this is Gel'fand construc
tion. 5•6 

We cannot be sure, however, we have found all the 
characters of G, as we do not know when !)(G) C 

Au(G) (even if G is semisimple, there are no results 
when U is not unitary) and, moreover, there can 
exist characters whose restriction to !)(G) is 0 (X = 0 
has all good properties). 

Conversely, given a solution which is not of positive 
type, it remains an open question to say whether or 
not it is a character of a non unitary representation. 
We always find a one-to-one correspondence between 
the solutions of our problem and the known represen
tations for the groups SL(2, R) and SL(2, C). For the 
Poincare group, we find objects which are candidates 
to be the characters of some known nonunitary repre
sentations and others we cannot associate with any 
representation we know. 

At this stage, we leave aside the specific problem of 
mass zero representations of P, for which we work in 
a space of "distributions" !)~, which is a quotient of 
!)' and which is only suggested by the specific form 
of our equations. 

D. Method 

We have to solve, on the manifold G, the system of 
partial differential equations 

!5'x i * T - T * O~y i = 0, (1.9) 

(1.10) 

This means, given an open covering Ui (each Ui being 
the domain of a chart), solve (1.9) and (1.10) restricted 
to each Ui , which gives (for each set of values qk) a 
vector space of solutions Vi E !)'(Ui ), and then find 
the distributions TE !)'(G) such that Tlu; E Vi' 

To easily solve (1.9) and (1.10) (restricted to some 
Ui)' we are led to perform definite changes of variables 
which appear to choose conjugation classes of the 
group for coordinate surfaces. Unfortunately, the 
changes of variables are not regular everywhere, in 
general, and so we use the following step-by-step 
method: First, we define an open set UI C Ui in which 
the suitable change of variables can be done; the 
resolution of (1.9) and (1.10) in UI gives a vector 
space of solutions VI C '1)'( Ui). Next, we define 

Ul (UI c Ui2 CUi), and we search (using, in particu
lar, limiting processes) for the solutions in VI, which 
are the restrictions to Ul of solutions in Ul, and for 
the extended solutions. In the same way, we define (if 
necessary) 

u! c u; c u~ c ... C U~i = Ui 

and, successively, we extend our solutions from Uik to 
Uf+l. The choice of the Uik is determined only by 
practical considerations: They correspond to the 
domains of validity of explicit manipulations. Note 
that 0 E Vik [Vik C !)'(Uf) is the space of solutions 
in Un and that the space of solutions in Uf+1 with 
support in Ur1\Ul is not necessarily I dimensional; 
thus, if a given element in Vl has "extensions" in 
Vf+l, it may have several of them. 

In practice, we first solve equations (1.9) "locally"; 
that is, we give in UI all solutions of (1.9) and, in each 
Uf, all solutions of (1.9) which are zero in Uik-l. We do 
not give the global solutions of (1.9). 

Next we apply the differential operators (1.10) to 
these local solutions of (1.9) [the operators (1.10), 
restricted to such special distribution, have simple 
expressions] and so solve "locally" the system (1.9) 
and (1.10): We get (low-dimensional) vector spaces of 
solutions. The extension of solutions from Uik to Uf+1 
is performed by techniques adapted to each special 
case. 

The complete description of all the open sets Ui
k (or, 

equivalently, of the domains of validity of expressions 
we write) is tedious and generally not useful. We omit 
or abbreviate it in different, obvious ways. 

E. Local Resolution of Equation (1.9) (Regular Case) 

The system (1.9) can be written 

(1.9') 

where the t Di are the transposed operators of the 
homogeneous partial differential operators Di , de

fined by DiT = -O~i * T + T * O~i [T E !)(G)]; that 
is, 

In each open set Ui (with coordinates zi, j = 1 ... n), 
the operators Di are of the form Di = a~(z)alazj, 

where the ai are Coo functions. 
To solve (1.9') we first perform a change (depending 

on the coordinate system) of the unknown distribution 
which leads to homogeneous equations. 

We note that a Haar measure on G is a distribution 
/-t, belonging to Lebesgue class (that is, defined by 
a COO nonvanishing, differential form of maximal 
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order), such that 

tDil-' = 0, 

so that, in each Vi' we have 

(1.11) 

I-' = m(z) dz1 A ••• A dzn, (1.12) 

where m(z) is a Coo nonvanishing function, and we 
write (1.11) as 

o . 
oz; (a~(z)m(z» = 0. (1.13) 

Thus, if we define for each distribution T 

T(z) = (m(z»-lT, 

Eq. (1.9') becomes 

; 0-
ai(z) -; T(z) = 0. 

oz 

(1.14) 

(1.15) 

We must notice that these equations, from the Lie 
algebra commutation relations and the fact that the 
right- and left-hand infinitesimal translations commute, 
form a complete system. 

Now suppose that, in some open V, the rank r(z) 
of the n x n determinant la~(z)1 is equal to a given 
constant r. [At each point g E G, the rank of the 
system (1.9) is equal to the dimension of the conjuga
tion class of g.] Then there are n - r COO functions 
Vk(Z), such that a~(z)ovk(z)loz; = 0 and every function! 
solution of a~(z)oflo2; = ° is a function of the v, i.e., 
fez) = f(v(z». Suppose, furthermore, that there exist 
r COO functions x 1(z) such that the v's and x's can be 
chosen as local coordinates in Vi; that is, 

Definition: We say that a distribution T depends 
only on the v, if there exists S E l)'(Rn-r) such that 

- / f \ (T(v, x), ep) = \s, ep(" x) dx/, ep E l)(U). 

If T is such a distribution, we denote it by S(v): 

T = S(v) = T(v, x)m(v, x), 

(T, ep) = (S(v), ep) = < S, J ep(~, x)m(¥, x) dX)' 

Lemma 1,' For given v and a given S, S(v) is inde
pendent of the (admissible) choice of the functions x. 

Proof' Let yl(V, x) be another possible choice, and 
denote by S(v){lIl the distribution defined from S using 

the y's: 

(S(v){v) , ep) = < sJ ep(q, y)m(q, y) dY) 

= < s, f qy(f, Y(f, x»m(q, Y(q, x» I :~ I dX) 

= < sJ ep(" x)m(" x) dX) = (S(v'), ep), 

because 

mev, x) = m(v, y(v, x» -- = m(v, y(v, x» - . IO(V'Y)1 IOYI 
o(v, x) ox 

Lemma 2: The solutions of (1.9) in Vi are all distri
butions of the form S(v) (if the manifolds vk = Cte are 
connected). 

Proof: In the coordinate system (v, x), Eq. (1.15) 
becomes 

i( 0-a1 v, x) -i T(v, x) = 0, 
ox 

i = 1, ... ,n, j = 1, ... , r, 

with some nonvanishing r x r determinant: lafk(v, x)1 
(k = 1 ... r); thus, (1.15) is equivalent to 

o -ox; T(v, x) = 0, V j = 1, ... , r. 

Thus, T(v, x) = S ® dxl A ••• A dxr for some S. 

Remark 1: We have S(v) = S ® ocr, where ocr is any 
differential r-form such that I-' = ocr A dvl A ••• A dvn-r. 

Remark 2: If we use the formal notation 

(S, ep) = f S(v)ep(v) dv, [ep E l)(Rn-r)], 

we have, for ep E l)(U), 

(S(v), ep) = f S(v) dv f ep(v, x)m(v, x) dx 

= J S(v)ep(v, x) dl-'(v, x), 

and so the result of the paragraph is that, under the 
given regularity conditions, we can use the formal 
notation 

(T, ep) = J T(z)ep(z) dl-'(z). 

The operator tDi is then obtained from Di by a formal 
integration by parts (and is formally identical to Di by 
invariance of the Haar measure) and the solutions (as 
in the case of functions) are distributions which depend 
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only on characteristic manifolds. In particular, distri
butions defined by functions are of the formf(v)ft· 

Examples: Let 

S - .i(h' ... 5;(~ip' P <_ n - r, 1 - Ua 1 Ua p , 

and 

p + q ~ n - r, 

respectively, be the distributions 

and 

rp_/S~"'~ 
\ '(OVil)k i l (OVip)klp 

X (f rp(V)I¢iJ.!P+odVI)L;=a
l
)' j = 1, ... ,p. 

The corresponding distributions in !)' (U) defined 
above are denoted as 

SI(V) = (j(klll(vil _ ail) ... (j(kipl(v ip _ ai .) 

and 

S2(V) = (j(kil'(Vil _ ail) ... (j(kip'(Vip _ a'p) 

X S(ViNl •.• vip+o). (1.16) 

Note that SI(V) depends, even for kif = 0, on the 
functions v, and not only on the manifold W = 
{(Vi; - ai ;) = O,j = 1,' .. ,pl. 

F. Local Resolution of (1.9). Some Results in 
IrreguJar Cases 

Suppose, now, that r(z) = rank la~(z)1 is equal to a 
constant'l in some open set U, except on some closed 
sub manifold We U where r(z) = r2 < r1 • Again, 
assume regularity conditions :There are n - '1 charac
teristic manifolds vk(z) of tDi defined on U, and there 
exist '1 functions Xl(Z) such that o(v, x)/o(z) ¢ ° 
in U. Assume also that the manifolds ({Vk = Cte}) are 
connected. 

The considerations of Sec. IE apply in U' = U\W, 
and so 0.9) is already solved in U' , as long as the mani
folds {VI = Cte} remain connected in U'. The lowering 
of the rank of the system on W leads to search for 
solutions T E !)' (U) such that either supp T C W or, 
if some manifolds {vk = Cte} do not remain connected 
in U' , is localized on such manifolds and not "con
stant" on it. We study two cases which lead to these 
two possibilities. These two cases are characterized by 

the fact that the n-vector fields corresponding to the 
operators Di are tangent to Wat each point of W. 

Suppose first that W is a characteristic manifold of 
the system tD i , that is, there exist p functions t l such 
that 

W = {z; t!(v(z») = 0, 1 ~ I ~ p}, 

and secondly that there are n - p - r1 functions v', 
of the v only, such that (t, v' , x) is a coordinate system 
in a neighborhood of W (again called U). Equation 
(1.15) is written 

a{(t, v', x) o~; T(t, v', x), 1 ~ i ~ n, 1 ~ j ~ r1 , 

and so every distribution of the form (1.16) with sup
port in W [i.e., Ik (j(k)(t)Tk(V'), finite sum in any 
bounded open set] is a solution of (1.9). But they are 
not related to the lowering of the rank of the system 
on W. Now the operators tDi have restrictions to W 
which, in the coordinate system (v', x) on W, is written 

tD ;(0 I ) a ilW = ai ,v, x -., 
ax' 

(1.17) 

The system (1.17) is obviously complete, its rank is r 2 , 

and so it admits [with the n - p - r 1 functions vlW ] 

'1 - r2 new Coo characteristic manifolds Ui(V' , x), 
i = 1, ... , ('1 - '2)' 

Let the u be functions defined in a neighborhood of 
W such that ul W = u and such that there exist func
tions x' so that (t, v', u, x') is a coordinate system. 

For any S E !)I(Rn-p - rt ) define 

T = S(u' , U)b(k l '(t1
) • •• b(kp)(tP) E !)'(U) 

by 

(T, rp) 

= \S(f, M, (u (~;;k;) f rpm(t, pt, /l, x') dx'lt=o). 

rp E !)(U). (1.18) 

Equation (1.18) is obviously independent of the choice 
of the functions x' and, if k j = 0, V j, Eq. (1.18) is 
independent of the functions u such that ulW = u. 
In this case, we write 

T = S(v' , u)(j(t 1) ••• (j(t p). 

Theorem: (i) If W has codimension 1 (p = 1) and 
if the derivatives 

on-r • ., 

(aO'l-,a det IlaHllt=o, 1 ~ i', j' ~ r1, (1.19) 

of the determinants of all '1 X '1 submatrices of lIa~1I 
do not simultaneously vanish in W, then every non
trivial (i.e., not depending only on the v) solution T 
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of (1.9) with supp T c W is of the form S(v', u)(J(t), 
i.e., has transversal order 0. 

(ii) If the quantities (1.19) vanish simultaneously in 
W, there exist nontrivial solutions of (1.9) with 
support in W, which have transversal order 1. 

(iii) If codim W = P > 1, there always exist solu
tions with nonzero transversal order. 

Rema,k: Equation (1.19) is independent of the 
coordinate system. (All "tangential" or "mixed" 
derivatives of order'l - '2 are zero, and all derivatives 
of order less than '1 - '2 are zero.) 

P,o0f' (I) We have supp T(t, v', a, x') c W so 
there exist distributions Sk E !l'(W) such that 

T( t, v', a, x') = L (j(k)( t)Sk , 
k 

_ / Ok \ 
(T, q;) = t \ Sk' (ot)k q;lw /' 

where the sum over k is finite in each bounded open 
set; for simplicity, assume U is bounded. The trans
versal order of T in U is N if SN ¢ ° and k > N => 
Sk = 0. Note that N is independent of the coordinate 
system. 

We substitute this expression in Eq. (1.15) and we 
get 

{h i( I A ') l..-
i t, v , u, x oai 

1,( , A ') 0 }T-(t ' A ') - ° + Ci t, v , u, X -I ' V , u, x -
ox' 

with 1 SiS n, 1 S j S '1 - '2, 1 Sis '2, and 
b:(O, Vi, U, x') = 0, and [the nonzero distribution of 
the form Sk(J(k)(t) with different k being linearly inde
pendent] we obtain, from the coefficients of (j(N)(t) 
and (j(N-l)(t), 

C:(O, Vi, U, x') 1-1 SN = 0, 
ox' 

c!(O, v', u, x') O~'I S N-l 

N 0 bi( , A ')1 OSN = - i t, v , u, X (=0 -0 i . 
ot u 

(1.20a) 

(1.20b) 

(1.20a) is equivalent to OSN/OXI = 0, so its solutions 
are of the form 

(SN' q;) = (SN(t/I, q)J q;(q', y, x') dX), q; E !leW), 

with N = O. Equation (1.20a) is the only condition, 
and so any distribution of the form S(v', u)<5(t) is a 
solution of (1.9). 

If N;;::: 1, Eq. (1.20b) must be solved. First, we 
replace it by an equivalent system Of'l equations. The 

conditions on the rank of the system (1.20) can be 
expressed as follows: There exist functions g!(t, v', 
a, x'), 1 SiS n, 1 S IX S '1' such that, if 

A P( t ' A ') _ i ( , A ') P( , A ') ~ ,v, u, x - g~ t, v , u, X Ci t, v , u, x , 

1 S f3 S '2' 
= g~(t, v', a, X')bf(t, v, a, x'), 

'2 + 1 S f3 S '1' 

then det IIA:II ¢ ° if t ¢ 0, and IIA~II is of rank '2 if 
t = 0: The following equation is equivalent to the 
equation which occurs if we substitute N - 1 for N: 

API OSN_l = N ~ AIlI_ oU i OSN (1.21) 
~ t=o axIl ot ~ 1-0 ox/l oui 

(where x is either u or x') for every suitable set of 
functions g! . 

In order to discuss (1.21), we use the following 
lemma: 

Lemma: Let IIA~II a matrix of order '1 and rank '2' 
there exist '1 - '2 independent null linear combina
tions of its lines 

C{k)A~ = 0, 1 S k S '1 - '2' 

and'l - '2 null linear combinations of its columns 

Define 
AIID(;) - ° 1 < . < ~ /l -, _ } _ '1 - '2' 

D - [D(I) A ••• A D(n-r2 )] 
/l1 .. ·/lcr1-'2) - Ill .. ·/lC'l-")· 

On the other hand, denote by Ap~:::p! the subdeter
minant of order ('1 - 1), obtained by omission of the 
[lines IXI ••• IXI and of the [ columns f3I ... f31 . 

Lemma: 

A"1"'~C'l-'2) = MC~1 .. ·~crl-r2)D 
IIl ... IlC'l-r2) Pl ... llc r C'2)' 

where M is a constant independent of IX and f3. The 
proof is elementary. 

Now, going back to Eq. (1.21), we note that the 
functions OUi/oxll can be taken as the linear combina
tions D~;)(V'X) for the determinant IIA~(O, v', x)ll. If 
we consider the linear combinations of both sides of 
(1.21) defined by C(k)(V', x), the left-hand side of (1.21) 
vanishes and we obtain 

~~ , oA~ I ') w(' ) oS", 
C(k)(V , x) - (v, x Dp v, x -0 j = O. 

ot 1=0 u 
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This system has nontrivial solutions if and only if the 
determinant of the matrix 

IIC~k)(V" x) a~~ Lo(V" x)D~;)(v', ex)\\ 

(free indices k,j; I ~ k,j ~ r1 - r2) vanishes in W. 
But, from the Lemma, we can write this determinant 
as 

aA(Jl aA'JrCr' l 
~ • • • rX

n - T2 CfX1 .. ·(1Tl-r2 D 
::l::l /h ... /lr,-r. 
ut ut t=O 

a1rl- r.) 
= ( )(detIIA~(t,v',x)i\)lt=o, (ot) r,-r. 

which proves (i) and (ii). 
(2) If P > 1, we have 

f = ! SkO(kiJ(t1) ••• O(kp)(t p), k = {k1 ••• k p} 

k 

(the transversal order of f is N if there exists Sk ¥- 0 
with Ikl = Nand Ikl > N implies Sk = 0; Ikl = 
k1 + ... + kp ). In this case, Eq. (1.20a) is replaced by 

I , , aSk 
c/O, v , u, x ) ax'l 

= i(k s + 1) ~ b~(t, v', u, x')lt=o ~ S{k""l!cs+l)'''kp } , 

~1 of au' 
Ikl = N - 1, 

and, even if the compatibility conditions imply 

p 0 
I (ks + 1) -j S{k''''(ks+l)'''k p} = 0, 
9=1 au 

this is always possible with nonzero OS{kl"'(k,+1)'''k
p
}/ 

oui , so that there are at least solutions with N = 1. 
Suppose that W is the manifold defined by the equa-

tions 

{ 
tl(V) = 0, 

w(v, x) = 0 
I ~ IS p, 

(t l are characteristic manifolds as before), where w 
is a Coo function such that 

a:(z)-. = o. . aw I 
az ' w 

Define again coordinates (t, v', w, x). Clearly, then, 
distributions of the form 

P 

II o(tl)€(w)T(v') (1.22) 
1=1 

are solutions of (1.9) [since €(w) is the sign of w, it is 
clear that the form (1.22) is independent of the choice 
of a function HI with the above properties]. In this 
case, we do not discuss the conditions necessary for 
some nonzero transversal order to appear. 

More singular cases appear in the practical situa
tions we meet (for example, the rank of the system 
may lower on a manifold W defined by the intersection 
of characteristic manifolds which are tangent together, 
or the manifold W may have a vertex), but, in those 
cases, either we solve 0.9) by convenient methods or 
we do not give a complete explicit solution, which is 
not necessary to solve the complete system (1.9) and 
(1.10). 

As an example, we give here the solutions of (1.9) 
with support {e}, the identity on the group G (rank 
la~(z)1 = 0 on {e}):From the isomorphism we men
tioned in property (b) (Sec. IB), T (supp T = {e}) is a 
central distribution; that is, oQ: * T = T * CJ", V X E (fj 

if and only if T belongs to the center of U«fj) so that 
there exists some Q in the center of U«fj), such that 
T = oQ = oQ * 0 = DbCJ, where DQ is the Laplace 
operator defined by D Qf = CJ Q * f, f E 1). 

2. CHARACTERS OF SL(2, fR) 

We choose SL(2, fR) for an introduction to our 
methods of calculation because it is a simple group 
with only three parameters and its structure and 
representations are well known; however, the fact that 
it is a real group already obliges us to solve the problem 
of "class functions" and "eigenfunctions" of Laplace 
operators in a space of distribution; lastly, SL(2, fR) 
being a little group of the Poincare group, the calcu
lation gives us some insight into the difficulties to 
come. 

A. Parametrization of SL(2, fR) 

The group SL(2, fR) is the group of 2 X 2 real 
matrices of determinant I : 

g = (: ~), with i/.CJ - (3y = 1. 

It has a center C(G), the two matrices (~ V and 
(-~ _~), and, in addition, singular elements, the other 
matrices of trace ±2, which cannot be diagonaIized. 

We introduce the new variables 

IX ± (J = u, v, 

{3 ± y = r, s. 

In the space R4(U, v, r, s), the group manifold is then 
the quadric 

u2 - v2 - r2 + S2 =' 4. (2.1) 

The singular matrices are represented by the submani
folds u = ±2, which are cones in Ra. The elements 
of C(G), corresponding to the values u = ±2 and 
v = r = S = 0 of the parameters, are the vertices of 
these cones. 
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The Haar measure can be written 

dv dr ds/lui, for u ¥: 0, du dv dr/lsi, for s ¥: O. 

We write MOIMo2MI2, the generators of the Lie 
algebra of SL(2, R), with the commutation relations 

[Mol, M02] = M12, [M02, MI2] = -Mol, 

[MI2, MOl] = _Mo2. 

Ml2 is then the generator of the compact subgroup UI • 

The differential expression of these generators acting 
on functions of the u, v, r, and s variables bounded by 
(2.1),by right- or left-infinitesimal translation in G, is: 

2Mol = ±u ~ ± r ~ + v ~ + s ~ 
R,L or au as ov ' 

2M02 = ±u ~ ± v.i - s.E.. - r ~ (2.2) 
R~ ~ ~ ~ fu' 

12 a a a a 
2M R L = =fu - ± s - + r - - v - . . as au ov or 

In fact, we always consider the system (2.2) "restricted" 
to some open sets where the relation (2.1) will then just 
be expressed by the elimination of the "bad" variable. 

The Casimir operator of SL(2, R), which is given 
in the enveloping algebra by 

Q = (MOl)2 + (M02)2 _ (MI2)2, (2.3) 

defines in the same way a Laplace operator. As we 
said, we are only interested in its restriction tDQ to the 
central distributions we seek first. 

B. Central Distributions 

From (2.2) our equations (1.9) for central distribu
tion are in SL(2, R): 

v-+s- T =0 ( a 0)-as ov c , 

s-+r-T=O ( a a)-ar as e , 
(2.4) 

( a a)-
r av - v ar Tc = O. 

The rank of the system is constant at 2 outside 
C(G). The characteristic manifolds are 

u2 == 4 + v2 + r2 - S2 = a2
• 

They are I-sheeted hyperboloids in R3 for a2 > 4, 
2-sheeted hyperboloids for a2 < 4; we saw already 
that US = 4 was a cone. 

From our previous discussions we thus see that the 
solutions of (2.1) are 

Te = T1(u) + €(s)O(4 - u2)T2(U), outside C(G), 

and 

(finite sum) if supp To c C(G), (2.5) 

where eN = (<5 Q)*N * <5; explicitly, we have 

p+a:5N 
eN = ~ (- )PHCKr+aC:+a<5(2P)(v)b2a(r)b(2N-2P-2Q)(s). 

p,q2:0 

[T](u) and T2(u) are defined for u2 - 4 ¥: O.J 

C. Eigendistributions 

We are now going to look, among distributions 
Te , for the solutions of (1.10): 

t DQ Tc = -qT.. (2.6) 

We have seen that To has a very simple form when 
u2 - 4 ¥: O. In any such open set, the explicit form 
t DQ also becomes simple; with (2.2) and (2.3), Eq. 
(2.6) becomes 

( 
02 a ) (u 2 

- 4) -2 + 3u - + 4q T. = o. au au (2.7) 

We shall first solve (2.7) in a open set U comple
mentary of e and such that u > - 2. 

The functional solutions of such a differential equa
tion in u are well known in the analytic field (Re u > 
- 2): (2.7) is a Fuchsian equation of first type with a 
singular-regular point at u = 2; it admits one regular 
holomorphic solution R(u) and one singular solution 
S(u) = A(u)/(u - 2)t, with A(u) holomorphic. 

When the equation is restricted to the half real axis 
u> -2, there is no longer a connection between the 
two sides of the point u = 2, and we have, as four 
independent solutions of (2.7), the functions 

II(U) = 0, U < 2, liu) = 0, u < 2, 

= R(u) u > 2, = S(u), u > 2, 

12(U) = R(u), u < 2, h(u) = S(u), u < 2, 

=0, u > 2, =0, u > 2. 

Noticing that 

t DQO(±s)e(4 - u2)T(u) = O(±s)tDQO(4 - u2)T(u), 

we can conclude that the central distributions solutions 
of (2.7) in U with a support different from the only 
manifold u = 2 are combinations of 

R.(u) = O(u - 2)R(u), Rt(u) = (J(±s)O(2 - u)R(u), 

Se(u) = O(u - 2)S(u), Sf(u) = O(±s)O(2 - u)S(u). 

S(u) and, of course, R(u) are locally sum mabie func
tions on G, and the products OR and OS actually define 
distributions. 
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To calculate more easily the action oftDQ on these 
distributions (particularly with the usual formulas of 
derivation of a product), it is interesting to avoid 
coincidence of singularities by replacing O(u - 2) and 
0(2 - u) by 

limO(u - 2 - 1), lim 0(2 - 1) - u). 
,,"'+0 ,,"'+0 

(We know that we can permute limit and derivation.) 
It appears clearly that the quantity 'Y) so introduced 
has the effect of restricting our distributions to a 
complement of a neighborhood of identity. The limit 
'fj -- 0 will thus give us the action of tDQ in all 
u> -2. 

Using the form given for S(u), from which we get 

A(2) S'(2 ±) 1 A'(2) -r: 1 A(2) S(2±'Y)=- 'Y) =--,--
.../1) Z.../1) 2 'Y).../'Y) 

[at 0(.../ 'fj) and apart a multiplicative factor of no 
importance], and the fact that R(u) and S(u) are 
solutions of (2.7), we obtain 

4 tDQR.(u) 

= lim ([2t5(u - 2 - 'Y) + 4'Y)t5'(u - Z -1)]R(2) 
,,"'+0 

+ 41)t5(u - 2 - 1)R'(2)}, 

4 tDQRt{u) 

= lim O(±s){[ -Zt5(u - 2 + 1) 
,,"'+0 

+ 41)b'(u - 2 + 'Y)]R(2) 

+ 41]b(u - 2 + 1)R'(2)}, 

4 t DQS.(u) 

= lim [4(.../1)b'(u - 2 - 1)A(2) 
,,"'+0 

+ 2(.../1)b(u - 2 - 'Y)A'(2n 

4 tDQSt{u) 

= lim 0(±s)[4(.../'Y)t5'(u - 2 + 1])A(2) 
,,"'+0 

+ 2(.../1)b(u - 2 + 1)A'(2)]. 

We have calculated in Appendix A the limits of the b 
and b' distributions with the result 

Iim6(u - 2 - 1) = 6(u - 2), 
,,"'+0 

lim1)IXt5'(u - 2 - 1) = 0, V IX> 0, 

lim O(±s)t5(u - 2 + 1) = O(±s)t5(u - 2), 

lim (.j1))O(±s)b'(u - 2 + 1) = -21Tb(v)b(r)b(s), 
,,"'+0 

and so 

4 t DQR.(u) = 2t5(u - 2)R(2), 

4 tDQRNu) = -20(±s)b(u - 2)R(2), 

4 tDQS.(u) = 0, 

4 t DQSt(u) = -81TA(2)b(v)b(r)t5(s). 

On the other hand, we can easily see that 

t DQb(k)(U - 2) = c1b(k+1)(U - 2) + c2b(k)(U - 2), 

C1 :F 0 

[the distributions b(K)(U - 2) have a meaning outside 
C(G)], from which we can see that there does not 
exist any central distribution T of support u = 2 such 
that, separately or combined with the results above, 
we get tDQ(T) = O. 

Lastly, the action of tDQ on eN giving eN+1 and 
the sum over N being finite, we can conclude that the 
eigendistributions of (2.6) in u > -2 are 

Re(u) + Ri(u) + Ri(u) = R(u), 

Siu), (2.8) 

st(u) - St(U) = Slu, s/lsl). 

A similar argument leads us, in u < 2, to the eigen
distributions 

R(u), 

S.(u), (2.9) 

St(u) - St(u) = S;(u, s/lsl) 

(R(u) and S(u) are the regular and singular solutions 
of (2.7) in V']. 

We postpone to the next paragraph the patching of 
the restrictions we have found in u > -2 and u < 2. 
This problem will lead us to the discussion of the 
spectrum of Q. 

D. Spectrum of Laplace Operator; Characters of 
SL(2, R) 

1. Explicit Expressions of R, R, S, and S 
The differential equation 

(u2 
- 4)f" + 3uf' + 4qf = 0 

can be solved explicitly with a change of variable 
suited to each region and next with a change of func
tion; namely, 

lui> 2, lui = 2 cosh 1), 0 < 'Y) < +00, 

g =flsinh 'fj, 
lui < 2, u = 2 cos <1>, 0 < <I> < 1T, g = flsin <1>. 

The equation then becomes 

gil ± (4q - l)g = 0, 
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and the solutions are 

R(u) = {Sinh (1 - 4q)t1}/sinh 1}, 
sin (1 - 4q)tll>/sin 11>, 

R(u) = {Sinh (1 - 4q)t1]/sinh r;, 
sin (1 - 4q)t(7T - II»/sin (7T - 11», 

S(u) = {COSh (1 - 4q)*1]/sinh 1}, 
cos (1 - 4q)*I1>/sin 11>, 

's(u) = {COSh (1 - 4q)*1]/sinh 1], 
cos (1 - 4q)*( 7T - II»/sin (7T - 11». 

(These functions being defined up to a factor, the 
determination chosen for the root (1 - 4q)! has no 
importance: Rand f? are well continuous on the 
points u = ±2.) 

2. Patching 

We remember that we are only interested in distri
butions on G satisfying the "parity" requirement 

T( -u, -s) = ± T(u, s). 

On the other hand, the distributions of formulas (2.8) 
and (2.9) which we want to patch together have to be 
equal in the intersection J: -2 < u < 2. We then see 
that only the homologous lines of (2.8) and (2.9) can 
fulfill these conditions. 

For the first and third lines, we have the supple
mentary condition that (1 - 4q)t must be a real 
number, integer, or zero. This can be written 

q = K(l - K), K = i. I,!'" , 
for then 

(I - 4q)t = 2K - 1 

and we have the two global eigendistributions of t DQ: 

(

sinh (2K - 1)1]/sinh 1], U > 2, 

RK(U) = sin (2K - 1)II>/sin 11>, lui < 2, 

(-1)2K sinh(2K -1)1]/sinhr;, u < -2, 

Sf(u, s/lsl) 
= 6(4 - u2)[cos (2K - 1)II>/sin 1I>][O(s) - O( -s)]. 

[The parity of these two solutions is (_1)2K. ] We can 
notice here that the variable cos II> = iu we have 
introduced is nothing but the cosine of the angle of 
rotation corresponding to the element of U1 group to 
which g(v, r, s) is conjugate. This leads us to let 
<I> vary between 0 and 27T with the relation sin <I> I 
Isin <1>1 = sllsl. <I> is then actually the angle of the 
rotation, and we can write more simply 

sf(u, s/lsl) = Sf(<I» = cos (2K - 1)<I>/sin <1>, 

lui < 2. 

The second lines of (2.8) and (2.9) do not give us 
much trouble. Se(u) and ,s.(u) both being zero in J, 
we have for any q the two global eigendistributions of 
Q of opposite parity: 

S~+(u) = 6( -u - 2) cosh (1 - 4q)*1]/sinh 1] 

+ 6(u - 2) cosh (1 - 4q)t1]/sinh 1], 

S~-(u) = -O( -u - 2) cosh (1 - 4q)t1]/sinh 1] 

+ fJ(u - 2) cosh (1 - 4q)t1]/sinh 1]. 

3. The Characters of SL(2, R) 

With the central eigendistributions we have obtained 
for each value of q, we are now going to form the linear 
combinations that can be characters, and compare 
them to the known representations associated with 
the same q.7.8 

1. q ¥= K(I - K). We have only two eigendis
tributions S~+ and S~- which we say are the characters 
of two nonequivalent irreducible representations. We 
write 

X~J(u) = 6(u - 2) cosh (1 - 4q)t1]/sinh 1] 

± O( -u - 2) cosh (1 - 4q)t1]/sinh 1]. 

For complex or real negative g, the corresponding 
representations are surely not unitary, the distri
butions being unbounded. They are well known. 

For real g > t, X~ and xt decrease [as cos (a1])e-~] 
and can be the characters of unitary representations. 
There are effectively two known representations: the 
so-called principal series Co and ct. 

For 0 < q < t, X~ still decreases, but only as 
exp [-1 + (l - 4q)t]. Only X~ corresponds to unitary 
representations: those of the "complementary series" 
(which do not appear in the regular representation of 
the group). We are not able to show that X! is not of 
positive type. 

2. g = K(1 - K). The space of central eigendis
tributions is 4-dimensional, generated by Sf+, Sf-, 
Sf, and RK. Only one of these distributions has parity 
( -1)2K +l, and we can isolate it as a character 

X(_}2K+1(U) 
K 

= O(u - 2) cosh (2K - l)1]/sinh 1] 

+ (_1)2K+l{)( -u - 2) cosh (2K - l)1J/sinh 1]. 

For K > I, this distribution, unbounded, is the char
acter of nonunitary representations. For K = t, it is 
the character of the unitary representation Cr of the 
complementary series. For K = I, the corresponding 
representation is not unitary, although the character is 
bounded. 
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Among the three left distributions, R(u) is con
tinuous and is the character of the finite-dimensional 
representations 

{

sinh (2K - 1)1']/sinh 1'], 

xi(u) = sin (2K - l)<I>/sin <1>, 

(_1)2K sinh (2K - l)1']/sinh 1'], 

u > 2, 

lui < 2, 

u < -2. 

The dimension of these representations is 2K - 1 
(and X is well normalized by xf(e) = 2K - I). They 
are, of course, nonunitary, except for K = 1, which 
gives the trivial representation. K = ! corresponds 
to the representation of the group by itself: We verify 
that xi(u) = u!. 

We are left with a 2-dimensional space of solutions. 
We can obtain two combinations giving bounded 
distributions 

We would like to find the values of 1X1 .2 so that we have 
two extremal distributions of positive type, which 
would be the characters of the unitary representations 
of the two discrete series D"k and DK. 

The condition (X, cp> = (X, fP> gives us lXu pure 
imaginary. The distributions SK(_)2K - RK ± IXSi 

being conjugated, the condition X » 0 is of the type 
IIXI ~ a(K), and the extremality gives 

X±(u,s) = HS~H2K(U) - RK(U) ± ia(K)Sf(u, 5//51)], 
K 

Up to now, we have not been able to calculate a(K), 
and we can only refer to the result obtained (by very 
different methods) by Gel'fand,9 a(K) = I, V K. 

We then have 

(

e-(2K-IJQ/sinh 1'], II > 2, 

xi(u, 51151) = ±ie±i(~K-l)<I>/sin <1>, 1111 < 2, 
(_1)2A e-(2K-l)Q/sinh 1'], u < -2. 

4. Frobenius' Formula 

We conclude this first part by noticing a fact which 
appears as a generalization of the Frobenius formula 
for finite groupslO; this formula relates the character of 
a representation of a finite group G, induced by a 
representation of a subgroup H, to the character of 
this representation: We have 

xa(g) = ! X H(g";: ggr)t5r •ro ' 
r 

where the gr are some representatives of the cosets 
G/H and where gr defined by g;:lg, gr E H. In partic
ular, Xa(g) is equal to zero if the element g is not the 
conjugate of an element of H. 

Now all irreducible representations of SL(2, R) are 
either induced representations or extracted from in
duced representations; the inducing subgroup is the 
solvable group H of elements 

A, x real, and the inducing representations the 1-
dimensional irreducible representations of H defined 
by (sgn .1)< IAl i

(8+1), E = 0, 1, SEC. If we now write 
S = ±(l - 4q)!, we have: For q ~ K(l - K), 2K 
positive integer, the representations induced by (E, 
±s) are irreducible and equivalent [according to € we 
get the two representations corresponding to the 
eigenvalue q of Laplace operator of SL(2, R)]; for 
q = K(l - K) [s = ±(2K - 1)] if, € = (-l)2K-1, 
the two induced representations are again irreducible 
and equivalent (we have found their characters); for 
S = +(2K - 1), € = (_1)2K, the induced representa
tion is reducible with, as subrepresentation, the finite
dimensional spinor representation; in the quotient, 
space acts the reducible representation Dj( ffi DK; 
for S = -(2K - 1), E = (_1)2K, the induced repre
sentation is again reducible, but this time, the 
subrepresentation is D"k ffi DK and the quotient 
representation is the spinor representation. 

Now on the group manifold, the subgroup H is 
defined by r = s and lui ~ 2 and by the matrices of 
SL(2, R) for which lui < 2 are surely not the con
jugates of elements of H. If we look at the distribu-
tions 

x~, 
1 

X
l! X(-)2K+1 
Q' K 

and 

(trace of the reducible induced representations), we 
can see that they have for support 

lui ~ 2. 

Such a phenomenon will be still more striking for 
the characters of the representations of the Poincare 
group, which are also induced representations when 
the translations are not trivially represented. 

3. CENTRAL DISTRIBUTIONS ON THE 
POINCARE GROUP 

The calculation of the central distributions on 
SL(2, R) has been done very easily, because the 
structure of the set of conjugation classes of the group 
was simple. 

For the Poincare group, the differential method we 
introduce proves all its interest :One can, of course, get 
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the invariants under conjugation in P directly by 
algebraic calculation or geometrical considerations 
and thus know the support of the distributions we are 
looking for. 1l •12 In addition, we obtain the transversal 
order of these distributions. 

As we said in Sec. 10, we only solve Eqs. (1.9) 
"locally. " 

A. Parametrization of the Poincare Group 

The Poincare group P is the semidirect product of 
the proper Lorentz group Lo [connected component 
of the invariance group of the quadratic form x2 = 
(XO)2 - (X1)2 - (X2)2 - (X3)2 on R4] by the 4-di
mensional translation group R4. In fact, we are inter
ested in the covering j5 of P: 

j5 = R4 X Co, with [0 = SL(2, C). 

An element of this group can be represented by a 
pair (x, A), where x is the Hermitian matrix 

associated with the real 4-vector XiI (det x = X2): 

,\ESL(2, ), i.e., A= (~~), rt.,j3,y,bEC, 

IXb - /3y = 1. 
The group law is then 

(Xl' A j )(x2 , A 2) = (Xl + AIX2A~, A I A 2) , 

A * = Hermitian conjugate of A. 
We define the six matrices a.p ' IX, j3 = 0, 1,2,3, 

a,p = -ap., by 

aOi = ~ai' a;j = -~€;jkak' i,j, k = 1,2,3, 

where €Uk is the completely antisymmetric tensor of 
order 3, €12:! = + I, and the a i are the Pauli matrices 

1
0 1/ 10 -i/ /1 °1 111 = I 0' a2 = i 0' a3 = ° -1' 

The commutation relations of the aaP are those of the 
generators of the Lie algebra of SL(2, C): 

[a' lI a)'6] = -g./Jp6 + gll).a.6 - gp6a.y + g.aapy ' 

g'lI = 0, if IX rf= {J, goo = 1, gii = -1. 

We then write (sum over repeated indices) 

A = Hul + ::aP
aall ],. A E SL(2, C), 

zap = _zpa E IR. 

(The z·P transform under Lorentz group as the com
ponents of a tensor of order 2.) By identification, we 

get 
U = UI + iU2 = Re (IX + b) + ilm (IX + b), 

ZOI = -Re (/3 + y), Z23 = -1m (/3 + y), 

Z02 = 1m (/3 - y), Z31 = -Re (/3 - y), 

Z03 = -Re (IX - b), Z12 = -1m (IX - b). 

Let zaP = !€aPY6zy6 be the dual tensor (€apya is the 
completely antisymmetric tensor of order 4, €0123 = 

-1). With these variables, the group Co is a manifold 
in R8 defined by the equations (which come from 
det A = 1) 

4U I U2 + zaP
zall = 0, 

2(u~ - u~ - 4) + z·Pzap = 0. (3.1) 

The center C(Co) of Co has two elements 

/1 01 /-1 0/ Oland 0-1 

which are the vertices of cones containing the non
diagonalizable matrices with trace ±2 (u l = ±2, 
U2 = 0). The center of the Poincare group is 

We note that the z·P can be chosen as coordinates only 
in the open sets U1(U I > 0) and U2(U I < 0). (We do 
not exhibit explicitly a complete system of charts on 

Co, but it can be done in a straightforward manner.) 
Coordinates on P are given (outside UI = 0) by (xl', 
zap). 

B. Equations (1.9) 

P is a IO-parameter group, so that the system (1.9) 
contains ten equations: four of them (3.2) express 
invariance under conjugation by R4, the other six (3.3) 

invariance under conjugation by Co. An explicit 
calculation gives [in the form (1.15)] 

- 2 () -
;raT == (u 2g.P - z.yZ~ - UIZ.p - u2Z.p) - T = 0, 

()Xp 
(3.2) 

(3.3) 

[where the "bad" variables-for instance, UI and 1I2 

outside {u l = O}-are to be expressed in terms of the 
other six by means of (3.1) and f is defined in the 
corresponding chart, as in (1.15)]. 
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The peculiar form of (3.2), in the coefficients of 
which the variables .Y' do not appear, and of (3.3), 
where the x' and ZliV variables are separated, leads us 
to use first a fractional approach which is of greater 
interest for geometrical interpretation. 

C. Invariance under Conjugation by Translation 

We first study Eqs. (3.2). 
Outside {III = OJ, we write (with obvious notations) 

(3.2) in the form 

. 0-
!l.II(:) - T(x, :) = 0, 

oxp 

where we have det I\U,,/z)1\ = 411;, and so, outside 
{112 = O}, solutions are distributions which do not 
depend on x: 

T = T(z), 112 ~ O. 

Then one can see that, on the manifold {112 = O}, 

the rank r of Iln'llll is 2, except on R1 X C(lll) (=,11 = 
0), where,. = O. The differential operators of (3.2) 
restricted to {112 = O} are 

"' ) a (:';-:;J + 1I1:'p -, 
aXil 

(3.4) 

where the variables are now related by 

z'P:,p = 0, (3.5) 

2(11~ - 4) + :,P::,p = O. (3.6) 

The characteristic manifolds of (3.1) are [outside 

RJ X C(lo)] the four functions f" = zeTTx" among 
which only two, of course, are linearly independent 
[det IlzO"'1 ~ lIill; is of rank two on {11 2 = O} outside 

R4 X Ccro)]. 
Now, as 02(det I\U,/lID!(oll)2 = 0, we know from the 

theorem in Sec. I F that the solutions with support 
in {1I2 = O} are of the form 

i'J(U2) T(z, §), outside R4 x C([o). 

Distributions of the form II.p()(z,p)T(x) are ob

viously solutions with support in R4 x C([o). We do 
not discuss here the form of solutions with nonzero 
transversal order and with such a support. 

Geometrically1!.12 the condition U2 = 0 means that 
the matrix A of the corresponding element in P is a 
conjugate either of a rotation (lUll < 2), or of a pure 
Lorentz transformation (lull> 2), or of a transforma
tion of the Euclidean group £(2) (lUll = 2). Indeed, 
the mat,Eix nap is proportional to the matrix (I - ~ f)aP' 

where At is the _transpose of the 4 x 4 matrix J\ E Co 

defined by A E Lo' 
If_u2 = 0, there exists a 2-plane, pointwise invariant 

by A, generated by the vectors fl"yv (y E R4) and of 
equation z·Pxp = O. This 2-plane is spacelike, or has 
a timelike direction, or is tangent to the light cone, 

according as 11111 < 2, or 11I11 > 2, or 11I11 = 2, respec
tively. 

D. Invariance under Conjugation by Lorentz Group 

We solve now Eqs. (3.3) separately: 

( a , 0)-~l.Il~~(:) 0:,)(7 + ~l.I1;'II(X) ax" T(x,::) = O. (3.7) 

We first look at the system restricted to distributions 
which depend only on z. It reduces then to the system 
of class-eq uations of S L(2, ( ): 

a -
~l.l1)1~(::) - T(::) = 0. (3.8) . 0:,)(1 

The rank of the system (3,8) is 4 outside C(!':o); one 
can see that there exist two nontrivial combinations of 
the equations 

-i'II~.lI'lo" = 0 ~i'/'~ll'''1 = 0 
- .ql ' - • ).~l ~ 

which are independent unless Zi.l' = 0, V)., /-t. (We give 
in Appendix B a list of relations between z, f, ... , 
which are useful in all calculations.) The two corre
sponding characteristic manifolds are z·fJz,p and 
III' . ., ., d h h' b :: ::3/1' I.e., IIi - 112 an Ul 1l2; t e patc lIlg etween 

the different open sets of a covering of SL(2, C) shows 
that, in fact, III and 1I2 are themselves characteristic 

manifolds, So the solutions of (3.8) on Co are distri

butions of the form T(lIl' " 2 ) outside C(Co)' On the 

other hand, solutions of (3.8) with support in C(Co) 
are of the form (see end Sec. I) 

7;,,1.\1,; = L [a\"l.\·2U(II I ) + b.h\-/J( -1I 1)]A-"IB.Y2 

SIS:! II 

x (II b(Za
p»), 

.<p 

(finite sum) where A and B are the Laplace operators 
of SL(2, ,! ). The solutions of (3.7) which depend only 

on z are thus of the form T(U I U2 ) [outside R4 x qco)] 

and T{flI.{u:' 

Acting on distributions depending only on x we 
reduce (3.7) to the invariance equations of the Min
kowsky space under SL(2, C), 

~lJ1~/I(X) -; rex) = O. (3.9) ox 
Outside {Xii = O}, there are only three independent 
equations with the characteristic manifold x2 = x/lxl'. 
So the solutions of (3.3) which depend only on x 
are, outside {x I' = O}, of the form 

T(X2), O(x2)€(xO)T(X2), and b(kl(X2)€(XO). 

[The formal notation O(x2)€(xO)T(X2) does not mean 
that the product makes sense: It means "any odd, 
invariant distribution with support in the light cone." 
The use of such formal notation does not spoil the 
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validity of the subsequent calculations if one handles it 
carefulIy. Analogous remarks are to be understood 
when we use similar notations in the following.] 

On {x" = O}, the rank of (3.9) is zero, and the solu
tions with support in {XII = O} are 

Finally, we look at the complete system (3.3). From 
z;'Il9J?~~ = 0 and ill;'9J?~~ = 0, we have 

(3.1 0) 

and 

(3.11 ) 

with ~Il = zl'Vxv and til = illVxv' Now, in a neighbor
hood of any point which does not belong to R4 X 

C(Co) , Eq. (3.3) can be replaced by an equivalent 
system of six equations which contains (3.10), (3.11), 

where the qt" i = 1, 2, 3, 4, define four linear com
binations of the six 9R

AII 
such that the rank of 

/I qt,(z)9J?~~(z)11 

is 4 outside R4 X C(Co). Now only four among the six 
last equations can be independent, so it is obvious that 
the rank r of the system (1.9) is at most 8; in fact: 

(1) r = 8 if U2 ::;6 0, with the corresponding solutions 

(3.12) 

We have seen that, on {u 2 = O}, 1I0llvii is of rank 2 

outside R4 X C(Co). On the other hand, the term 
~v%xv is a linear combination of OIlVO/OXV, 

4~v = (UlXIl - ~1l)01l·, if 112 = ° 
[the coefficients (ulx II - ~ II) of the linear combination 
vanish simultaneously if and only if xI' = 0, V fl, but 
this implies ~Il = 0], and so there remain seven 
equations which are independent unless 

and four linear combinations of 9J?;'11 (the system of or 
these four last equations being of rank 4). So the rank 

(3.13) 

(3.14) 
of (3.3) is six [outside R4 x C(ro)], except when: 

~I' = ° or til = ° or ~I' proportional to til, 
then 

r = 5; 

~I' = til = 0, then r = 4. 

The system containing ten derivatives admits (when 
r = 6) four characteristic manifolds: We have already 
found three of them, Ul , U2' :x2 ; the fourth can be taken 
as 

A2 All A 2 2 A-) Q = ~ = ~ ~I' = (Ul - 2)x - 2(x, ,x. 

We do not discuss further the system (3.3). We now 
go back to the study of the complete system (1.9). 

E. Central Distributions 

The system (1.9) is equivalent to 

( Ctr,(z)9J?~~(z) o:p" + ctf,(z)9Jl;.ix) o~v) 
x fez, x) = 0, 

A 0 -
~V_ T(z, x) = 0, 

oXV 

o -e - T(z, x) = 0, 
OXV 

o -OIlV(Z) - T(z, x) = 0, 
oXV 

If we introduce nil = ZIlJv, we can see that (3.\3) is 
equivalent to 

go = 0, f}0 = 0, (3.13') 

and (3.14) is equivalent to 

(u; - 4) = 0, rjO = 0, (3.14') 
and so 

(2) r = 7 if U2 = ° outside {!o = 0, /70 = O} u 
[(u~ - 4) = 0 and ijo = 0]. with the solutions 

b(u2)T(u l , Q), 

b(u2)O(4 - ui)o(Q}€(~O)T(Ul' Q), 

b(u2)O(4 - u~)O( -Q)E(f}°)T(ul , Q), 

( 3.15) 

(3.16) 

(3.17) 

b(u 2)O(4 - U~)b(k)(Q)T(ul' E(tO), E(it», (3.18) 

b(u2)b(kl(4 - U~)E(lnT(Q, E(Ul»' (3.19) 

(3a) r = 6 if U2 = 0, to = 0, and /jo = 0 outside 

(R4 x c(1:o»' 
One can see that any solution with support in 

{u2 = 0, to = 0, and fio = O} is of the form 

~ b(1I2)b(p) ( ,!,Oo !) b(q) ( '0:,°0 !) T",iu 1), (3.20) 
",q (z z a) (z Z a) 

but any distribution of that form is not a solution. 
We do not need the precise description of solutions, 
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and so we do not discuss it; however, we note that 

are solutions [(P2) and (W2) are Laplace operators). 
(3b) r = 6 if U2 = 0, u~ = 4, and fjo = 0 outside 

(R4 x C(Eo»' 
That manifold is the intersection of the character

istic manifolds U2 = 0, ui = 4, and Q = 0, but 
{ui = 4} and {Q = O} are tangent together and the 
regularity conditions assumed in the study of (1.15) are 
not fulfilled. The system (1.9) restricted to that mani
fold has a new characteristic manifold 

(3.22) 

(We note that ~1l~vlzllaZVa is independent of fl and 
v.) The solutions of (1.9), with the given support, are 
of the form 

L .2 !5(u2)!5(p)(ui - 4)!5(q) ( _o~:o t) Tp,qO.) (3.23) 
" 2p+q=2n (z Z a) 

and 

(3.24) 

[Any distribution of the form (3.23) is not a solution, 
but 

(W2)"!5(U2)b(ui - 4)b( it !) T(A) (3.25) 
(Z°C%ZOa) 

are solutions.] 
(4) r = 3 on R4 x C(Co) outside C(P). The corre

sponding solutions are 

(W2t IT !5(zIlV)T(X2, €(u I », (3.26) 
,,<v 

(W2y IT !5(Z"VW(x2)€(xO)T(x2
, €(u1», (3.27) 

,,<v 

(w2)n IT !5(z"V)b(h')(x2)[a + b€(UI)]E(XO), (3.28) 
P<l' 

(AnB)q IT bU'lV)[a + b€(l/l)]' (3.29) 
J.l<V 

where A and B are the Laplace operators of SL(2. C). 
(5) r = 0 on ceP) with solutions 

(p2)IIl(W2)" IT bUIlV) II b(xA)[a + b€(lI I»). (3.30) 
p<v i. 

We give briefly the geometrical interpretation of all 
"signs" which appear in these formulas. The vector 
~"(U2 = 0) lies in the invariant 2-plane we talked about 
when discussing the conjugation under R4; when 

lUll < 2 (2-plane with timelike directions), the sign 
of the component of ~" along a time direction (if 
Q > 0) or a space direction (Q < 0) is Lorentz 
invariant. So is ~ = O. A similar situation occurs 
when lUll = 2 (2-plane tangent to the light cone): 
The sign of the space component of ~Il is invariant for 
Q < 0, and the sign of the "light" component is in
variant for Q = O. It only remains to notice that the 
vector fj" also lies in the invariant 2-plane, in which it is 
orthogonal to ~Il so that its time component up to a 
factor is just the space component of f 

As a conclusion to this section, we emphasize the 
fact that we have found central distributions with 
nonzero transversal order. This means that the linear 
forms they define also depend on the values of the 
derivatives of the test-functions transversal to the 
corresponding class of conjugation, i.e., in some sense 
on the geometry of the conjugation classes in the 
neighborhood of this class. 

4. CALCULATION OF THE CHARACTERS 

We now calculate those among the central distri
butions of P which are eigendistributions of the Lap
lace operators of the group. As we have said, the 
program fails on the point m2 = 0, w2 = 0, where we 
have to change our space of solutions and solve 
Eqs. (1.9) and (1.10) again. 

As in the previous section, we do not make explicit 
the calculation of limits coming from the singularities 
of the supports of central distributions. 

The Laplace operators associated with p2 = P "P" 
and W2 = W" W with W" = J.€"VPU M Pare ob-

1l' 2 vp (1' 

tained from the differential expressions 

(4.1) 

2M"V == u ~ + u ~ + za" ~ L la 2a- a-a z"v z"v Zv 

-av a 2" a 2 v a - z - + x~- x --. 
az: axv aXil 

A. Central Eigendistributions of p2, m2 '" 0 

p2 does not act on the zpu variables, so we can look 
separately at its action on distributions with support in 
ui - 4 ;;: O. 

Without giving the details of the open sets we use 
for our step-by-step calculation, we, however, for the 
sake of geometrical interpretation, draw, for a given 
Lorentz transformation {i".} with U2 = 0, the inter
section of the quadric Q with the 2-plane the trans
formation leaves invariant in M. See Fig. 1. This is 
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~O<() 
Q <U 

FiJ. - 0 
~ -

Q<O 

Q< 0 

Q<O 

~o > 0 

gO> 0 

A. > 01) 

~o < 0 

FIG. I. Sections of the surface Q = O. 

2 
u1 - 4> 0 

2 
u1 - 4 = 0 

(each A. defines a 
conjugation class) 

2 
u

1 
.- 4 < 0 
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FIG. 2. Solutions of Eq. (4.3) outside ~o = iJo = o. 

easily understood from the algebraic identity 

Q = $2 = i}/li}. + (u; - 4)~i.j illl%i~, 

V fl' 11, U 2 = 0. (4.2) 

We first look at the central eigendistributions of p2 
outside Q = 0, ui - 4 = 0. For distributions T of the 
form (3.12), P2T = 0 and we have no contribution (we 
have supposed m2 ¢ 0). For distributions of the forms 
(3.15) and (3.16), we are led to solve 

b(U2)(4(ui - 4)Q o2T + 4(ui _ 4) oT + m2T) = O. 
oQ oQ 

(4.3) 
The solutions of (4.3) are easily found to be 

b(u2)[Jo«m2Q)ij(ui - 4»F(Ul) 

+ No«m2Q)ij(u; - 4»G(ul )], (4.4) 

where Jo and No are the regular and singular Bessel 
functions of order 0 (we choose the determination of 
the square root with argument in [0, 7T]; F and G are 
arbitrary distributions depending only on ul ). 

If we now include Q = 0, but stay outside ~o = 
i}0 = 0, we have to look at the action of p2 on (3.18) 
and take into account the derivatives of 0 functions 
in (3.16) and (3.17). 

We see easily that p2 acting on (3.18) with b(k)(Q) 
gives a distribution of the same type with b(k+l)(Q), 
so that it cannot contribute to an eigendistribution 
(k is only allowed a finite number of values). 

Being careful with the derivatives of O(Q) [i.e., 
using limiting processes and writing Q = 0 with help 
of (4.2)], we get, for (3.16) and (3.17), the following 

eigendistributions of p2 - m2 : 

b(U2)O(4 - ui)Jo«m2Q)ij(4 - ui»O(Q)O(±~o)F~(Ul)' 
b(U2)O(4 - ui)Jo«m2Q)ij(u; - 4»O( -Q)O(±i}°)F±(ul ), 

b(U2)O(4 - ui)No«m2Q)!j(ui - 4»G(ul). (4.5) 

See Fig. 2. 
Adding ~o = i}0 = 0, but outside {ill' = O}, we have 

to look at the action of p2 on (3.20). Again, we see 
easily that the transversal order is raised. Now we 
have to see what happens to (4.4) and (4.5) on 
~o = i}0 = O. 

Moreover, we also take into account the values of 
m2, noticing that, if we want our Bessel functions to 
define distributions, they must not have an exponential 
behavior near ui - 4 = 0 (we see further that the 
distributions depending on Ul which we use are not 0 
on ui - 4 = 0). 

With the notations 

Io(x) = Jo(ix) and Ko(x) = t;7T[Jo(iX) + iNo(ix)], 

we have the solutions for m2 > 0, 

t'J(u2)O(4 - uD1o«m2Q)!j(ui - 4»O(Q)€(€O)Fl(Ul)' 

(4.6) 

b(U2)O(4 - ui)Jo«m2Q)ij(ui - 4»O( -Q)E(i}°)F2(Ul), 

b(u2)O(4 - ui)[Io«m2Q)ij(u; - 4»O(Q) 

+ Jo«m2Q)ij(ui - 4»O( -Q)]F3(U l ), 

b(u2)O(4 - ui)[(2j7T)Ko«m2Q)i)O(Q) 

- No«m2Q)ij(u; - 4»O( -Q)]Fiul ). 

(4.7) 

(4.8) 

(4.9) 

See Fig. 3. For m2 < 0, we get the solutions 

b(U2W(ui - 4)Jo«m2Q)ij(u; - 4»G(ul ), (4.10) 

FIG. 3. Solutions of Eq. (4.3) for m2 > O. 
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b(U2)O(4 - u~)Jo«m2Q)!j(u~ - 4»O(Q)e(gO)Glu l ), 

(4.11) 

b(u2)O(4 - uDCNo«m2Q)!j(u; - 4»O(Q) 

- (2j7T)Ko«m2Q)!j(u~ - 4»O( -Q)]G2(UI)' (4.12) 

See Fig. 4. (All Bessel functions have real arguments.) 
For any other complex value ofm2 , (4.11) and (4.12) 

are the only solutions. 
If we let ui - 4 be 0 with {Z,IV ;t!: O}, we have to 

look at the action of p2 on (3.19). From (4.3), we see 
that, this time, the transversal order is lowered, so that 
we cannot have eigendistributions of this type. We 
should also look at the action of p2 on (3.23) and 
(3.24), but we can see that the action ofW2 raises their 
transversal order, so that they are of no interest to us 
now. 

Let us mention that 

so that 

b(U2)b(u~ - 4)b[~Oj( _zoazOa)!](aeimA + be-imA) (4.13) 

(a and b any constants) is an eigendistribution of P2. 
We do not look at the action ofP2 on (3.26) - (3.30) 

because such distributions cannot be eigendistributions 
ofW2. 

B. Simultaneous Central Eigendistributions of 
p2 and W2 

We shall now look for those among the eigendistri
butions of p2 which are also eigendistributions of W2. 
Our last calculation showed that, outside ui - 4 = 0, 
the solutions of p2 - m2 = 0 depended only on the 
variables ul , U2 [by b(u2)] and Z = Q/(ui - 4). 

Now, in the same way we used the fact that p2 
did not act on the ZIlV variables, we shall use the fact 
that W2 does not act on U2 and Z. More precisely, a 
calculation valid in some open set U where ui -
4 ~ 0 and Q ~ 0, for distributions b(U2)T such that 

FIG. 4. Solutions of Eg. (4.3) for m2 < O. 

b(U2)(P2 - m2)T = 0, gives 

4W2[b(u2)T(ul , Z)] 

= m2b(u2)(ui _ 4) 02~ + SUI aT + 3~i - 4 T) ; 
oUI oU I UI - 4 

(4.14) 

i.e., W2 acting on such distributions is reduced to a 
second-order differential operator in ul • 

We are thus led to replace the products O(±Q) X 

O(±(ui - 4» in formulas (4.6)-(4.12) with the equiva
lent and suitably fitted products O(±Z)O(±(ui - 4». 

The solution of the eigenvalue problem in the whole 
group will be the cumbersome part of this paragraph. 

Tn U, Eq. (4.14) allows us to determine the distribu
tions F(uI ) and G(uI ) of formulas (4.6)-(4.12). Indeed, 
the eigenequation W2 - w2 = 0 then leads to 

(IIi - 4)T;;!2 + SUIT;,! + (3u~ - 4)/(ui - 4)T 

= (4w2/m 2)T. (4.15) 

This is a Fuchsian equation of first type with two 
singular-regular points at Ul = ±2. It has two solu
tions for each right or left neighborhood of these two 
points. Again, by analogy with SL(2, R), we call these 
regular and singular. They have the behavior 

2! 2 R(lI l ) = A(uI)/(U1 - 4), S(u l ) = B(uI)/(UI - 4), 

(4.16) 

with A(ui ) and B(ui ) holomorphic functions. 
We now have to see if the distributions (4.6)-(4.12), 

where the F and G are replaced by R(ul) and SCull, are 
eigendistributions on the whole P. For this calculation, 
we use the method of extension given in Sec. I [practi
cally, we replace, for the derivations, O(± (ui - 4» by 
O(±u(i - 4) - e) and then take the limit e ->- 0]. 
The details of these tedious calculations are given 
in Appendix C. The results are (in the open sets 
Ul > -2 or Ul < 2) the following: 

ifm2 > 0: 

(W2 - w2)(4.6) = (i/m)A(±2)b(u2)b(lIi - 4) 

X b(r//( _zoazoayk) sinh mAe(gO), 

(4.17) 

(W2 - w2)(4.8) = (i/m)A(±2)b(1I2)b(lIi - 4) 

X b(r//( _zoazOa)!) cosh mA, 

(W2 - w2)(4.9) = 0; 
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if m2 < 0: 

(W2 - w2)(4.10) = (1/In)A(±2)b(u2)b(u~ - 4) 

x b(~o/( -ioaiOa)!) cos inA, 

(W2 
- w2)(4.11) = (i/m)A(±2)o(U2)O(U~ - 4) 

x o(~o/( -ioaiOa)!) sin mA€(£O), 

W 2 
_ w2)(4.12) = -(i/m)A(±2)o(U2)O(U~ - 4) 

x o(r//( - iOa i O a»! cos mi.. (4.18) 

2. With F, G = S(ul) = B(U1)/(lii - 4): 

if m2 > 0: 

(W2 - w2)(4.6) = 0, 

(W2 - w2)(4.7) = II O(5a{J)6.~n(x2), 
a<f3 

(W2 - w2)(4.8) = II O(Zap)6.~,(x2), 
a<f3 

(W2 - w2)(4.9) = II O(Zap)6.::"(x2); 
a<{J 

if m2 < 0: 

(W2 - w2
)( 4.10) = 0, 

(W2 - w2)(4.11) = 0, 

(W2 - w2)(4.12) = II b(Zap)6.:m(x2
). 

a<p 

( 4.19) 

(4.20) 

We were not able to calculate the distributions 
6. i (X2) [which satisfy (P2 =F m2)6.i = 0], so we cannot 
assert they are different from ° and, for the three 
6.m , linearly independent. 

On the other hand, we can calculate that W2 acting 
on any central distribution with support {~O = 0, 
ui - 4 = O} or {illY = ° V fl, v} raises its transversal 
order. Thus, the only simultaneous eigendistributions 
of p2 and W2 are those lines or combinations of lines 
in (4.17), (4.18), (4.19), and (4.20) which lead to a 
right-hand side 0; i.e., with R(ul ) 

(4.7), (4.9), (4.10) - i(4.12), 

(4.6), (4.7), (4.11). (4.21) 

C. Spectrum of W2• Character of the Representa
tions m2 ~ 0 

1. Explicit Expression of Rand S 

The differential equation (2.2) can be solved ex
plicitly with a change of variables suited to the sets 
lUll;;:: 2 and a change of function: 

UI > 2 or Ul < -2, UI = ±2 cosh !n, n > 0, 

g(n) = f/sinh 2!n, 

lUll < 2, Ul = 2 cosh !IP, 0 < IP < 27T, 

g( IP) = f/sin2 lIP· 

The equation then becomes 

g" ± (! - w2/m2)g = 0, 

and we see that the solutions of (2.2) are 

lUll> 2, R(ul ) = sinh an/sinh2 !n, 
S(ul ) = cosh an/sinh2 !O, 

lUll < 2, R(ul ) = sin aIP/sin2 !IP, 

S(ul ) = cos aIP/sin2 !IP 

(4.22) 

with a = a - !W2)! (there is, of course, no fixed 
choice of normalization for Rand S across their 
singularities). 

2. Spectrum of W2 

Exactly as for SL(2, R), the existence of a center 
with two elements in P enforces the "parity" condition 

(x, IP-) = ± (X, IP), IP_(x, i) = IP(x, -5). 

Through the transformation ill Y ---+ _illY, Q and~o are 
invariant, and £0 and Ul take opposite signs. We see 
that the solutions (2.8) do not mix with one another, 
so that we must have 

This condition enforces 2a to be an integer for those 
solutions which are not ° for ui < 4. With 2a = 
2j + 1, j = 0, !, 1,"', or 2a = 2K - 1, K = !, 
1, ... (we shall choose the definition with j for m2 > ° 
and with K for m2 < ° so as to get, at the end, the 
notations of the literature for the representations of 
P), we thus have 

1\'2 = -m2j(j + I) or w2 = m2K(1 - K). 

For the solution (1.9) with S(uI ), it only links the 
disconnected parts with supports UI > 2, < -2, 
which therefore must appear with coefficients of the 
same absolute value. 

3. The Characters of P, m2 ~ ° 
We now form, with the central eigendistributions 

we have found for each value of m2 and w2 , the linear 
combinations which can be characters of irreducible 
representations, i.e., which possess definite parity 
properties and, eventually, for real values of m2 and 
w2 , which are of positive type and extremal. 

As in Sec. 1, however, we are just able to select 
bounded, Hermitian, and extremal distributions, and 
say they are candidates to be of positive type. Only 
comparisons with the known UIR's of P and with the 
results of Schraderl2 allow us to fix our last unknown 
coefficient. 
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We refer to Sec. 2 for the notations used relative to 
SL(2, R). 

(1) m2 > 0: We have three solutions: (4.7) and 
(4.9) with Rand (4.6) with S. Necessarily, 

w2 = -m2j(j + I). 

The solution (4.6), unbounded and odd in x, can at 
most be the character of nonunitary representation 

Xm.i = b(u2)lo«m2Q)!/(4 - ui»(I(Q)E(~o) 
X 0(4 - ui) cos (2j + 1)!<p!sin2 l<p, 

With the other two solutions, we can form two 
Hermitian [Le., satisfying X(g) = X(g-I); here g-+ 

g-l entails Q -+ Q, Ul -+ Ul , to -+ to, '70 -+ - 10] ex
tremal distributions which are bounded: 

(4.9) ± ja(m,j) (4.7). 

They can be the characters of the unitary "physical" 
representations [m,j, ±] of P, induced by the rotation 
group. Indeed, comparison with Schrader's workJ2 

gives us a(m,j) = 1, and we have 

X~,j = b(u2)[(2/1T)Ko«m2Q)t/(4 - u1»0(Q) 

+ im«m2Q)t/(lIi - 4»O(±1j0)0( -Q) 

- iH~«m2Q)t/(u~ - 4»0( -Q)8(=f,l°)J 

X 8(4 - ui) sin (2j + l)t<p/sin2 tip. 

All these three characters have parity (_1)2i. 
(2) m2 < 0: 
(i) w2 =;!: mZK(1 - K): We have only two solutions 

built with (4.10) and S: 

Xt;.,.f1 = b(uz)Jo«m2Q)t/(ui - 4» 
X [O(u} - 2) cosh O'1]/sinh2 t1] 

± O( -Ll1 - 2) cosh O'1]/sinh2 !1]]. 

If w2 is not real or if w21m2 < -t, Xt;" f1 can be 
a character of a non unitary representadon of P 
"induced" by a nonunitary representation of SL(2, R) 
(for w2/m2 < -1, X is not bounded). 

If w2/m2 > t. we find the characters of the repre
sentations rim, 0', ±] of P induced by the principal 
series of SL(2, R). 

For 0 < w2/m2 < -l. we have the characters of the 
representations induced by the complementary series 
of SL(2, R), with X;m,f1 corresponding to a unitary 
representation. 

For -i ~ w2/m2 < 0, X;m,f1' though bounded, can 
only be a character of a nonunitary representation. 

(ii) 1\'2 = m2K(l - K): We have a 4-dimensional 
space of solutions: the two solutions of (i), (4.11) with 

S, and (4.10) - ;(4.12) with R. These last two solu
tions have parity (_1)21c, so that we can isolate the 
solution of oc with parity (_1)2Ic+l: 

X(m,K = b(u2)JO«m2Q)t/(ui - 4» 

X [8(ul - 2) cosh (2K - lH1]/sinh2 t1] 

+ (_1)2K+1 cosh (2K - IH1]/sinh2 l'l}]. 

For K > 1, it is unbounded and probably corre
spo~ds to the character of nonunitary representation 
of P "induced" by the non unitary representation of 
SL(2, R) we have found at this point. For K = t, it 
is the character of the unitary representation of j5 
induced by the unitary representation C~ of the com
plementary series. 

The solution (4.10) - i(4.12) with R corresponds to 
the representations of j5 "induced" by the finite
dimensional representations of SL(2, R). It is unitary 
only for K = i: 

X{m.K = b(U2){8(ui - 4)Jo('(72

Q)t) 
Ul - 4 

X (O(UJ sinh (2K - 1)!1] 
sinh211] 

+ (-llKl/( -Ul) sinh (2K - IH1]) 
sinh2 !1] 

- 8(4 - U~)[No(72Q)!)8(Q) 
Ul - 4 

_ 2: Ko(m2Q)t)l/( _Q)]Sin (2K - 1)t<T\ 
1T 4 - ui sin2 iT J. 

Last, we can form two bounded combinations which 
are the characters of the unitary representations [irn, 
K, ±] of j5 induced by the two discrete series of SL(2, 
R): 

( (
m2Q)t) 

Xtm.K = b(u2) O(u~ - 4)Jo ~ 
U t 4, 

[We obtained, in fact, a coefficient a(im, K) before 
0(4 - u~), which we set equal to 1 with the help of 
Schrader .12] 
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(3) m2 complex: We have only one solution: (4.11) 
with S and still the spectral condition for w2

: 

It might be a character of non unitary representation 

Xm.j = O(U2)JO(m2Q)i)0(Q)f;(~0) 
1/~ - 4 

X 0(4 _ ui) cos (~j + 1)tq;. 
sm2 tq; 

4. Frobenius' Formula 

Again, it is worthwhile here to note how nicely it 
appears that the representations of P are induced. We 
have already stated Frobenius' formula for finite 
groups and seen its generalization for SL(2, R). 

Here, our inducing representations are those of the 
little groups R4 X SU2 or R4 x SL(2, R). The corre
sponding characters are of the form 

Xw = eiP
'
x

, 

where Xw is a character of SU2 or SL(2, R), x E R4, 
p2 = m2. 

Now, leaving aside Xtm.k' the characters of P, we 
find the structure 

Xw'm' = o(u 2) Xw x B(( m
2

Q )t), 
. sin !q;, sinh t'l') t/~ - 4 

where B is any Bessel function; i.e., they have for 
support the elements of P which are conjugates of 
elements of the inducing group which belong to the 
support of the character of the inducing representa
tion; they contain the character Xw time a "multi
plicity" factor l/sin!q; or l/sinh i'l'); they also con
tain, in a certain sense, eiP'

x with a multiplicity (Bessel 
functions being integral eiP

·
X
). 

The structure of X± k' is not as nice, due to the fact .m. 
that, for U1 < 2, the trace of a matrix of SL(2, fR) 
does not specify its conjugation class as it does in 
SL(2, C). 

D. Characters of the Representations m2 = 0, w2 ~ 0 

1. Central Eigendistributions ofP2 

There is no major change here. Calculation runs 
similarly to that of Sec. 4C with, instead of the two 
Bessel functions Jo and No, a constant and log 1 Q I. We 
need only notice that the solutions of p2 = 0 are now 
defined up to the addition of distributions of the 
form T(u1 , u2). 

Leaving those aside, we get zero for eigendistri
butions in ui - 4 > O. For eigendistributions in 

u~ - 4 < 0, we get 

O(u2)O(Q)€( ~O)T(Ul)' 

O(u2)0( - Q)€( nO)T(u1), 

O(U2) log 1 QI T(u1) , 

(4.23) 

with T an arbitrary distribution. Outside {ilIV = O} we 
have, in addition, 

2. Simultaneous Eigendistributions of p2 and W2 

The part played in Sec. 4B by the variable Z is now 
played by Q itself. Indeed, we see that W2 acting on 
distribution (4.23) [and also, of course, on distri
butions of type T(u1 , u2)] gives 0, so that these will not 
interest us for the moment. We see that W2 acting on 
distribution (4.24) leads to the eigenequation 

2Q3 o4T + 11Q2 o3T + llQ o2T + oT _ 0)2 T= O. 
OQ4 OQ3 OQ2 oQ 8 

(4.25) 

With x = ~ -4w2Q (we choose the determination 
of argument in [0, 1T/2]) , we find that four independent 
solutions of (4.25), outside Q = 0, are 

Bo(x)B~(ix), (4.26) 

where Bo' B~ = Jo or No' 
Calculation shows that the only global solutions are 

those whose behavior as Q ->- 0 is 

i.e., the four independent solutions (see Fig. 5) 

Jo(x)Jo(ix) , (4.27) 

Jo(x)Jo(ix)€Uio), (4.28) 

[Jo(x)No(ix) - No(x)Jo(iX)]€(llo), (4.29) 

Jo(x)No(ix) + No (x)Jo(ix). (4.30) 

See Fig. 5. 
These solutions give rise to eight simultaneous 

eigendistributions of p2 and W2. Indeed, the parity 
requirement enforces the form 

o(u2)[(4.27)-(4.30)][o(u1 - 2) ± (j(1I1 + 2)]. 

3. Characters of the Representations 

We now extract, from the two sets of distributions 
which have definite parity, the linear combinations 
which are characters of unitary representations of P. 
Once more, we can only guess that the remaining 
solutions are characters of nonunitary representations. 
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-IN o 0 

FIG. 5. 

We restrict the real values of WZ and search for 
bounded combinations of (4.27)-(4.30). If WZ > 0, 
then x > 0 and, clearly, the only bounded product of 
the form (4.26) is BO<x)HWx). Now, these cannot be 
obtained from (4.27)-(4.30), so we can conclude there 
is no unitary representations with w2 > 0. 

Similarly, we easily see that, for WZ < 0, the only 
bounded products of the form (4.26) are 

m(x)Jo(ix), H~(x)No(ix), Jo(x)H~(ix). 

We thus find four global bounded solutions 

<5(UZ)[<5(u1 - 2) ± <5(u1 + 2)] 

X {2iJo(x)JoUx) - [Jo(x)NoUx) + No(x)JoUx)]}, 

(J(uz)[(J(u1 - 2) ± <5(u1 + 2)] 

X [Jo(x)NoUx) - No(x)Jo(ix)]€(~O). 

Moreover, both the first line, being real, and the 
second, pure imaginary, possess Hermitian symmetry 
[through g _ g-l: €(~O) __ €(~O)]. 

The condition of extremality then gives us the form 

X~1.;Z2 = <5(uZ)[<5(Ul - 2) + €1<5(U1 + 2)] 

X {2iJo(x)Jo(ix) - [Jo(x)No(ix) + No(x)Jo(ix) 

+ €zlX[Jo(x)No(ix) - No(x)Jo(ix)]€(~o)}. 

The coefficient IX, which is real, should be deter
mined by the fact that X is of positive type and ex
tremal. Then X~1~2 would be the characters of the mass-
0, continuous-spin, representations of P. El = =f 1 
tells us whether the representation is faithful or not 
for the center of SL(2, C); €z is the "sign of the 
energy." 

4. Frobenius' Formula 

Except that Xo,w has for support Uz = 0, Ul = ±2, 
nothing expresses the fact that the corresponding 
representation is induced. But this is not a surprise: 
the inducing representation is a representation of 
R4 x Ez which "kills" the rotations of the Euclidean 
group. The inducing character is b( rp)Jo(w Izl)e iP

'
x 

[for an element 

X E R4, pZ = 0]. But elements with rp = 0 and different 
z are in the same class of conjugation of SL(2, C), so 
that the multiplicative multiplicity factor of Frobenius 
formula is here partly replaced by an integral over z, 
which gives rise to the second Bessel function of the 
character [by means of the integral representation 

f 2/ dz 
H~(x)Hgox) -::::: e'" zZHg(z) - , 

y'" z 

where y'" is a suitable path, IX, (J = 1, 2]. 

E. Characters of Helicity Representations, 
mZ=wz=O 

1. Generalities 

The first part of the last paragraph showed us that 
the space of central solutions of 

(4.31) 

(4.32) 

in which we must pick up the characters of helicity 
representations, was infinite dimensional. This in
finity has two origins :First, the arbitrary distribution 
in formula (4.23); second, the arbitrary additive term 
of the form T(u1 , uz). 

But we know that, for unitary irreducible representa
tions with mZ = w2 = 0, the operators U(W,) and 
U(P,) are proportional: 

U(W,) = iAU(P,) V fl. 

So the character of the representation must satisfy the 
supplementary equation 

(Wit - iAP,)X = 0, (4.33) 

where Wand P are now the differential operators. 
It It 

This condition, as we shall see, removes the first 
ambiguity. 

In order to remove the second ambiguity (that is, to 
obtain well-defined solutions), we must solve Eqs. 
(4.31), (4.32), and (4.33) in a space other than 'JY(P), 
namely in ':D~(P), the dual space of 

':Do(P) = {rp E ':D(P), L.cp(X, A) dx = 0, V A E Eo}, 
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equipped with the induced topology (distributions 
which do not depend on x vanish on :no). 

The fact that the characters of the "zero-mass, 
finite-helicity" unitary representations cannot be dis
tributions can be shown directly: If U is a strongly 
continuous unitary representation such that, for each 
q; E:n, the operator U(q;) has a trace and thus is 
compact, then, for each fE V(G), U(f) is compact 
(because !) is dense in U and the representation of 
V is norm continuous). It is known3 that the "zero
mass, finite-helicity" representations do not have this 
property. By different methods, SchraderI2 had al
ready pointed out that the characters of these repre
sentations could only be defined on !)o' 

2. The Space !)~(P) 

Let i:!)o -4- !) be the canonical injection; the trans
posed application Ii:!)' -4- !)~ is linear and continuous. 
Now there exists a (noncanonical) linear, continuous 
map p:!) -4-!)o such that poi = I ll l)' 

For some f E !)(R4) such that 

we define 

r f(x)d4x = 1, JR4 

(pq;)(x, A) = q;(x, A) - f(x) r q;(y, A)d4y. 
JR' 

The transposed application is such that ti 0 tp = Illo; 

so ti is surjective and !)~ is the quotient of !)' by the 
subspace Ker!)o c!)' of the distributions which 
vanish on !)o (i.e., constant with respect to x). 

The partial derivation is naturally defined in !)~ 

and is the transform by ti of the derivation in !)'. 
The product by a cro function (J(x, A) depending 

effectively on x is not defined everywhere in :n~ 
(q; E !)o ::J? (J(q; E !)o). However, it is defined on 
elements of!)~ which are derivatives with respect to x: 

«(J(0/lT, q;) = -(T, o/(J(q;», 0/l«(J(q;) E !lo' 

Then it is the transform by t i of the multiplication by 
(J( in !)'. 

3. Resolution of (1.9), (1.10), (4.31), (4.32), and 
(4.33) in !l~ 

The differential operators which appear in the 
equations 

:f/lT= 0, (1.9) 

9Jl,1v T = 0, (1.10) 

(P2)T = 0, (4.31) 

(W2)T = 0, (4.32) 

(W
II 

- iA.P)T = 0 (4.33) 

have a meaning as operators in !)~, and we have to 
solve this system of equations in !l~. From the defi
nition of Ker !)o, we see that it is equivalent to solve 

a~ T= 0 
p II ' 

oplJR/lvT = 0, 

op(P2)T = 0, 

op(W2)T = 0, 

o/W/l - iAP)T -4- 0, 

(4.34a) 

(4. 34b) 

(4. 34c) 

(4. 34d) 

(4.34e) 

in !l', each solution being well defined up to a distri
bution in Ker !)o' 

The central distributions already found are obvi
ously solutions of the new "class equations" (4.34a) 
and (4.34b). But we have now other solutions, namely 
(mod Ker !)o) 

o(u 2)O(4 - ui)T±(u l ) log W ± (4 - ui)!g/ll (4.35) 

(which are independent of ft, mod Ker !lo; we shall 
take ft = 0 in the following). 

It is quite remarkable that these solutions depend on 
variables which are no longer constant on the con
jugation classes of P. 

We note that the sum of two distributions of the 
form (4.35) with opposite signs in the argument of the 
log, and with T+(u l ) = T_(u l ) = T(u l ), is equal 
(mod Ker !lo) to the "old" solution 

Distributions (4.23) remain solutions of (4.34c) and 
(4.34d), and so do distributions (4.24) with T(Q) 
solution of (4.25) with 11'2 = 0; that is, 

O(U2)O(U1 ± 2)[a± log IQI + b.iE(iJO) 

+ c±( -Q)}E(i)O)]. (4.36) 

New solutions appear, namely 

(4.37) 

Last, distributions of the form (4.35) are solutions of 
(4.34c) and (4.34d); as for m2 ¥- 0, W2 raises the 
transversal order of the other central distributions. 

We now look for solutions of (4.34c) among distri
butions (4.23), (4.35), (4.36), and (4.37). 

For (4.35), outside tI] = ±2, we have 

(P/l)o(u2)()(4 - Ui)(J(±(lI1) log Ii)° ± (4 - lIi)~~OI 

_ ~( )()(4 _ 2) ( ) £0.=, •• ± (4 - lIi)~ 20
ft 

- u U2 11] (J(± lI] 1 

It' ± (4 - lID2~O 
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and [using the relation Q = (~"~V - ~V~")/z"v, V fl ~ 
'JI if U2 = 0] 

2(W,,)b(u2)O(4 - ui)cx±(uI) log It? ± (4 - u~)~~ol 

= b(u2)O(4 - ui)( ±U\! cx±(u l ) 

(4 - til) 

OOOIOOO (4 _ 2)!' ( ») zoaz"a ± (4 - Ui)!Zofl 
T III CX± UI ! ~ , 

1° ± (4 - ui) ';0 

mod Ker no. 
So (4.34c) gives 

U1CX±(UI) -(4 - lIi)cx~(lIl) = ±2i.l!(4 - ui)!cx±(u1), 

and with U I = 2 cos If', 0 ~ If' ~ 7T, 

Now the only global solution is the combination 

SA. = -b(U2)O(4 - ui) 

x {(e2i)."'/sin T) log W + (4 - ui)!~ol 
+ (e-2i)."'/sin cp) log lijo - (4 - ui)!~OI}. (4.38) 

For (4.23), we have (outside ~II = 0, V fl and ui = 4) 

(PII)b(U2)T(u I , Q) = -2b(u2)TQ(u I , rp)/jI', 

(WI1)b(u2)T(1I 1 , Q) 

= b(1I2){211IQTQ2(lIl' Q) + 3u I TQ(u 1 , Q) 

+ (ui - 4)T;;lQ(1I 1 , Q)}~". 

The vectors /1 and ~ are proportional if and only if 
Q = 0, where 

ij" = 2(ijo)€(gO)(4 - ui)ig,', 

and so T;)(III' Q) must vanish for Q ~ 0 and solutions 
must be linear combinations of 

T± = ~b(1I2)O(4 - lIi)P±(uI){O(Q)€(§")±O( _Q)€(ijO)}. 

Then 

(P")T± = 215(112)0(4 - ui)b(Q)P±(u1) 

x {O(~o)O(1=f]°) - O( -g0)O(±ijo)}i?', 

( W")T± 

= -15(112)0(4 - lIi)b(Q){UIP±(UI) + (u~ - 4)p~,(III)} 

X {O( ~0)O( 1= ij") - O( - ~0)O( ± 1/0)}~1'. 
(4.34c) gives 

UIP±(UI) - (4 - U~Wt(UI) = ±2i.l!(4 - IID!P±(II I), 

with the solutions 

P±(U 1) = fJ±e±20."'jsin T, 

where Pol are any constant. There is only one global 

solution of (4.34c): 

TA. = b(u2)O(4 - ui){(sin 2.1!rp/sin rp)O(Q)€(go) 

- i(cos 2).cp/sin cp)O( -Q)€(l?)}. 

The only solutions of (4.34c) of the form (4.36) or 
(4.37) are 

Y± = b(u2){b(u l - 2) ± b(u l + 2)}( -Q)!€(1joa) 

= b(u2){b(u l + 2) ± b(u l + 2)}f]°/( -iUazOa)!, 

which satisfy (P,,) Y:l = (W") Y ± = 0, mod Ker no. 

4. Characters of the Unitary Representations, 
m2 = 0, w2 = 0 

First, the characters must have definite symmetry 
property under translations by (0, -1) E P. The solu
tions of the differential equations which have such a 
property are 

SA and TA if 2), is a real integer [with "parity" 
(_1)2),], 

Y± (with "parity" ±I). 

For 2A integer we have a 3-dimensional vector space 
of solutions spanned by SA' T)., and Y(_Il2)., in which 
we have to find the characters of the two known 
unitary representations. They are of the form 

x1 = s). ± xTA. + iYY(_l)2)., (4.39) 

where x and y (real because of Hermitian symmetry) 
must be such that XX is extremal of positive type. 

Before going on, we must note a property of the 
space no: The linear span ofnci (the conus of functions 
of positive type in no) is not dense in no; the set of 
positive linear combinations of functions of the form 
oc * ii, oc E 2), is dense in 2)+, so that any cp E 2)~ can be 
approximated by such functions. Now, if rp = cx * ii 
(oc En), rp E no implies cx E no, and so 

J cp(x, A)a"x" dx = 0 V A E:Co 

for any linear function a"xll; thus, any distribution 
linear with respect to x vanishes on nci and also on the 
linear span of n~, but not on no' (The linear span of 
nci is the closure of n~ = {rp = rJ. * p, cx, fJ E no}.) 

Distributions Y ± are linear in x and so vanish on 
nci. The fact that (4.39) is of positive type or not does 
not depend on the value of y: We have defined the 
character on too small a space to determine it com
pletely by the properties given in Sec. 1. On the other 
hand, the calculation of x can theoretically be done, 
but, as in the case m ~ 0, we were not able to perform 
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it. Thus, we can only write 

x1 = b(u2)O(4 - U~)[_(~2iAtp log 11t + (4 - l1i)!~ol 
sm cp 

e-2iltp 
1 ) + -.- log I~O - (4 _ lI~)~~OI 

sm cp 

± x(Si~ 2ACP O( +Q)€(~o) 
sm cp 

- i co~ 2ACP O( - Q)€(f)O») ] 
sm cp 

+ iyb(U2){b(u l - 2) 
AO 

+ (-1)2).b(u 1 + 2)} YJ !' (4.40) 
( 

AO", AO) -z z", 

The X). are (with the right x andy) the characters of the 
helicity representations [0, A, ±] of P. 

(We note that S). and, therefore, xr is not bounded, 
but an element of !)~ can be of positive type and not 
bounded.) 

5. The Remaining Solutions 

For the sake of completeness, we list the other 
solutions, which might be related to the characters of 
some non unitary representations. 

1. We have seen that 

Y± = b(u2)[b(u1 + 2) ± b(u1 - 2)W/( -zU"'i~)! 
are solutions of (4.34a) to (4.34e); moreover, they 
vanish on !)~ and so are, in the limit, "of positive 
type." It is only because there are no other unitary 
representations of P than the helicity ones that we can 
assert that Y ± are at most the restriction to !)~ of the 
character of some non unitary representation. 

2. Last, we have solutions of (4.34a) to (4.34d): 
For 2A real integer, 

(
e-2j ).tp 1 

b(U2)O(4 - u~) -.-Iog 1(;° + (4 - u~)~~OI 
sm cp 

and 

b(1I2)O(4 - lIi)(CO~ 2ACP O(Q)€(~u) 
sm cp 

+ i si~ 2Acp O( -Q)€(1?») ' 
SID cp 

b(1I2)[b(III + 2) ± b(lI l - 2)](a± log IQI + h±€(1?»; 

with f even or odd, 
O(U2)Q!(U1)' 

6. Frobenius' Formula 

The same remarks as for the characters of the repre
sentations with m2 ~ ° can be made here. The charac-

ter of the inducing representation [the little group is 
again R4 x E(2), the inducing representation being 
now trivial for the translation of E(2)] is 

-2;).tp jp·x e e, 

with p2 = 0, X E R4. 
As a conclusion to this paragraph, we mention the 

help we found in studying first the characters of the 
O-mass representations of the group R· R2, where R 
acts on the 2-dimensional translation group R2 
through the matrices 

(
cosh YJ sinh YJ) 
sinh YJ cosh YJ • 

For this group, the characters can be obtained as well 
by means of the usual integral-kernel method as by 
our differential procedure. They possess a structure 
very similar to (4.40). 

F. Characters of SL(2, C) 

From the central distributions T(u1 , u2) which do 
not depend on x, we can extract the characters of the 
representations of SL(2, C) (which are also repre
sentations of P). They are the solutions of the eigen
equations 

AX = ax, 

BX = bX, 

(4.41) 

(4.42) 

where A and B are the Laplace operators of SL(2, C) 

A - .lM/n'M B_1 ).lIvPM M 
- 2 I'V' - :{E All VfJ ' 

Map being the differential operator given in (4.1), in 
which the derivatives with respect to x now vanish. 

With u = U1 + iU2 and a1•2 = a ± ib, Eqs. (4.41) 
and (4.42) take the form 

2 02X OX 
(u - 4) - + 311 - + 4q X = 0 ou2 OU 1 , 

(Ii - 4) 02X2 + 3u oX + 4q2X = 0. 
OU oii 

(4.43) 

Now, if we set u = 2 cosh (YJ + icp), YJ ;;:::: 0, and 
0::;; cp < 21T, we find that two independent global 
solutions of (4.43) are [with (]j = (1 - 4qj)!] 

R = sinh (]I(YJ + icp) sinh (]i1] - icp)/lsinh (YJ + icp)12, 

S = cosh (]1(1] + icp) cosh (]2(1] - icp)/Isinh (1] + ir)1 2
. 

[The singular points of (4.41) and (4.42), YJ = 0, 
cp = 0, 1T, do not divide the set of the parameters into 
disconnected parts: This comes from the fact that 
SL(2, C) is a semisimple complex group.] 

Our usual "parity" requirement (cp -->- cp + 7T) 
forces (]1 + (]2 or (]1 - (]2 to be an integer. 
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1. One and only one of the numbers a l + a2 and 
a l - a2 is a real integer. 

a l and a2 are only defined up to the sign. We 
choose them in such a way that 

a l + a2 = m > 0, m an integer. 

(a) m > 0: al and a2 are now completely defined 
(with their sign); we put a l - a2 = ip ¢: ° (p is a 
well-defined complex number). Then we have one 
(global) solution 

Xm,p = cos (P'Yl + mcp)/lsinh (n + icp)12 (= S - R). 

(b) m = 0: i.e., ql = q2; we have chosen a l = -(J'2, 
but the sign of a l is arbitrary. We put a l - a2 = 
ip ¢: 0. p is a complex number defined up to the sign. 
We have one solution: 

Xo. P = cos pn/lsinh (n + icp)12. 

We note that Xm •p has parity (_l)m. 
Unitary representations 
Unitary implies ql = 1/2. 
m > 0: We have that a1 = cr2 , p¢:O is any real 

number, and Xm,p is the well-known character of the 
corresponding representation (m, p) of the principal 
series, 

m = O:ql =q2, a1 = -a2 • 

If 1 - 4q; < 0, a; is pure imaginary. One can 
choose p real positive, and one has the character of the 
representation (0, p) of the principal series. 

If 1 - 4q; > 0, ai is real, -ip can be chosen real 
positive. 

If ° < qi < !, Xo,p is bounded, it is the character of 
the representation (0, p) of the complementary series 
(0 < -ip < 2). 

If qi < 0, Xo,p is not bounded and is the character 
of a nonunitary representation. 

2. Both a l + a2 and a1 - a2 are real integers. 
This condition implies that a l and a2 are both inte

gers or both half-integers, 
(a) a1 and a2 are half-integers: One can choose a1 and 
a2 positive, S + Rand S - R have opposite parity, 
and so we have the two solutions 

X+ = cosh [Cal + (2)'YJ + i(a1 - ( 2)cp]/lsinh('YJ + icp)12 
(= S + R) parity (_1)<71+<72+1, 

X- = cosh [Cal - ( 2)'YJ + i(al + (2)cp]/lsinh('YJ + icp)1 2
, 

(= s - R) parity (_1),,1+<72
• 

X- is bounded for a l = a2' We then have 

X- = Xm •o' 

where Xm.O is the character of the representation (m, 
0) of the principal series (with m = a l + a2' odd). 

X+ is bounded for a1 = a2 = ! and we have X+ = 
XO.i' the character of a representation of the comple
mentary series. 
(b) a1 and a2 are integers: Rand S are global solutions 
with the same parity (-1)"', m = a1 + a2 , so that 
there is a solution (R), which is a continuous function 
on G. It is the character 

X~Ii2 = sinh (2jl + 1)('YJ + icp) 

x sinh (2j2 + 1)('YJ - icp)/lsinh ('YJ + icp)1 

of the finite-dimensional representation D. .: 
31,]2 

ai = 2ji + 1 with ji = 0, t, 1 .... 

(If one of the a's is zero, the corresponding R is zero.) 
We have X~o = 1, the character of the trivial repre
sentation which is the only finite-dimensional unitary 
representation! 

On the other hand, 

X{.o = 2 cosh ('YJ + icp) = u. 

Now we have to find a second linear combination of 
Rand S which is the character of the other (known) 
representation corresponding to the given values of 
ql and q2' 

If a l = a2 , there is a unique bounded linear com
bination of Rand S, namely, 

Xm,O = cos (al + (2)cp/lsinh ('YJ + icp)'YJ21, 

which is the character of the unitary representation 
(m, 0) of the principal series (m = a l + a2, even). 

If a l ¢: a2 , we have not yet found any argument to 
determine what linear combination of Rand S is the 
character of the corresponding nonunitary representa
tion. 
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APPENDIX A 

Calculation of the limits of the distributions 

b(u - 2 ± 'YJ)b'(u - 2 ± 'YJ), 'YJ > O. 

(1) Limit of b(u - 2 - 'YJ): 
This distribution is defined by 

(b(u - 2 - 'YJ), cp) =fcp dv dr I = r cp dwq , 

lsi "~2+'1 J cq 

cp E !)(G), 

where the last integral is the sum of cp over the 1-
sheet hyperboloid e" (1/ = 2 + 'YJ), with its invariant 
measure dWq = dv dr/lsi. 
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Now 

lim f rp dw" = f rp dwo (AI) 
,,-+nJco Jeo 

[integral over the cone Co (u = 2) with the measure 
dwo = dv dr/lsI]. Therefore, the distribution tS(u-
2 - 'Yj) has a limit defined by (AI). We write 

lim tS(u - 2 - 'Yj) = tS(u - 2). 

(2) Limit of tS'(u - 2 - 'Yj): 
Using the change of variables 

r = p cos (), v = p sin (), 
we can write 

(tS'(u - 2 - 1J), rp) 

d 1 rp+ + rp- I = --! 1 pdp d() u=2+" , 
du p>(u'-4) (p2 - u2 + 4)~ 

We have 

I±=l rp± !pdpd() 
p> (u2_4)! (p2 _ u2 + 4) 

= J d()[rp±(l- u
2 + 4)!]\fu2-4)! 

_ f ! orp± (p2 _ u2 + 4)! dp d(). 
Jp>(uL 4)- op 

The integrated part is equal to zero. Therefore, 

d 1 02rp± 2 2 ! -I± = - .--(p - u + 4) dpd() 
du p>(uL 4) ouop 

+ u f orp± dp d() + A 
Jp >(uL 4)l op (p2 _ u2 + 4)! . 

(A, the derivative of the lower bound, will not con
tribute by compensation.) 

With 

we have 

- I± = u --..:& cos () + rp± sin () dp d() d 1 (02 

(

2

) 

du P>(uL 4)l oros OVOS 

+ i 02rp± pdp d() 
U p>(uL 4)1 OS2 (p2 _ u2 + 4)t 

.+ i (orp± O({!± . . ) u i-COS () + - SIn () 
p>(u'-4) or OV 

dp d() 

The derivatives of ({! with respect to v, r, and s are 
infinitely differentiable and therefore bounded, and 
have compact supports. The first two terms are then 
bounded by a constant A, independent of 'Yj, and the 
third is bounded by 

B = Bcosh-1
-ie dp C 

(4,,)! (p2 - 4'Yj)! 2J'Yj , 

where Band C are constants (C is an upper bound of 
p in the support of rp). . 

Therefore, though the distribution tS'(u - 2 - n) 
has no limit in !)'(G), the distribution 'YjatS'(u - 2 - 'Yj) 
has the limit zero for oc > 0: 

lim 'YjatS'(u - 2 - 'Yj) = 0 Voc > 0 . ,,-0 
(3) Limit of tS(u - 2 + 'Yj)()(±s): 

This distribution is defined by 

(tS(u - 2 + 'Yj)()(±s), rp) = f ({! dv dr 1 

Js~ 0 lsi u=2-" 

= f ±rpdw_", JC-11 
an integral over the upper or lower sheet of the hyper
boloid C,,(u = 2 - 'Yj). 

Now 

lim f ±rp dw_" = f ± rp dwo ,,-0 Je-" Jco 

integral over the upper or lower sheet of the cone 
Co. We write 

lim tS(u - 2 -1J)()(±s) = tS(u - 2)()(±s). ,,-0 
(4) Limit of tS'(u - 2 + 'Yj)()(±s): 
With the previous notations, 

(tS'(u - 2 + 1J)()(±s), rpo) 

d (1 ({!±. )1 = - - pdp d() 
du p>O (p2 _ u2 + 4)t U=2-,,' 

J - f rp+p.dp d() 
± - Jp>0(p2 _ u2 + 4)! 

= J d()[rpip2 - u2 + 4)!]\~ 

- r 0o({!± (p2 _ u2 + 4)! d({! d(). 
Jp>o p 

The first term is 

J d()[rp±(p2 - u2 + 4)!]\~ 
= -27T({!± (u, P = 0)(4 _ u2)t. 
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Therefore, neglecting terms in O(J r;), we have 

- :u [-217cp± (u, P = 0)(4 - u2)!]!U=2_" 

/ a~ 1 
= 47T(.vr;) - (2 - r;, 0) - 27Tf{J±(2 - 'Yj, 0) / ' 

au yr; 

4 acp± 1 
~ =f 17 as (2 - r;, 0) - 27Tcp ± (2 - r;, 0) Jr; , 

acp u acp 
-= ---
au s as 

The second term is developed as in (2), and is bounded 
by 

I
e d C 

A+B P !=A+Bsinh-1
-. 

° (p2 + 4'Yj) 2Jr; 

Thus, r;a dJ±/du!2_'1 has a limit only if a ~ t, and 

~i~ (Jr;) :u J ±IU=2-" = 27TCP±(0, 0) = 2mp(2). 

Therefore, 

lim (Jr;)O'(u - 2 + r;)O(±s) = -27T()(u)o(r)o(s). 
,,"'0 

APPENDIX B 

The basic results are, of course, the equations of the 
group manifold. Some others appear only on submani
folds. Finally, some are just consequences of the prop
erties of the EAI'VP tensor. 

On the whole group manifold, we have 

-AI' - (2 2 4) I' + PI' Z ZAV= U 1 -U2 - gv Z Zpv, 

i).I'z;.v = -UIU2g~, 

1EAI'VPi = _ZAI' '! vp , 

(yzz ... zy) = 0, 

where the bracket represents a completely contracted 
quantity, y is any vector, and the number of Z is odd. 
This gives, for instance, 

xl';I' = xl'$I' = 0. 

Furthermore, on U2 = ° only, we have 

Z~Z~€lll\lP = z«1tZVP, 

zap
zap = 0, ;a~a = 0, 

Q = $2 = ijl'r;V + (u~ - 4)~I'$vfi!,ai~, V fl, v, 

= ~I'$V _ ~v~l'/il''' V fl ¢ v. 

APPENDIX C 

We give here the general line we followed for the 
calculation of the limit of the distributions 

o(u2)F[( 4.6)-( 4.12)] 

X (W2 - w2)[R, S(ul)O(±(ui - 4) - E)], (el) 

where the F are the x depending parts of distributions 
(4.10) (for u~ - 4> E) or (4.6)-(4.9), (4.11), and (4.12) 
(for 4 - ui > E). 

(I) Parametrization of SL(2, C). 
Here, we introduce briefly another parametrization 

of SL(2, C), which possesses no formal covariance, 
but leads us for our present purpose to easier calcu
lations. We define the trivectors 

The group manifold is then 

U1U2 + as = 0, 

ui - u~ + a2 - S2 - 4 = 0, 

and we get 

Now, outside the center of the group (a = b = 0) and 
on £1 2 = 0, we can take as new space coordinate sys
tem the unit vectors 

a, b, and n = a A b. 

We then have (x, y, Z = ax, bx, nx): 

Q = - [(axO + bZ)2 + (b2 - a2)x2] and A. = x. 

(e2) 

(II) The distribution (e1) are defined by the inte
grals 

Iits[( 1.5) to (1.11)] 

= f o(u2)F(1.5) to (l.11)R, S(u1)O(±(ui - 4) - E) 

X (W2 - W
2)cp(XA

, il'V)d
4
xd

6z/Ul , 

where cp(x)., zI'V) E !J(F). 
Using Eq. (4.15), of which Rand S are solutions, 

by partial integration we find 

where the distribution D1l;s is (g = R or S) 

Dits = ±6o(ui - 4 =f E)g«4 ± E)t) 
1 + 4EO(ui - 4 =f E)g'«4 + E)"2") 

+ 4EO'(ui - 4 =F E)g«4 ± E)!). 

(e3) 

(e4) 

(In the following, all our open sets will exclude the 
point u1 = -2.) 
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With the parametrization defined above, we can 
also write 

I±·E - fF D±·E R.B - R.B 

X ip(XO' x, y, z, a, b, n a, ipab' (b 2 
- a2 + 4)t)d

4
x 

a da dna b db d x 1 ipab' 
2(b2 

- a2 + 4)"! 

(m) For I+,E (ui - 4 = b2 - a2 > e), we define 

(b2 - a2)tXa = axo + bz, 
so that 

Z = Q/(ui - 4) = -(x2 + X;). 

(1) Now if we calculate (C3) for R, with D~,E re
placed by Mb2 - a2 - e)R(4 + e)t, we find that this 
integral has a limit in e which is 

Lf = lA(2) f Jo[m2(x2 + Xa)]t 

x ip(xo, x, y, -xo, a, a, n a, ipab' 2) 

x dxo dx dy dX 3a da dna dipa')' 

[Here, F = Jo(m2Z)t.] 
The variable X3 does not appear any more in ip, and 

so we can perform the corresponding integration with 
the result 

Lfl = -'- A(2)fCOS (_m 2x2)t 
4111 

X ip(xo, x, y, -xo, a, a, na , ipab' 2) 

X dxo dx dya da dna dipab' 

With Lfl = <C~l, ip), going back to covariant formula
tion, we see that 

cf = !~(u2)~(ui - 4)~(~O/( - zoaz~)t) cos mAA(u1). 

The complete calculation of l~'€ gives 

r~'o = 2(C1 , ip); 

i.e., our limit is central and an eigendistribution of 
p2 [see (4.13)], as it has to be. 

(2) If we calculate (C3) similarly for S, with D;,E 
replaced by b(b2 

- a2 - e)S«4 + e)t), we find that 
the integral is divergent in the limit e = O. Neglecting 

terms which go to 0 with e, we find 

Lf = LfJ.je + M1 , 

where the integral M 1 , which defines a distribution 
with support a = b = 0 [center of SL(2, C)], is in 
fact O. The complete calculation of IZ,E W = -a~/ae) 
gives 

ItO = O. 

(IV) For r,E (4 - u; = a2 - b2 > e), we define 

(a2 - b2)tt = axo + bz, 
so that 

Z = t 2 - X2, e(§O) = e(x), and e(~O) = -e(t). 

(1) For R, the calculation goes as in (III), each term 
of DI/ having separately a limit L~, the support of 
which is 

U2 = u; - 4 = ~Z/( - z~zoa)t = O. 

Usual integrals of Bessel functions are needed to get 
results (2.4) and (2.5). 

(2) For S, we again get developments of the form 
Lf = L~!.j e + Mi' The L~ are the same integrals 
which appear for R. We were not able to calculate the 
Mi (except in cases where they are 0 by symmetry), 
whose supports are again the center of SL(2, C). We 
were not able to perform the four necessary integra
tions, though we know the result had to be of the 
form ~(X2), solution of p2 = m2 = O. 
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A complete mathematical account is given of the N/D method, subject to certain restrictions on the 
given functions Land p (left-hand cut contribution and phase-space factor). The restrictions are the 
weakest possible if the phase shift is to be Holder continuous. Any asymptotic behavior p""" xfJ, 
o < {J < 2, is allowed. No analyticity is assumed for L. Exhaustive existence and uniqueness theorems 
are given: Any allowed function F (= ei6 sin 15/ p) possesses an N/D decomposition, and the integral equa
tion for N acts in a space of L2 functions; this equation satisfies the Fredholm alternative theorems 
[though its kernel has a continuous spectrum if r5( 00 )/rr is not integral]; any L2 solution of the equation 
yields an allowed function F; all allowed solutions may be obtained by varying the eDD parameters 
(which enter linearly); each solution has a uniqueness index K; there will usually be a K parameter infinity 
of solutions with each K ~ 0, and none with K < 0, but precise conditions on Land p are given in 
order that there will be a negative K solution. 

INTRODUCTION 

This paper aims to give a complete mathematical 
account of the N/ D method, subject to some mild 
restrictions on the functions involved. It will be 
shown in a later paperl how to use the results obtained 
in physics. 

As is well known, the N/D method tries to find a 
function of the form 

F(x) = ei,Hx) sin lJ(x)/ p(x), 

with p given, which may be written in the form 

F(x) = L(x) + R(x), 

where L is given and R has to be analytic with only 
the physical cut (say, I < x < ro). In other words, 
one tries to predict F (or, alternatively, IJ) in terms of 
Land p. 

The most important respects in which the present 
treatment goes beyond previous onesZ- 13 are the 
following: 

(a) Results are established rigorously for functions 
p having asymptotic behavior p '" xfJ with ~ in the 
interval ° < f3 < 2. In the case f3 ~ 2 (for which no 
direct solution is possible), it is explained how to 
solve the problem by transforming it to one of the 
above type. Previous treatments consider only special 
values of {J (0, i, or I) (except for Ref. 10 and part of 
Ref. 5, which treat only particular aspects of the 
problem). 

(b) The conditions assumed for L are likewise 
extremely general, in fact, the most general compatible 
with the conditions assumed for p and IJ. This feature 
is shared by Ref. II. 

(c) It is shown explicitly that it is enough to con
sider only those solutions of the integral equation 
for N which are in a certain 1-2 space. This is essential 
if one is to have a tractable mathematical problem. 

(d) The case where the integral equation has more 
than one Lz solution (i.e., the homogeneous equation 
has Lz solutions) is dealt with; no earlier work does 
this except for a brief treatment in Refs. 4 and 6. 

(e) It is proved that all solutions of the N/ D equa
tions with the Lz restriction actually do give solutions 
of the problem stated above; again, the only previous 
references doing this are Refs. 9 and 12, which treat 
very special cases. 

(f) Actual existence theorems are given, the solu
tions being classified according to a uniqueness index. 
In this connection a totally new concept is introduced, 
which is called the "index of the problem." 

To enable the contents of this paper to be easily 
surveyed, the main results have been collected in 
ten theorems. The less important results are labeled 
lemmas. 

1. THE PROBLEM 

The real functions L(x) and p(x) , defined in the 
interval 1 < x < ro, are supposed to be given. It is 
required to find a (complex) function F(x), defined in 
this interval, which satisfies the following two 
requirements: 

(I) It may be written in the form 

F(x) = L(x) + R+(x), (1) 

where R+ is the limit, as x tends to the real axis from 
above, of a function R(x) having the following 
properties: (a) R is a real analytic function in the 
complex plane cut along 1 < x < ro, except for a 
finite number of poles; (b) near the end points x = 1 
and x = 00 it has the bounds 

R < const (x - I)-P, 

R < constxq
, 

respectively, for some p and q. 

(2) 

(3) 

2646 
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(II) It satisfies the condition 

1m [F-l(X)] = - p(x). (4) 

Restrictions on L, p, and F 

In order to make any progress, it is necessary to 
restrict the class of given functions Land p to be 
considered and also to restrict the class of allowed 
solutions. 

In most earlier work, L is assumed to be real 
analytic function except for a cut along - (X) < x < 
XL with XL < l. Then, if L is sufficiently well behaved 
to satisfy a dispersion relation, it wi\l be completely 
specified by its imaginary part on the cut; in that case, 
(\) may be replaced by 

1m F(x) = 1m L(x) (given) (5) 

for - (X) < x < XL' There is then a considerable 
symmetry between (4) and (5), and, from a purely 
mathematical point of view, the left- and right-hand 
cuts play similar roles, these roles being interchanged 
if one considers F-l instead of F. This symmetry 
carries through to the N/ D decomposition described 
below, and, instead of writing an integral equation 
for N and a dispersion relation for D, one can write 
an integral equation for D and a dispersion relation 
for N, as was indeed first done historically.2 

Analyticity assumptions for L will not be used here, 
however, for the fonowing reasons: 

(i) Although from a physical point of view one 
certainly expects F to be analytic except for left- and 
right-hand cuts, the polynomial boundedness assump
tion necessary to ensure that L actually satisfies a 
dispersion relation is without foundation even from 
the most liberal S-matrix-plus-phenomenology view
point14 (the polynomial boundedness assumption for 
R is aU right, however, as will be seen in the next 
section, Theorems 3 and 4, et seq.). 

(ii) If one wants to include inelasticity by the 
Frye-Warnock method,3 one has to consider a 
modified amplitude which has no simple analyticity 
properties.16- 2o 

(iii) The imaginary part of L on the left-hand cut 
is not a convenient function to consider because it 
cannot be directly related to F in the (physical) region 
1 < X < 00, whereas it will be seen shortly (Theorems 
3, 4) that L itself (evaluated for 1 < x < (0) can be 
so related. 

(iv) There is not actually any mathematical advan
tage to be gained from exploiting analyticity of L. 
In order to make any progress in solving the problem, 
one has to abandon any symmetry between the left
and right-hand cuts, at least with the presently 
available N/ D method.16 

Instead of analyticity, we shall rely simply on 
Holder continuityY A variable u = l/x will be used, 
so that our functions are defined in the interval 
o < u < l. A function f is said to be HOlder con
tinuous in the interval a < u < b if 

If(u') - f(u)1 < const lu' - ul" (6) 

for all a < u < b and a < u' < b and some Holder 
index f-l > O. 

If a =;6 Q, (6) is equivalent to 

If(x') - f(x)1 < const lx' - xl" (7) 

(with a different constant), so that then there is no 
distinction between Holder continuity in II and in x. 
However, if a = 0, it is not enough simply to rede
fine the constant; rather, (6) is equivalent to the two 
requirements 

const 
If(x') - f(x)1 < (xx')~ lx' - xiI' (8) 

and 
If(x) - f( 00)1 < const x-I'. (9) 

It is clear that Holder continuity (H. c.) in every 
interval a < u < b, for every choice 0 < a < b < 1, 
is not equivalent to HOlder continuity in 0 < u < 1 
because the constant necessary in (6) might go to 
infinity as a -+ 0 or b -+ 1. These distinctions will 
be expressed by phrases like "/ is H.c. near and at 
u = 0" or ''f is H.c. except near and at u = 0." 

In using Holder continuity, we are following Ref. 
3 and, more closely, Ref. 10. It is useful for the 
following two basic reasons: 

(i) If a quantity is Holder continuous, then so is a 
dispersion integral over it; closely related to this is 
the fact that the kernel occurring in the integral 
equation for N transforms Holder continuous func
tions into one another. These properties are not true 
of, say, differentiable functions. 

(ii) HOlder continuity is a physically reasonable 
requirement on the various quantities arising, whereas 
they may, for example, fail to possess derivatives at 
points corresponding to s-wave 2-body thresholds.1o 

Armed with the concept of Holder continuity, we 
can now give the conditions assumed for L, p, and F. 
Here and throughout the paper, '" wi\l indicate some 
fixed number in the range 0 < f-l < 1, the same for 
all the functions involved. 

(a) Conditions on p: 
(i) There exist real positive quantities rJ. and f3 such 

that for x near x = 1 and x = 00, respectively,lS 

(10) 

(11) 
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(ii) p is H .c. except near and at u = 0, p!(x - I)~ 

is H.c. near and at u = I, and x-P p is H.c. near and 
at II = O. 

(iii) p(x) is nonzero except at u = I. 
(b) Conditions on L: Define the integer b by 

~ = b + c, 0::;; c < 1. (12) 

Then, for some constants ai and A, 

b 

L(x) = I aix--i + Ax-P + L(x) (13) 
i~l 

or 
b 

L(x) = L aix-i + A log x/xb + L(x) (14) 
i=l 

for (I ¥= integer or (J = integer, respectively, where 

L < const x- fJ - l1 , (15) 

and xPL is H.c. in 0 < II < 1. (If 0 < (J < I, then 
b = 0 and there is no summation.) In addition, A 
satisfies the inequality 

where, for (I ¥= integer, 

Amin = -t cot t7TC, 

Amnx = t tan !7TC 

(16) 

(17) 

(18) 

[c being defined by Eq. (12)] and, for (J = integer, 

Amin = 0, 

Amnx = I. 

(19) 

(20) 

( c) Conditions on F: Because of condition (4), F may 
be expressed in terms of its phase D by 

F = ei~ sin b/ p. (21) 

The phase D may be defined completely by specifying 
that 

o ::;; b(1) < 7T (22) 

and that any jumps in b consist of increases of less 
than 7T. 

The conditions to be imposed on F are most 
conveniently expressed as conditions on o. They are 
as follows: 

(i) b is H.c. in any interval not including the end 
points u= 0 and u = I. 

(ii) Near an end point (call it u = a), either b is 
H.c. near and at u = a, or 0 has the logarithmic 
behavior 

f and g being H.c. near and at u = a. Solutions for 
which b satisfied these conditions will be called 
allowed solutions. 

This completes our catalog of the conditions on 
p, L, and F (or b). The definitions of the quantities 
oc, ~, b, and A are important, and in what follows 
these symbols will often be used without explanation, 
denoting always these same quantities. They are, of 
course, fixed once p and L are fixed. 

The conditions may look unduly involved, but in 
fact they are about the simplest that could be devised, 
as will now be explained. 

First, look at the conditions on p. Physically this 
quantity will be equal to a kinematic factor times an 
inelasticity factor. The former will vanish at x = I 
(because one wants phase shifts which have the 
correct threshold behavior) and will diverge at 
x = 00 (at least if one does not consider negative
angular momenta). The latter is finite (equal to I) at 
x = I and is certainly nonzero at x = 00; thus it does 
not alter the qualitative behavior. Hence, the limiting 
behavior assumed for p near x = 1 and x = 00 is the 
simplest possible. It will become clear that we cannot 
get away without some smoothness requirement such 
as Holder continuity. 

Regarding b, it is expected to approach finite limits 
at x = 1 and x = 00, so that the simplest requirement 
to make is just that 15 be H.c. forO < u < 1. Itisshown 
below that the rather elaborate conditions given for 
L essentially follow (Theorems 3 and 4); i.e., 15 cannot 
be H.c. for 0 < u < I unless L satisfies essentially 
these conditions. 

Finally, the possibility that 15 approaches its limits 
(at x = I and (0) logarithmically has to be allowed 
because in certain special cases solutions having this 
behavior arise rather naturally, and it would be 
awkward to have to exclude them (Sec. 6). However, 
this only happens in special cases (namely, when oc is 
integral or when (J is integral and A = 0), and it must 
be emphasized that, generally speaking, the conditions 
assumed for Land p are such as to exclude such a 
logarithmic approach (Theorem 1). 

2. A DISPERSION RELATION FOR R 

The problem stated above is more commonly 
expressed as that of satisfying a dispersion relation, 
and the essential equivalence between the two formu
lations will now be established. Some other useful 

b"" I/Iog lu - al 

in such a way that 

(23) results will also be obtained. 

tan 15 = f(u)/[log lu - al + g(u)], 

Because of the behavior (10) of p, it is not obvious 
that F will be sufficiently well behaved near x = 1 

(24) (threshold) to alIow R to satisfy a dispersion relation. 
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We start, therefore, with the following results. 
Throughout this paRer, except for Theorems 3 and 4, F 
will indicate an allowed solution of the problem and p 
and L will be assumed to satisfy the conditions abore. 
Also, it is to be understood that u = X-I, with "H.c." 
meaning "Holder continuous in u." 

Lemma 1: Define the integer a by 

IX = a + c, 0 ~ c < 1. 

Then, the function 

1 fOOd I (XI - l)a 1m F(x
/
) 

lex) = - x--
rr 1 X' X' - X 

satisfies the following conditions: 

(25) 

(26) 

(a) It is real analytic in the complex plane cut 
along 1 < x < 00, and, as x tends to the cut from 
above, it approaches the limits 

Re I(x) = f. fro dx' (XI ~ l)U I~ F(x
/
) , (27) 

1T)1 X X - X 

1m I(x) = 1m F(x). (2S) 

(b) These limits are H.c. except, possibly, near the 
end points u = 0 and u = 1. 

(c) Near u = 0 (x = (0): (i) If b does not have the 
logarithmic behavior, then 

I(x) = i CiX-i + {cot rrb(OO)}x-p + I(x), (29) 
i=1 or log X 

where xP I is H .c. near and at u = 0 and vanishes there 
(the two possibilities in the bracket are for {3 =/= integer 
and (3 = integer , respectively). (ii) If 15 has the log
arithmic behavior, then 

b 

I(x) = ! CiX-
i + I, (30) 

;=1 
where 

1= o(x-p), {3 =/= integer, (31) 
or 

1,,-, log X x-P, {3 = integer. (32) 

(d) Near u = 1 (x = 1): (i) If 15 does not have the 
logarithmic behavior, then18 

1-- cot 170(1) . (x - 1)a-~, (33) 

or, if it does have, then 

I,...., log (x - 1) . (x - 1)a-~, IX = integer, (34) 
or 

Appendix A (Lemmas AS, AS, and A9). Using it, we 
shall now prove the following lemma. 

Lemma 2: The requirements on R under Part I of 
the problem (Sec. 1) are completely equivalent to the 
requirement that R satisfies 

R(x) = (_x_)a.! foo dX/(XI ~ l)a I~ F(x
/
) 

x-I 1T Jl X X - X 

+ i C; i + ! ~, (36) 
i=I(X - 1) i Xi - X 

where the second summation contains just the poles 
of R (including higher order ones, although this is not 
indicated explicitly) and the first summation is taken 
to be absent if a = O. 

Proof The fact that (36) implies the requirements 
under Part I of the problem (Sec. I) follows immedi
ately from the previous lemma. To prove the converse, 
consider the difference ~ between the left-hand and 
right-hand sides of (36). By Lemma 1, ~ is real 
analytic in the plane cut along 1 < X < 00 and has 
zero imaginary part there. Hence,19 it can only have 
singularities at x = 1 and x = 00. But the bounds 
(2) and (3) on R, also (c) and (d) of Lemma 1, imply 
that the singularities here are at worst poles, not 
essential singularities. On the other hand, (13), (14), 
(15), (21), (10), and (11) substituted into (I) imply 
that on the real axis (1 < X < (0) R cannot even go 
to infinity as fast as a first-order pole near x = 1 and 
must vanish at x = 00; also, by (c) and (d) of Lemma 
1, the integral cannot go like a pole of order higher 
than a near x = 1, and it too vanishes at x = 00. 

Hence, by a suitable choice of the constants Ci, ~ 

can be a function which has no singularities anywhere 
and vanishes at infinity; thus, it is identically zero. 
This ends the proof. 

If (36) is substituted into (1), powerful restrictions 
on F and L are implied. Some of these are summarized 
in the following important theorem. 

Theorem I: Near the points x = 1 and x = 00, 15 
has the following properties: 

(a) Near x = 00, 0 (:annot have the logarithmic 
behavior, unless both (3 = integer and A = O. 

(b) There is the following connection between 
(3, A, and b( 00): 

A = sin2 b(oo)[cot 15(00) - cot 17{3], (3 =/= integer, 
I = o[(x - 1t-~], IX =/= integer. (35) (37) 

The proof of this formidable statement is given in A = sin2 15(00), {3 = integer. (38) 
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(c) Near x = 1, 6 cannot have the logarithmic 
behavior unless IX = integer. 

(d) If it does not, then either 6(1) = 7T(1X - a), or 
6(1) = 0, a being defined as in Lemma 1. 

(e) If the latter, then either 

6", (x - 1)",-m (39) 

for some integer m, 0 < m < IX, or else 

6 = O([x - 1]"). (40) 

Proof' Parts (a), (b), (c), and (d) follow directly 
upon requiring that the left-hand and right-hand 
sides of (1) balance, bearing in mind Lemmas I and 2. 
The same is true of case (e) if 0 < IX < 1 (when, of 
course, the only possibility is m = 0, and a = 0 in 
Lemma I ). For the case IX ~ 1 , (e) is proved in 
Appendix B by an iteration procedure. The idea is to 
first assume only that 6 is H.c., then to show that (1) 
implies a more restrictive behavior, then to assume 
this behavior, and show that (I) implies a more 
restrictive behavior still, and so on, until the result 
required is obtained. 

Discussion: Various remarks about Theorem I are 
in order. Parts (a) and (c) tell us that, generally 
speaking, 6 has to be H.c. even near and at the end 
points; it is only exceptionally that a logarithmic 
approach can be tolerated. 

Part (b) has motivated the restriction (16) on A. 
However, it tells us much more; namely, that once 
the given functions Land p are known, allowed 
solutions can have only two possible values for 6( 00) 
(mod 7T), corresponding to the solutions of (37) or 
(38). For a given value of p, the allowed values 61 and 
62 lie in the ranges (mod 7T) 

(41) 

and 

As A increases from its minimum to its maximum 
value, 61 increases through its range, and <52 decreases 
through its range when b is even, or vice versa, when 
b is odd. This situation is illustrated in Fig. 1, the 
other features of which will be explained later. 

A special case of interest is when A = O. In this 
case, the allowed values of 6( 00) are given by 

and 
(43) 

(44) 

It is clear that the behavior 6( 00 )/7T = integer can 

( &';"""1 ) 
II + n + m 

FIG. 1. The uniqueness index K. Full lines are A = 0 dotted 
lines are A = Amax or A = AmiD [Eqs. (37) and (38)1: Cross
hatched regions are A > O. The numbers on the right are the 
values of K in the strips bounded by the dotted lines [Eqs. (51) and 
(52) et seq.l. 

only occur when A = O. This is the behavior of 6 for 
well-behaved potentials, and perhaps also for physical 
scattering amplitudes with a suitable choice of in
elasticity.1l·14.2o For this reason, the case A = 0 is of 
special importance physically, and it will become 
clear that it is also the simplest case mathematically. 

Part (d) of Theorem I is a consequence of the 
assumption that L is bounded near x = 1. From a 
purely mathematical point of view, it would have been 
more natural to allow L to have near x = 1 a term 
'" (x - I)m-", [analogous to the expression (13) or 
(14) valid near x '" 00], and then any value of 6( 1) 
would have been allowed; but, physically, one requires 
that 6(1) = 0 and (consequently) that L is bounded 
near x = 1. 

Part (e) of Theorem 1 suggests that F may actually 
be better behaved near x = 1 than the behavior (10) 
for p might suggest; in fact, from the proof of part 
(e) in Appendix B, the following improvement of 
Lemma 2 is obvious. 

Theorem 2: Let us associate with every allowed 
solution F an integer m defined as follows (cf. 
Theorem 1): (i) If <5 = O([x - 1]"), letm = 0; (ii) if 6 
has a behavior of the type <5,....., (x - 1 )",-m, 0 < m < IX, 

define m by this relation; (iii) if 6 has the logarithmic 
behavior or is nonzero near x = 1, let m = a where 
a is related to IX by (25). Then, the requirements on R, 
under part (I) (Sec. 1) of the problem, are completely 
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equivalent to the requirement that R satisfy 

R(x) = -- - dx--
(

X )m 1 100 
I (Xl - l)m 1m F(x' ) 

x - 1 1T 1 x' x' - x 

+ i Ci 
i + L ~, (45) 

i=1 (x - 1) i Xi - x 

where the second summation includes just the poles of 
R (including any higher-order ones) and the first 
summation is understood to be absent if m = 0. 

Discussion: If m = 0, Theorem 2 tells us that part (I) 
of the problem (Sec. 1) could have been replaced 
simply by the requirement that F satisfy the dispersion 
relation 

Re F(x) = L(x) + ~ foo dx ' I~ F(x' ) + L ~ , 
7T Jl X - X i Xi - x 

(46) 

and the problem is more usually stated in this form. 
It' will become clear that the case m = 0 is the usual 
one, the case m > 0 corresponding in a loose sense to 
F acquiring an mth order pole at threshold (though, 
of course, since x = 1 is a branch point, this statement 
is not strictly meaningful). The fact that m will usually 
be zero is, of course, commonly exploited in physical 
applications, where one imposes a physical require
ment that () = O«x - JY+t) (l being the orbital 
angular momentum) by choosing a function p with 
rt.. = 1+ t. 

However, from a mathematical point of view it 
greatly complicates matters to exclude cases where 
m > 0, and therefore they will not be excluded here. 

To end this section, we give two results which are 
important in applications (see Ref. I). 

The first follows from Lemma A5 of Appendix A. 

Theorem 3: Let p satisfy the conditions of Sec. I, 
let a be H.c. in 0 < u < 1, and near x = I let 
a = O([x - I]a) with [a/ex - l)a] H.c. near and at 
u = 1. 

Define 

F = eid sin alp, (47) 
and define Lo by 

Re F(x) = Lo(x) + f. (oodx' I~ F(x'). (48) 
7T J1 x - X 

Then Lo satisfies the conditions (b) of Sec. 1, and F 
is an allowed solution of the problem with L = Lo. 

The second result is obvious from the proof of 
Lemma 2. 

Theorem 4: Under the conditions of Theorem 3, 
the most general possible choice of L for which F will 

be an allowed solution of the problem is 

R· 
L = Lo - L -'- + <I>(x), (49) 

i Xi - X 

where the summation includes an arbitrary number of 
poles (of any order) not on the interval 1 S x S 00 
and <I> is a function whose only singularities are at 
x = I and x = 00. A "canonical" choice <I> = 0 
follows if R is required to satisfy the dispersion 
relation 

R(x) =1. foo dx' I~ F(x') + L ~ . (50) 
7T J1 x - X i Xi - X 

Discussion: In physical applications, one assumes 
that L has no singularities except for a left-hand cut; 
this then requires that any poles of F be included in 
R and that the function <I> is an entire function (no 
singularities except at infinity). If F actually satisfies 
an un subtracted dispersion relation, then the choice 
<I> = 0 may be motivated by the requirement that 
Land R correspond respectively to the left-hand and 
right-hand cut contributions to F. However, as there 
is no justification for such an assumption,14 it is best 
to require only that R satisfies the dispersion relation 
(which Theorem 2 tells us is always possible provided 
that F has the appropriate continuity properties In 

the physical region I < X < 00). 

3. UNIQUENESS THEOREMS 

Before beginning an investigation of the problem 
of Sec. I using the N/ D method, we establish two 
results using a simpler technique (Ref. 3). The first 
result will be a useful preliminary to the N/ D investiga
tion; the second is not strictly relevant for the present 
paper, but is given because it is such an easy and 
interesting extension of the first. First, we need a 
definition. 

Definition 1: Associate with each allowed solution 
of the problem an integer K, called the uniqueness 
index by: (i) If a does not have the logarithmic be
havior near x = 00, then 

2[a( 00)/1T + n + m] - f3 + I = K + c, 

O<cSl; (51) 

(ii) if a does have the logarithmic near X = 00, then 

2 [b(oo)/1T + n + m] - f3 + 1 = K. (52) 

[Note that, in this second case, part (a) of Theorem I 
assures us that K is still an integer.] Here n is the num
ber of poles of R, counting each pole ~ times where 
~ is its order, and m is defined as in Theorem 2. 
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Discussion: The appearance of the combination 
(n + m) is related to the remark (following Theorem 
2) that m is the order of a pole of F at the point x = 1. 

It is clear from (37) or (38) that, once A and pare 
fixed, there is in general a one-to-one correspondence 
between K and the quantity (b( 00)/71' + n + m). The 
only case where the correspondence is not one-to-one 
is if f3 = integer and A = 0; in this case, K is equal to 
(b(oo)/7I' + n + m) - f3 + 1 if b has the logarithmic 
behavior at infinity, otherwise it is equal to this 
quantity minus one. 

In Fig. 1 the values of K are indicated in various 
strips of the f3 vs (b( (0)/71' + n + m) plane. Every 
allowed solution corresponds to a point in the interior 
of a strip, except if f3 = integer and A = 0 when it 
corresponds to a point lying on the boundary between 
two strips; in that case, the point is deemed to lie in 
the strip immediately above or below it according to 
whether b has the logarithmic behavior at infinity or 
not, as has just been explained. 

Note that the exclusion of points on the boundary 
arises because of the strict inequality (16) on A. The 
exclusion of the case where A achieves its upper or 
lower bound was, in fact, made partly to simplify the 
definition of K. 

The results to be proved will now be stated. It is 
understood that in all cases Land p are given, and 
they satisfy the conditions above. 

Lemma 3: The problem has at most one allowed 
solution with K =:; 0 and at most K-parameter infinity 
of allowed solutions with each K > O. If it has an 
allowed solution with K = -:"'r =:; -1, then all other 
allowed solutions have K > +r. 

Theorem 5: Define a polejree solution as an allowed 
solution for which n = m = 0 and a ghost-free 
solution as an allowed solution for which m = 0 and 
all the poles of R are simple and have real positions 
and positive residues. Then, if there is a pole-free 
solution with K =:; - I, there is no other pole-free 
solution whatever; and if there is a ghost-free solution 
with K =:; -2, there is no other ghost-free solution 
whatever. 

Proof of Lemma 3 and Theorem 5: Let Fl and F2 be 
two different allowed solutions. Consider the function 

P(x) == exp (_ 1. roo dx' x, b1(x'), + b2(X'») 
71' Jl x X - X 

x 71'i(X - X i1);-"7I';(x - X i2);,. 

x (x - 1)m1+m. 

x ~(x), (53) 

where 
(54) 

Here the subscripts 1 and 2 refer to the two different 
solutions, Xi are the positions of the poles of R, and 
~i are their orders. Jt will be shown that P is a 
polynomial. The argument is very similar to that 
following Lemma 1 above. 

First, consider the exponential. It follows from 
Appendix A that the exponential has the following 
properties: (a) It is a real analytic function in the 
plane cut along 1 < x < 00, and its phase tends to 
the well-defined limit - (b1 + b2) as x moves on to 
the cut from above. (b) Near x = 1 it has the bound 

exp ",-,(x - 1)-" all € > O. (55) 

(c) Near x = 00, it has the behavior 

(56) 

with an extra factor log x, if either b1 or b2 has the 
logarithmic behavior. (d) It is bounded for all other 
values of x. 

Next, consider the function A. From the require
ments placed on R in defining the problem, this is a 
real analytic function in the plane cut along 1 ~ 
x =:; 00, except for a finite number of poles, and at the 
end points it is bounded by const (x - 1)-P and 
const x q

, respectively (for some p and q). As x tends to 
the cut from above, it tends to the limit 

(F 1 - F 2) = (ei61 sin b1 - ei6• sin (J2)/ p 

= ei("lH.) sin «(J1 - (J2)/ P; (57) 

its phase Just above the cut is therefore +«(Jl + b2). 
The results of the last two paragraphs imply that P 

is analytic everywhere except for possible poles at 
x = 1 and x = 00; but, from (55), (56), and (57), 
there cannot be even a first-order pole at x = 1; 
hence, P is a polynomial. 

From (56) and (57), the order of P is not greater 
than k where 

2 

k = L [bi (oo)/7I' + ni + Ini] - fl· (58) 
i=l 

In the case where b~OO)I7I' and b~Cf)I7I' are both integers 
and where neither b1 nor b2 has the logarithmic 
behavior at x = 00, one can make the vital improve
ment 

2 

k =! [b;(oo)j7l' + 11; + 111;] - J3 - /-l, (59) 
i=l 

where /-l (the Holder index) comes from the vanishing 
of sin (01 - b2) at infinity. 
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From the definition of K, it is now easily verified 
that the requirement k ~ ° leads in all cases to 

(60) 

[To get the strict inequality, one has to note that (59) 
applies whenever the equality applies in (51).] Hence, 
there is at most one allowed solution with K ::;; 0, 
and, if there is an allowed solution with K = -r < 0, 
then all other allowed solutions have K > r. 

Next, observe that P must have at least I zeros 
[coming from the sine term in (57)] where 

(61) 

For a pole-free solution, this then implies that 

I.e., 

(62) 

the equality being forbidden if (59) holds. 
Using the definition of K, we see that it then 

follows that 

(63) 

(If one of the solutions has the logarithmic behavior 
near x = 00, but not the other, then, to get the 
strict inequality, one has to choose the labeling so 
that it is F2 which has the logarithmic behavior.) 
Hence, there cannot be two different pole-free 
solutions with K ::;; -I, which proves the first half of 
Theorem 2. To prove the second half, note that,3 for 
a ghost-free solution, I may be increased by 
Inl - n21 - 1. 

It remains to prove the statement of Lemma 3 to 
the effect that there is at most a K-parameter infinity 
of solutions with each K > 0. To do this, we need 
only observe that no two solutions with the same 
value for K can have the same values for the set of K 

numbers {R'(O), R"(O), ... , R(K)(O)}; for, if they had, 
P would have to be of order at least K, in which case 
the arguments leading to (60) would lead instead to 
2K > 2K. 

Discussion: Lemma 3 is merely a weaker form of 
Theorem 10 below; it is proved at this stage only 
because it will be needed in the course of proving 
that theorem. 

Theorem 5 tells one that, with some additional 
restrictions, the problem may sometimes have only 
one solution. It is usually applicable to physical 

amplitudes because these will, in fact, be ghost free, 
and even pole free if there are no bound states (in 
the channel under consideration), and will, moreover, 
have K::;; -1, and even K::;; -2, except for small 
angular momenta. I However, it will be seen (Theorem 
10 below) that these negative values for K are possible 
only because Land p satisfy special conditions (see 
also Ref. 15); as soon as one makes any approxima
tions for L or p, the value of K will generally go UpI 
to K = 0, and the theorem will become inapplicable. 
Thus, it is not possible to utilize the theorem in 
approximate calculations. 

4. EXISTENCE OF NI D DECOMPOSITION 

In this section, it is shown by explicit construction 
that any allowed solution F may be written in the 
form F = NID, where Nand D satisfy the "NID 
equations" below. Besides serving the obvious 
purpose of assuring one that all solutions of the 
problem may be found by the NI D method, this 
result is also of direct use in physical applications.1 

The treatment here is along fairly well-worn lines, 
but two points should be noted. First, we show that 
it is an L2 solution of the (symmetrized) integral 
equation which is involved with a suitable NI D 
decomposition. Without some such assurance, one 
could not proceed to a discussion of the solution of 
this equation; even for very well-behaved kernels (e.g., 
of the Hilbert-Schmidt type), nothing whatever 
appears to be known to mathematicians about the 
solution of integral equations in general, but only 
within the framework of some suitable function space. 
The second point is that, if parameters appear in the 
equations, Nand D depend linearly on them; this 
makes it possible to obtain far more complete results 
than in the older treatments, where the position of a 
CDD pole was involved. For further discussion of 
this point, see the end of this section. The main 
result is the following theorem. 

Theorem 6,' Let bl , b2 , ••• be any sufficiently long 
sequence of real quantities satisfying 

-00 < bi < I, 

bi ~ 0, 

bi~bj' i~j. 

Then F may be written in the form 

F= NjD, 

(64) 

(65) 

where n == (pju)!N is in L 2(0, I) and Nand D satisfy 
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one of the following pairs of equations: 

(a) D(x) = 1 _.!. roo dx' ~ p(x')N(x') 
71' Jl x' x' - x 

~ X d; +...::,---, 
i~1 bi bj - x 

N(x) = B(x) + icc dx'K(xx')N(x'), 

where 

B(x) = L(x) - 1 L(x) - -'- + -'- , II. (. x d· k) 
i~1 bi bi - X bi - X 

( 
') x'L(x') - xL(x) p(x') 

K xx = --, 
x' - x x' 

(b) D(x) = - .!. fdX' ~ p(x')N(x') 
71' x' x' - x 

~ X di +...::,---, 
i~1 bi bi - x 

N(x) = Bo(x) + i oo 

dx' K(xx')N(x'), 

where 

Bo(x) = -~ (L(X)~ ~. + ~ ). 
,~1 bi bi )( bi XI 

(66) 

(67) 

(68) 

(69) 

(70) 

(71 ) 

(72) 

In these equations, X is a positive integer and the di 

and k i are real quantities. It is to be understood that 
the summations may be absent. 

Comment: It will be convenient in what follows to 
define X to be precisely the number of pole terms in 
the above equations, i.e., (a) never to have d; = k i = 0 
for any i and (b) set X = 0 if there are no pole terms. 

Definition 2: X is the number of pole terms in the 
N/ D equations. 

Thus the X = 0 equations for the two cases are 

(a) 

(b) 

D(x) = 1 _.! ("'dx' x, p(x?N(x') , 
71' J1 X X - X 

N(x) = L(x) +! (OOdx'K(xx')N(x'), 
71' J1 

D(x) = _ 1. roo dx' x, p(X?N(X') , 
71' Jl X X - X 

N(x) = .; fdX'K(XX')N(X'), 

(73) 

(74) 

(75) 

(76) 

Note that these last equations, and only these, are 
homogeneous in D and N. 

Proof of Theorem 6: For any solution, define Xi, 

~;, n, and m as in Sec. 3; i.e., Xi are the positions of 
the poles of R, n is their number counting each one 
~i times where ~i is its order, and m is defined in 
Theorem 2. Then, define D(x) by 

D(x) = exp - - dx' ---( 
1 lX x b(x'») 
71' 1 x' X' - x 

X - X 71'. (1 )'" {(I - X/XYi 
'or (x; - X)~i, 

(77) 

where the first and second alternatives for the product 
apply if R has no pole at x = 0 or has one, respectively. 

It follows from Appendix A that b has the following 
properties: (i) b(O) = I or 0, for the two cases just 
mentioned respectively; (ii) D(x) is real analytic in the 
plane cut along 1 < x < 00; (iii) the phase of D on 
the upper side of the cut is -b; (iv) b is finite for all x 
except possibly x = I and x = 00 and is nonzero 
except possibly at these points and x = Xi; (v) near 
x = 00, 

(78) 

unless () has the logarithmic behavior near x = 00 

when there is an extra factor log x; (vi) near x = I, 

D = O«x - 1)111 log x). (79) 

Next, define a function N, on the interval I < x < 
00 only, by 

F(x) = N(x)/ D+(x), (80) 

where D.! denotes the value of D on the upper side 
of the cut. From (iii) above, N is real, and hence, 
from (4), 

(81) 

Now, define N = cJ>N and D = <l>b, where cJ> is a 
rational function which has poles only at some 
number X of the points hi mentioned in the theorem 
and which satisfies, if R has no pole at x = 0, 

cJ>(0) = 1 or O. (82) 

(This restriction is not required if R has a pole at 
X = 0.) 

By making <I> fall off fast enough as x ~ 00, we can 
convert (78) into 

(83) 

The other statements (i)-(vi) remain true for D, 
so that the Eq. (66) or (70) for D [according to whether 
D(O) = 1 or 0, respectively] follows from a straight
forward application of Cauchy's theorem to the 
function Djx. 
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To derive the integral equation for N, consider the 
function 

X(x) = R(x)D(x). (84) 

The value Xf- of X on the upper edge of the cut is, 
from (1) and (80), 

so that 
Xf- = N - LD+, (85) 

1m X+ = -L 1m D+ 

= LpN. (86) 

By a suitable choice of <l>, one can ensure that near 
x = 1 and x = 00, X = O«x - I)f-l) and O(rf), 
respectively, some € > 0, and then Cauchy's 
theorem gives the relation 

X(x) = 1. [00 dx' p(x')~(x')L(X') + f ~ (87) 
7T Jl x - X i~l bi - X 

(the zeros of D ensure that X does not have poles at 
the positions of the poles of R). Then, the integral 
equation (67) or (71) follows on substituting (87) 
and the equation for D into (85). 

Finally, property (iv) of D and (21) ensure (i) that 
N is finite for I < x < 00 and (ii) that by a suitable 
choice of cD the behavior of N near the end points can 
be made sufficiently good, so that 

(plu)!N = O(u f -!), 
= 0« u - 1 )'-1), 

u ---+ 0, 

1/---+1. (88) 

Hence, it follows that (plu/zN is indeed in L 2(0, I). 

Special Choices of the Points hi: In general, the 
pole positions hi will be thought of in this paper as 
being fixed once and for all at arbitrary finite values, 
in the same way as the normalization point for D is 
fixed at x = 0. If there is more than one allowed 
solution corresponding to a given value of x (as is 
usually the case), then the coefficients k i and di are to 
be thought of as varying with (i.e., parametrizing) 
the different solutions, but the hi are to be thought of 
as being held fixed at their arbitrarily chosen values. 

]n earlier treatments a different view was adopted; 
the points hi were chosen to be the positions of either 
poles of R or zeros of F, and different solutions corre
sponding to the same values of x were parametrized 
by the numbers hi, plus one of the sets d i or k i (or 
some linear combination of these). Such approaches, 
besides being awkward because of the nonlinear 
dependence on the numbers b i , are less general 
because they only cover solutions with enough (x) 
poles or zeros as the case may be. They will, however, 
be briefly mentioned here for completeness. 

If the hi are chosen to be the positions of some x 
simple poles of R, it is clear from (77) that D ceases 
to have poles at the points hi, i.e., di = ° for all i. 
In that case, it is clear that the NI D equations for 
arbitrary x may be obtained from the x = ° equa
tions by the replacement 

l k. 
L---+L - ~-'-. 

i~lbi - x 
(89) 

What has, in fact, been done is to transfer x poles from 
R to L (see Theorem 4 and the following remarks) 
and to parametrize solutions by the positions and 
residues of these poles. 

The other choice, of making the points hi zeros of 
F, only makes sense if these points are in the interval 
1 < x < 00 (unless one is willing to assume analy
ticity for Land F, which is not done here). Because 
zeros of F imply zeros of fI, this does not, in fact, 
cause any difficulty, and it is easy to verify that with 
this choice the equation for D is unchanged, but that 
the term B in the Eq. (67) for N becomes 

B(x) = L(x) + ± di biL(bi) - xL(x) 1. (90) 
i~1 bi - X bi 

[the first term being absent in case (b)]. 
Because of a somewhat remote connection with 

Ref. 20, zeros of F which can be chosen to be the 
points hi are called "COD zeros," the resulting poles 
of D are called "COD poles," and the ambiguity 
arising if one tries to solve the problem without 
knowing the numbers x, d,., and hi is called the COD 
ambiguity. 

It is interesting to note that the NI D equations 
resulting from this second choice of hi may be obtained 
for arbitrary x from the x = 0 equations by the 
replacement 

x d. 
p(x) ---+ p(x) + ~ -' !5(x - bi)' (91) 

i~1 N(bi ) 

This may be compared with the first choice, i.e., 
replacement (89), which, if L is analytic except for a 
left-hand cut, may be written 

x 
1m L(x) ---+ 1m L(x) - L ki!5(x - hi)' (92) 

i=l 

One is again reminded of the mathematical symmetry 
between left-hand and right-hand cuts, F and F-l, N 
and D, etc., mentioned above [Eq. (5) et seq.]. 

5. THE INTEGRAL EQUATION 

In this section the integral equation for N is studied 
for the case 0 < f3 < 2. The situation is radically 
different for the two cases ° < f3 < 2 and {3 ~ 2, and 
it is seen in Sec. 8 that in the latter case one can expect 
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solutions only for special choices of the inhomogen
eous term. Only the case 0 < {3 < 2 is considered for 
the next three sections. 

In addition to this dependence on the value of {3, 
there is also an essential difference between the cases 
A = 0 and A =;f: 0, the former being much the 
simpler. 

In order to discuss the equation, it is convenient 
to rewrite it so that the kernel is symmetric and also 
to work in the variable u = l/x. This may be achieved 
by the transformations 

n = (p/u)!N, 

b = (p/u)lB, 

k(u, u') = K(p~~')l (p~U)l 

(93) 

(94) 

1 L(u')/u' - L(u)/u [ ( ') , ( ) ]! =--, pu upuu . 
1T U - u 

(95) 

Then the integral equation becomes 

n(u) = btu) + fdU'k(UU')n(ul). (96) 

Because of Theorem 6 it is only necessary to con
sider solutions n which are in L2(0, 1), and it is clear 
from (68) and (72) that b is also in L2(0, 1). The 
integral equation may therefore be regarded as an 
operator equation in L2(0, 1) (which will simply be 

called L2)' 
The function spaces L 2(a, b) are dealt with exhaus

tively in the literature. 21 •22 It will be convenient to 
establish the following notation: 

(i) For any function f in L 2 , its norm is 

(97) 

(ii) For any two such functions, their scalar 

product is 

(j, g) == fdLlf*(U)g(U}. (98) 

(iii) For any operator k acting in L 2 , its bound is 

Ilkll = sup IIkfll. (99) 
IIfll~l 

(iv) A bounded operator is one whose bound is 
finite. 

The following result will also be needed (besides 
some others which will be introduced as required). 

(v) An operator transforms every L2 function into 
another such function if and only if it is bounded. 

If an operator H is sufficiently well behaved, then 
one of the following statements (called the Fredholm 
alternatives) is true for equations of the form 

n = b + Hn. 

(i) The equation n = b + Hn has exactly one L2 
solution for every b in L2 • (Hence, the homogeneous 
equation n = Hn has no nonzero L2 solution.) From 
(v) above this is equivalent to saying that (1 - H)-l is 
a bounded operator in L2 . 

(ii) The homogeneous equation n = Hn has a 
finite number of linearly independent sol'ltions n;, 
and the equation n = b + Hn has an L2 solution if 
and only if the scalar products (n;, b) vanish. In this 
case the most general L2 solution is clearly n = 
fi + Li cini , where fi is any particular L2 solution and 
the C; are arbitrary numbers. 

With these preliminaries, the main result of this 
section can now be stated in the following theorem. 

Theorem 7: For 0 < {3 < 2, Eq. (96) either has a 
unique L2 solution for every choice of the parameters 
d i and ki' provided the points bi are chosen in accord
ance with the restrictions of Theorem 6, or else it has 
an L2 solution only for those choices satisfying a 
certain number r of linear conditions; in this second 
case, the homogeneous form of Eq. (96) has r linearly 
independently L2 solutions (apart from the zero 
solution) so that Eq. (96) itself has (r + 1) linearly 
independent L2 solutions. The second case occurs 
only if the given functions Land p take on exceptional 
values, in the following sense: If this case occurs for 
some values L = Lo and p = Po which give k = ko 
[Eq. (95)], it will not occur for any values which give 
k = (1 + €)ko, with I€I in some interval 0 < I€I < A. 

Actually, this theorem is a corollary of the following 
more detailed statement, which brings out the dif
ference between the cases A = 0 and A =;f: O. 

Lemma 4: Let 0 < {3 < 2, and consider the modi
fied equation 

n = b + Akn, (100) 

where A varies over the complex plane. Then, (i) if 
A = 0, the first Fredholm alternative holds for all 
A [i.e., (1 - Ak)-l is a bounded L2 operator], apart 
from certain isolated points on the real axis at which 
the second alternative holds. (ii) If A ¥= 0, define 
Ao = AmaxlA or AmlnlA according to whether 0 < 
{3 ~ 1 or 1 < {3 < 2, respectively, and define the 
exceptional line to be Ao < A < <Xl or - <Xl < A < Ao 
for the two cases (Figs. 2 and 3). Then, the first 
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Fredholm alternative holds for all A not on the excep
tional line, apart from certain isolated points on the 
real axis where the second alternative holds. 

Discussion: The appearance of the quantity Ao may 
be understood as follows. A change k ---+ Ak may be 
effected by making a change L ---+ AL; the new L thus 
obtained will satisfy condition (16) only if A lies in the 
range (Amin/A) < A < (Amax/A); one of the end 
points of this "allowed" range is Ao (Figs. 2 and 3). 
Of course, there is no hint at this stage of the distinction 
between the cases 0 < f3 ~ 1 and 1 < f3 < 2. 

One sees by taking A = 1 (Figs. 2 and 3) that 
Theorem 7 is indeed a corollary of Lemma 4. 

Proof of Lemma 4: The proof of Lemma 4 is quite 
lengthy and will occupy the rest of this section, as well 
as Appendix C and D. 

(i) Case A = 0: According to a well-known 
result (Ref. 21, pp. 579, 609), the lemma will follow 
immediately if it can be shown that, for some integer 
n, the nth power of the operator k is compact (Ref. 22, 
p. 206, where compactness is called "complete 
continuity"). This will be shown to be the case. The 
two facts upon which the proof will rest are: (a) An 
operator A is certainly compact if it is of the Hilbert
Schmidt type, i.e., if it may be expressed 

Af~ fdu'A(UU')f(U') 

with 

fdU fdU' IA(uu')1 2 < 00, (101) 

(Ref. 22, p. 179); (b) an operator K is certainly 
compact if it may be written, for all sufficiently 
small E, 

(102) 

where IIBII ---+ 0 as E ---+ 0 and where A is compact for 
all sufficiently small E (Ref. 22. p. 178). 

To apply these results, consider the decomposition 

k(uu') = a(uu') + b(uu'), 

a(uu') == O(u - E)O(U' - E)k(uu'), 

b(uu') == 1 - O(u - E)()(U' - E)k(uu'). 

(103) 

(104) 

(105) 

FIG. 2. The exceptional 
line of Lemma 4, and the 
cut of P(A.) of Appendix 
D, for the case 0 < p ~ J. i 

cut of P(').) 

I I 

}.. plane 

exceptional 
line 

I 
1 Ao = Aroox/A 

A plone 

exceptional 
line" 

FIG. 3. As Fig. 2, for the 
case 1 < P < 2. ~,~--~~~------

f Ao = A min/A 

cut of P (AI 

Clearly, b is zero unless either u or u' lies between 0 
and E. It will be shown that Ilbll ---+ 0 as E ---+ 0 and 
that the nth power of a is Hilbert-Schmidt for some 
integer n. 

It is easily proved23 using Schwart's inequality 
(Ref. 22, p. 41) that, for any positive function S(u), 

IIbll < sup edu ' /b(uu')/ S(u) 
O<u<l Jo S(u') 

< sup t du ' /k(uu')1 S(u) 
- O<u« Jo S(u') 

+ sup I'du' /k(uu')/ S(u). (106) 
E<u<l Jo S(u') 

For the choice S = U!11-PIH, with 0 sufficiently small 
and positive, it is shown in Appendix C that for 
o < f3 < 2 and A = 0 the right-hand side of (106) 
tends to zero as E ---+ O. 

To prove that an is Hilbert-Schmidt, use the bound 

, C(E) 
/k(uu )1 < , for E < u < 1, E < u' < 1, 

lu' - ull' 
(107) 

which is valid for any E > 0 because of L being H.c. 
(except near and at u = 0). From this bound, it 
follows (Ref. 24) that for some n the quantity 

f dUl fdU 2 ••• i1dUn_la(UUl)a(U2Ua) ... a(un_1u') 

is a bounded function of u and u'. This proves that an 
is Hilbert-Schmidt. 

Now we can apply the facts (a) and (b) above to 
the decomposition 

where 

B == an- 1b + an- 2ba + ... + b". 

(108) 

(109) 

(110) 

It has just been proved that A is Hilbert-Schmidt, and 
so it remains to show that IIBII ---+ 0 as E ---+ O. Since 
every term in the expression for IIBII is bounded by 
some product lIall 1t

-
i Ilbll i, I ~ i < n, and since Ilbll ---+ 0 

as E ---+ 0, this will follow if it can be shown that Iiall 
is bounded for all (sufficiently small) E. To show this, 
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we first apply the analog of Eq. (106) to show that k 
is bounded, 

Ilkll < sup (ldu' Ik(uu')1 (U,)!/l-P/+ii < const (111) 
0<,,<1.10 U 

(from Appendix 2), and then write 

lIa(€)1I = Ilk - b(€)11 

~ IIkll + tlb(€)11 

< const 

(for all sufficiently small €). 

(112) 

(ii) A =F 0: It has to be shown that (1 - Ak)-I is a 
bounded operator in L2 throughout the A plane, apart 
from the exceptional line plus some isolated points on 
the real axis where the second Fredholm alternative 
holds. 

This will be done by splitting k up into two parts, a 
"singular" part being associated with the exceptional 
line and a "nonsingular" part which by itself would 
not involve the exceptional line. 

or 

Let us consider first the decomposition 

k = k. + ko, 

k 
- A u,-y - u-Y ( , )h s=--, uu, 

7T U - U 

(113) 

(114) 

k = _ :i log u' - log u (115) 
s - 7T U' - U ' 

for {J =F 1 and {J = 1, respectively. Here 

y == 1 - {J. (116) 

From (95), ks gives the leading term of k as u or u' 
tend to infinity. One has (assuming 0 < {J < 2) 

ko=C+D, (117) 

C == _ ~ L(u')/u,' - L(u)/u(P(~') P(U»)!, (118) 
7T u-u u u 

D == {[u'Pp(u')uPp(u)]! - l}k., (119) 

where L is defined by (13) or (14), being the remainder 
of L after its leading terms have been subtracted off. 

It is first shown that (ko)n is compact for some 
integer n. First, observe that the reasoning used above 
for the case of A = 0 applies equally well to e (since 
the term proportional to A has been removed), so 
that en is compact for some integer n. For D, one 
has from (11) 

ID(uu')1 < const (u'!1' + u!l') Ik.(uu')I. (120) 

We write., as in (103) above, 

D = a(€) + b(€), 

b = (J(u - €)(J(u' - €)D(uu'), 

(121) 

(122) 

and it is clear that, for all € in 0 < € < 1, 

la(uu')1 < const (123) 

and hence that a is Hilbert-Schmidt and so compact. 
Also, the same arguments as those following (103) 
above show that Ilbtt -+ 0 as € -+ 0 (always keeping 
the restriction 0 < {J < 2, i.e., -1 < y < 1). This 
proves that D is compact. 

Now, we write 

(ko)n = E + F, (124) 

E == cn, (125) 

F = en-ID + ... + Dn. (126) 

It has just been shown that E is compact, and the 
same is true of F because each of its terms is compact, 
being the product of a bounded operator and the 
compact operator D. Hence, (ko)n is compact. 

Now we consider k •. In Refs. 5 and 7 a formal 
expression is given for the operator (1 - Ak.)-I, 

(1 - Ak.rIf +--+ feu) + fdU'R(U, u'; A.)f(u'), (127) 

where R is an analytic function of A. apart from a cut 
along the exceptional line. This leads us to conjecture 
that (1 - Ak .)-1 is a bounded operator in L 2 , except 
for A on the exceptional line. However, as the methods 
used to obtain (127) involve higher functions, it is 
difficult to prove this statement rigorously and, 
instead, a slightly different approach will be used 
which involves only a Fourier sine transform.2s The 
method is described fully in Appendix D and is only 
outlined here in the text. 

Instead of considering k s' we define a new "singular" 
part by 

k. = g + k. (128) 

in such a way that g is compact and k. can be diagonal
ized by a Fourier sine transform. Then, it is seen by 
direct inspection that (1 - Ak.)-I is a bounded L2 
operator. Since Fourier transforms in L2 have been 
widely investigated,26 it proves easy to justify the steps 
rigorously by quoting standard theorems. 

Using this result, let us now consider instead of (113) 
the decomposition 

where 
ko = ko + g. 

(129) 

(130) 

Since g is compact, (ko)n is compact and hence 
(1 - Ako)-l is a bounded operator in L2 throughout 
the A plane, apart from some isolated points where the 
second Fredholm alternative holds. 
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It is therefore now very plausible that the sum 
(k8 + ko) behaves in the way asserted in the lemma. 
To prove this rigorously, observe that the equation 

n = b + Akn (131) 
is equivalent to 

n = b + T(A)n, (132) 

where 
b == (1 - ).;ks)-lb (133) 

and 
T(A) == (1 - Aks)-lAko' (134) 

Clearly, for all A. not on the exceptional line, b is in L2 
whenever b is. Thus, we have to show that [1 - T(A)]-I 
is a bounded operator in L2 throughout the A plane, 
apart from the exceptional line plus some isolated 
real points where the second Fredholm alternative 
holds for T(A). 

This may be proved using the following (Ref. 21, 
p.592). 

Lemma 5: Let S(A.) be an analytic operator-valued 
function defined on a connected domain D, and let S 
be compact for each A in D. Then (1 - S)-I is either 
bounded for no A. in D or is bounded everywhere 
except at a countable number of isolated points. 

To apply this, we take D to be the entire A. plane 
excluding the exceptional line and take S = Tn. 
The boundedness of (1 - S)-I will imply that of 
(1 - T)-I since 

(1 - T)-I = (1 - S)-I(1 + T + ... + Tn-I). (135) 

That T (and therefore S) is analytic in D is a standard 
result (Ref. 21, p. 566, Lemma 2). Since S(O) = 0, 
(1 - S)-l is certainly bounded for A = O. Hence, we 
deduce that (1 - T)-1 is bounded in the entire A 
plane, apart from the exceptional line and a countable 
number of isolated points. 

At these points the second Fredholm alternative 
must hold (since rn is compact). Finally, since the 
original operator k is Hermitian, these points must be 
on the real axis. 

6. SOLUTIONS OF THE PROBLEM 

At this stage, it has been shown that allowed 
solutions of the problem, if they exist, may be found 
using the N/D equations, and further that one need 
only consider solutions of Eq. (96) which are in L2 
(Theorem 6). It has also been shown that there is one 
(and usually only one) L2 solution of Eq. (96) for 
each choice of the parameters di and k i (Theorem 7). 
In this section, it is shown that every L2 solution of 
Eq. (96) will actually yield an allowed solution of the 

problem. Knowing this, one is assured that the N/ D 
method finds those, and only those, functions 
F (= N/ D) which are allowed solutions of the prob
lem. In addition, the Nj D solutions will be classified 
according to their uniqueness index. 

In earlier treatments, the possibility that N/ D 
solutions could fail to solve the original problem was 
ignored. (The only exceptions of this are Refs. 10 
and 13, where, however, much stronger conditions on 
L than the present ones are imposed.) This was 
probably because, on the one hand, the result to be 
proved is very plausible provided that N is reasonably 
smooth, but, on the other hand, it is difficult to prove 
any smoothness rigorously, since all one knows 
initially is that n is in L2 . 

Because of the difficulties involved, even the 
present treatment is incomplete when A#;O; in 
this case, a certain degree of smoothness of N (to be 
made precise below) will have to be assumed. For this 
reason, the theorems from now on will all be given 
subject to the restriction A = O. Nevertheless, both 
their statements and method of proof go through 
unchanged for the case A#;O provided the above 
mentioned assumption is allowed, and we conjecture 
that the stated restriction A = 0 is not, in fact, necessary 
(i.e., that the smoothness assumption does, in fact, 
follow from our initial requirements). 

The result which is proved in the first half of this 
section is then the following theorem. 

Theorem 8: For 0 < f3 < 2 and A = 0, every L2 
solution of Eq. (96) yields [via Eqs. (93), (66) or (70), 
and (65)] an allowed solution of the problem. 

Proof' The vital step is the following lemma con
cerning the smoothness of Nand D. 

Lemma 6: For 0 < f3 < 2 and A = 0, every L2 
solution of Eq. (96) yields a function D with the 
following properties: (a) D is analytic in the plane 
cut along 1 < x < 00 except for poles at the points 
bi and on the upper side of the cut 1m D = - pN. 
(b) Re D and 1m Dare H.c. in every subinterval of 
o < u < 1 which does not include the end point 
u = O. (c) Near an end point u = uo, either 

D(u) '"'"' (u - uo)", (136) 

with c > -1, Re Djlu - uol" and 1m D/lu - uol" 
being H.c. near and at uo, or 

1m D(u) '"'"' (u - uo)r, (137) 

Re D(u) = const (u - uo)' log (u - uo) + feu), 

(138) 
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where r is an integer ~ 0 with 1m D/lu - uol r and 
f/lu - uol r H.c. near and at u = uo. The second 
alternative is only possible for Uo = 1 if IX = integer 
and is only possible for Uo = 0 if both {3 = 1 and 
A = O. (d) If D = 0 (i.e., Re D = 1m D = 0) for 
u = u1, 0 < U1 < 1, 

R = [(u - U2)/(U - u1)]N (139) 
and 

D = [(u - u2)/(u - u1)]D (140) 

are solutions of the NjD equations [part (a) or (b) 
of Lemma 6] with (p/u)lR in L 2 , for any choice of 
u2 • If Nand D satisfy the N/ D equations with X = 
Xo > 0, Rand D will satisfy them with X = Xo - 1, 
provided that U2 is taken to be one of the points bi in 
the equations for Nand D; otherwise, the value of X 
is the same for Rand D as for Nand D. 

Proof of Lemma 6: The difficult part is to prove 
(b) and (c), and this is done in Appendix E. The 
method is essentially to iterate Eq. (96); for instance, 
if b = 0, one has 

n = kn = k(kn) = k[k(kn)] = . . . . (141) 

It is shown that k maps the class L2 onto a smaller 
class S1 (say), and that it also maps S1 onto a still 
more narrow class S2' S2 onto Sa, etc., until one 
finally arrives at a class of functions sufficiently well 
behaved that the results under (b) and (c) follow. 
This iterative proof of parts (b) and ( c) does not work 
for A ¢ 0, but, if parts (b) and (c) are assumed, the 
rest of the proof of the theorem applies also to the 
case A ¢ O. 

Knowing the properties of 1m D under (b) and (c), 
part (a) is a standard consequence Appendix A. Part 
(d) follows easily from the identity 

(u' - U)-1 - (u' - U1)-1 

= (u - u1)(u' - U1)-1(U' - u)-l, (142) 

except for the statement that (p/u)lR must be in L 2 ; 

this may be proved by the techniques of Appendix D 
just mentioned. 

Once Lemma 6 is established, the rest of the proof 
of Theorem 8 is effected by unwinding the steps 
followed in Sec. 4 in setting up the N/ D equations. 
First, we prove the following lemma. 

Lemma 7: Under the conditions of Lemma 6, the 
phase - 15 of D satisfies conditions (i) and (ii) of Sec. 1. 

Proof of Lemma 7: First, it will be shown that, 
because of part (d) of Lemma 6, the number of zeros 
of D in the interval 0 < u < 1 must be finite. For 
every zero of D in this interval, one can find, if 

X > 0, a solution of Eq. (96) with the next lowest 
value of X. Eventually, one will either run out of 
zeros or reach X = O. In the latter case, for every 
remaining zero of D in this interval, one can produce 
a new linearly independent L2 solution of Eq. (96), 
with X = 0, and hence with b equal to either 0 or 
(p/u)lL. From Theorem 7 there is only a finite 
number of such solutions. This proves the required 
result. 

If all the zeros in 0 < u < 1 are divided out, one 
obtains a new function D which stilI has the properties 
(a)-(c) of Lemma 6 [since (p/u)lR is an L2 solution 
of Eq. (96)]; also the phase of D just above the cut is 
stilI 15. One may then use part (b) of Lemma 6 as 
follows: Just above the cut, we have 

so that 
(143) 

-2, -2 
e-2i[<I(,,')-~(u)] = (1 + D (u ~ - D (U») 

D2(U) 

(
1 ID(uW - ID(U'W) (144) 

X + ID(u'W . 

Because I DI2 never vanishes for 0 < u < 1 and Re D 
and 1m Dare H.c. except near and at the end points, 
it follows that, for all u and u' satisfying a < u < 
u' < b (a > 0 and b < 1), 

le-2i[~(u'H(u)] _ 11 < const lu' - ul". (145) 

(Use Lemmas, A3 and A4 of Appendix A.) Hence, 
there exists a number d such that. for all u and u' satis
fying lu' - ul < d, 

le2iU(u'H(u)] - 11 < 2. (146) 

For all such u and u', one then has 

Ir5(u) - r5(u) I < const le2i[o(u'H(u)] - 11, (147) 

and, hence, 

16(u') - 6(u)1 < const lu' - ul", (148) 

for all u, u' satisfying both a < u < u' < b (a > 0, 
b < 1) and lu' - ul < d. However, since (148) 
implies that 15 is bounded for a < u < b, one can 
remove the last restriction with (if necessary) a 
redefinition of the constant. 

This proves that 15 is H.c. except near and_ at u = 0 
and u = 1. If near either of these points D has the 
first type of behavior in (c) of Lemma 6, one can 
divide by lu - uol c so that the above arguments are 
valid even near and at the end point; then one will 
deduce that 15 is H.c. near and at the end point. 
Otherwise, it is clear from 

tan 15 = (1m D/Re D) (149) 
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and part (c) of Lemma 6 that d has the logarithmic 
behavior of Sec. 1. This proves Lemma 7. 

Next, let us prove the following lemma. 

Lemma 8: Under the conditions of Lemma 6, D 
has only a finite number of zeros in the complex 
plane. 

Proof: Define a function P by 

D(x) = P(x) 

x exp (-! ("'dx' x, ~(x') )/fI (1 - ~). 
'TT J1 X X - X .=1 bi 

(150) 

It will be shown that P is a polynomial. As was stated 
in Sec. 4, it follows from Appendix A that (because 
d satisfies the conditions of Sec. 1) the exponential is 
real analytic in the plane cut along 1 < x < 00 with 
phase - d just above the cut. P is real analytic in the 
cut plane with zero imaginary part on the cut and S019 

is actually singular at most at x = 1 and x = 00. 

Then, from the bounds (78), (79) and (136), (131), 
and (138), there is no singularity at x = I and at 
worst a pole at x = 00, i.e., P is a polynomial. 

Finally, we need the following result which follows 
in a straightforward manner from part (b) of Lemma 
6 (see Appendix A). 

Lemma 9: Under the conditions of Lemma 6, define 

1 1'" , L(x')p(x')N(x') 
X(x) = - dx , . 

'TTl x-x 
(151) 

Then X is real analytic in the plane cut along 1 < 
x < 00, just above the cut 1m X = LpN, and near 
x = 00 and x = 1, it satisfies the bounds X < 
const xP and X < const (x - l)-q, respectively, for 
some p and q. 

Now we can put all the pieces together. From the 
integral equation (67) or (71) and Lemmas 6 and 9, 

N(x) = L(x)D+(x) + X+(x), (152) 

where the +'s mean that the functions are evaluated 
on the upper side of the cut. We define 

F(x) = N(x)/D+(x), for 1 < x < 00, (153) 
and 

R(x) = X(x)/D(x), for x in the cut plane. (154) 

Then, clearly, 
F(x) = L(x) + R+(x) (155) 

and R satisfies all the conditions under part (1) of the 

problem. Finally, 

1m (F-1) = - p(x)N(x)(N(x) = - p(x), (156) 

so that part (II) of the problem is also satisfied. 

This ends the proof of Theorem 8. In the course of 
the proof, it has emerged [Eq. (150) et seq.] that the 
construction of Nand D in Sec. 4 is the most general 
one possible, at least if one requires that n = (p/u)!N 
is in L2 • Using this fact, we shall now investigate in 
detail the connection between the uniqueness index 
of a solution and its N/ D decomposition. 

First, let us associate with any N( D decomposition 
a pair of integers q and p as follows. 

Definition 3: The number of coincident zeros q is 
defined as the number of zeros of <I> [Sec. 4 following 
Eq. (81)], counting each zero ~ times where ~ is its 
order. 

Comment: Actually q is also the number of coinci
dent zeros of D and X' provided <I> has no zero at 
x = 1; this is the reason for the terminology. If N is 
analytic, it is also the number of coincident zeros of D 
and N (see Ref. 4). 

Definition 4: The asymptotic class of D is defined 
to be the integer p for which the following are true: 

(i) If fJ = 1 and A = 0, 

D,...., log x·· x-h, p even, (157) 
or 

P odd (158) 

(Le., let p = 0, 1,2· .. for D ,...., log x, const, log x/x, 
I/x, log x/x2 , ••• ). 

(ii) If fJ has any other value in the range ° < fJ < 2 
under consideration or if A # 0, 

(159) 

which c lies in the range 

HfJ - 1) < c < tfJ. (160) 

[The strict inequalities are permissible because of (16).] 

Lemma 10: If (p/u)!N is in L 2 , the asymptotic class 
p of D is nonnegative. 

Proof: If D has the asymptotic behavior D ,....., Xk 

with k nonintegral, then N = -1m D/p must have 
the behavior N ,....., xk- P; for (p/u)tN to be in L 2 , one 
must therefore have k - tfJ < 0, and it is easy to 
verify that this implies p ~ 0. If D '""-' Xk or Xk log x 
with k integral, the requirement p ~ ° follows from 
the requirement that k ~ 0 or ~ - 1, respectively 
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(which is necessary if D is to satisfy the once subtracted 
dispersion relation). 

With these definitions, it is easy to establish the 
following result. 

Lemma 11: For 0 < {J < 2 and A = 0, a solution 
F = NjD with n = (pju)fN in L2 has uniqueness 
index 

K = 2X - 2q - p, (161) 

where K, X, p, and q are defined in Definitions 1,2,3, 
and 4. 

Proof' This follows immediately upon comparing 
the behavior 

D r"o.I x(n+m+cl(oo)/1r)+(q-x), (162) 

obtained from (78), with the definitions of p and K. 

Remembering that p and q are nonnegative, we see 
that Lemma 11 together with Theorems 6 and 8 implies 
the following important result. 

Theorem 9: For 0 < {J < 2 and A = 0, one may 
obtain all allowed solutions of the problem with index 
K S 2X by solving the N/ D equations for all possible 
values of the 2X parameters k i and di [restricting 
oneself to solutions n = (p/u)fN in L2 and holding 
the points hi at any fixed values satisfying the restric
tions of Theorem 61. Conversely, every function 
obtained by this procedure will be an aJlowed solution 
with K S 2X. 

Discussion: This result together with Theorem 7 
tells us that, provided only solutions with Knot 
exceeding some (even) maximum are required, these 
can be obtained in terms of only a finite number of 
parameters. If Land p are not such that the second 
Fredholm alternative holds (Theorem 7), these are 
just the parameters k i and di • Otherwise, there will 
be additional parameters relating to the non unique
ness of the solution of the integral equation; but, in 
that case there will also be restrictions on the k i and 
di ; hence, it is not yet clear how many independent 
parameters will remain. 

Even when the number of parameters involved in 
Nand D has been ascertained, one cannot immediately 
deduce that the same number is involved in the 
solution F = N/D, because the N/D decomposition 
is not unique. 

These problems, and related ones, are tackled in 
the next section. 

7. EXISTENCE THEOREMS 

First, we need another definition. It makes sense 
in view of Lemma 3. 

Definition 5: For any pair of functions Land p 

(satisfying the conditions of Sec. 1), the index of the 
problem KO is that integer such that there is an allowed 
solution with uniqueness index K = KO but no allowed 
solution with K < KO' 

The result to be established is the following theorem. 

Theorem 10: For 0 < {J < 2 and A = 0, one always 
has KO S O. If KO = 0, there is one allowed solution 
with -K = 0 and a K parameter infinity of allowed 
solutions with each K > O. If KO < 0, there is one 
allowed solution with K = KO' no allowed solution 
with KO < K S /KO/' and a K parameter infinity of 
allowed solutions with each K > IKol. The second 
alternative is "exceptional" in the following senses: 
Except for KO = -1, it requires the second Fredholm 
alternative to hold for Eq. (96), and for KO = -1 it 
requires the (unique) D function obtained from the 
X = 0 equations to have asymptotic class p > o. 

Proof' The proof will proceed by considering in 
turn each of the various possibilities with regard to 
the Fredholm alternatives for the integral equation. 
Extensive use will be made of Appendix F, which 
parametrizes explicitly the most general possible form 
for the Nj D decomposition corresponding to a given 
allowed solution. Also, Lemma 3 will be heavily used; 
of course, this already gives part of the theorem 
directly. 

(a) First Fredholm alternative (F.a.) valid. By 
Theorem 7, this situation will happen for "most" 
choices of Land p. It will be shown that it corre
sponds to KO = 0 or -1, the second case being 
exceptional in that then the D function obtained 
from the X = 0 equations has p > O. 

First look at the X = 0 Eqs. (73)-(76). The homo
geneous Eq. (76) has no solution [here and in the 
following the restriction to functions n = (pju)fN in 
L2 is understood]. The inhomogeneous equation (74) 
has a unique solution, which gives the only pair of N 
and D functions yielding a solution with K ~ 0; hence, 
from Appendix F, they actually yield a solution with 
K = 0 or -1 (otherwise, further Nand D functions 
could be constructed). The cases 0 or -1 will arise 
according to whether D has asymptotic class p = 0 or 
1. Finally, since D(O) :F 0 the solution can have no 
pole of R at x = O. In summarizing, this becomes the 
following lemma. 

Lemma 12: If the first F.a. holds, KO = 0 or -1. 
The solution with K = KO may be obtained from the 
X = 0 equations (73) and (74) [valid for D(O) :F 0], 
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and the cases KO = 0 or - 1 arise according to whether 
the resulting D function has asymptotic class 0 or 1, 
respectively. This solution has no pole at x =0. 

Now consider the X = 1 equations (75) and (76), 
valid when D(O) = O. They have a unique solution for 
each choice of the pair of parameters {di kl } (here 
and in the following, the points bi are to be fixed at 
arbitrary values, subject to the conditions in Theorem 
6). The D function depends linearly on the parameters: 

The functions P and Q are linearly independent 
[since D is never identically zero, from (77)]. Because 
one can choose in particular D = P or D = Q, it 
must be possible to assign an asymptotic class p to P 
and Q, separately. It will be shown that, in fact, they 
both have p ~ 1 and that at least one of them has 
p =0. 

For any choice of the pair {dt kIlo (161) implies that, 
ifp ~ 2, 

K ~ -2q ~ O. (164) 

Hence, from Lemma 3, K = KO (= 0 or -1), hence 
q = o. On the other hand, since we are dealing with 
the equations valid for D(O) = 0 and the K = KO 

solution has no pole at x = 0, <I> must have a zero at 
x = 0, i.e., q ~ 1 which is a contradiction. This proves 
that p ~ 1 for all choices of {di kIlo hence, in partic
ular for P and Q. Finally, if both P and Q had p = 1, 
it would be possible to choose the ratio di/ki so that 
the leading term of D vanished, i.e., so that D had 
p> 1; hence, at least one of P and Q has p = o. 

From this, it follows that D can actually only have 
p = 1 (i.e., the leading term if D can only vanish) 
if {di k l } satisfy some equation 

(165) 

where at least one of a and b is nonzero, in other 
words, if the ratio di/ki takes on some exceptional 
value (perhaps infinity). 

From (161), p = 0 implies that K = 2 - 2q = 2, 
0, -2···. Then, Lemma 3 (Sec. 3) shows that, if 
KO = -1, K = 2; if ko = 0, I( = 2 or O. If I( = 0, 
q = 1; from Appendix F this will only happen for 
one special choice of the ratio di/ki . If K = 2, q = 0; 
this implies that (i) every choice of the ratio di/ki 
gives a different solution F (Appendix F) and (ii) 
these solutions all have a pole of R at x = 0 [since 
<I> has no zero but DCO) = 0]. 

Finally, consider the exceptional case when p = 1. 
This must give a solution with I( = 1 - 2q = 1, -1, 

-3, .... Lemma 3 shows that, in fact, if 1(0 = 1, 
K = -1; if KO = 0, K = 1. 

The above results may be summarized in the 
following lemma. 

Lemma 13: If the first F.a. holds, there is a 1-
parameter infinity of solutions with K = 2 and a 
pole at x = 0, obtained from the X = I equations (70) 
and (71) by varying the ratio kt/dt . If KO = 0, there is 
also a solution with I( == I and a pole at x = 0, 
obtained for some special value of this ratio. 

Next look at the X = I equations (66) and (67), 
valid for D(O) =F- 0. The general form of D is 

D(x) = G(x) + [d) P(x) + kl Q(x)], (166) 

with G not identically zero. D will have p = 0 except 
when {d1 k1} satisfy some equation 

(167) 

At least one of a and b is nonzero, so that this equation 
has a I-parameter infinity of solutions {d1 k)}. 

The use of Lemma 3 and Appendix F, as above, 
shows that whenp = 0, if KO = -1, K = 2; if 1(0 = 0, 
I( = 2 or 0; the case I( = ° will only occur for a 
I-parameter infinity subset of choices of {d1 k l }; when 
I( = 2, every choice of {dt k t } will give a different 
solution F. 

Again, consider the exceptional cases when D has 
p > 0. The use of Appendix F, as above, shows that 
one never has p > 2 and that the case p = 2 can only 
occur if 1(0 = 0, and then only for one choice of 
{d1 k l }. Thus, P = 1 except possibly for this one 
choice of {d1 k t }. Then, Appendix F shows that, if 
KO = -1, I( = 1(0; if KO = 0, I( = 1. 

These results may be summarized in the following 
lemma. 

Lemma 14: If the first F.a. holds, there is a 2-
parameter infinity of solutions with K = 2 ( and no 
pole at x = 0) obtainable from the X = I equations 
by varying the pair {d1 k l }. If KO = 0, there is also a 
I-parameter infinity of solutions with K = I (and no 
pole at x = 0) obtainable by varying the pair {dt k)} 
subject to some linear constraint. 

It may be shown by exactly similar arguments that 
similar results are obtained for X > 1. We summarize 
all this in the following important statement. 

Theorem 11: Let 0 < f3 < 2 and A = 0, and let the 
first Fredholm alternative hold for Eq. (96). Then 
1(0 = 0 or -1. There is a unique solution with I( = KO' 

obtainable from the X = 0 equations (73) and (74); the 
cases KO = 0 or -1 occur if D has asymptotic class 
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o or 1, respectively. There is a K-parameter infinity of 
solutions with each K> /KO/' All the solutions with 
a given even value of K may be obtained by solving 
the N/D equations with X = iK, varying the K param
eters {d1 ••• dx kl ... k x} over all possible choices 
excluding some (K - 1) parameter subset (consisting 
of those choices for which q > 0 and/or p > 0, i.e., 
for which there are coincident zeros and/or a vanishing 
of the leading term of D at infinity). All the solutions 
with the next lowest value of K, i.e., K = 2X - 1, may 
be obtained by varying {d1 ' •• k x} over this subset, 
excluding some still smaller (2K - 2) parameter sub
set (those choices for which q > 0 and/or p > 1). 
This last subset yields solutions which are redundant 
in that they have K ~ 2X - 2 and hence can be 
obtained by the above procedure with some smaller 
choice of X. 

Discussion: The results contained in the above 
theorem are no surprise; they constitute an advance 
on previous work only in their generality, and in 
the fact that an explicit proof has been spelled out. 
Their essential content is obviously the following: 
If a solution of the N/ D equations has no coincident 
zeros and is no more well behaved at infinity than it 
has to be for the integrals to converge, then it will 
yield a solution with K = 2X: this will "usually" be 
the case, so that there is a K-parameter infinity of such 
solutions, obtainable by varying the 2X parameters 
appearing in the N/D equations; if a condition is 
imposed on the parameters to ensure that the leading 
term of D at infinity vanishes, one will obtain a K

parameter infinity of solutions with K = 2X - 1. 
When we move on to the case where the first 

Fredholm alternative ceases to be valid, the situation 
is quite different, and no previous treatment has 
tackled this case. It is obvious that the K-parameter 
infinity of solutions (if it exists) cannot be found 
simply by varying the set {dl ' .. kx} because there is 
no longer a unique solution for each choice of the set. 

(b) Second F.a. holds, one linearly independent 
solution, not orthogonal to (plll)~L. This is the case 
where the homogeneous X = 0 equation (76) has a 
unique solution (up to an over-all constant), but the 
inhomogeneous equation (74) has no solution. By the 
same arguments as for case (a), the former equation 
gives a unique solution F with K = Ko = 0 or - I, 
according to whether D has p = 0 or 1. The only 
difference from the previous case is that. since it is the 
homogeneous equation which is involved, D(O) = 0; 
hence (because q = 0 by Appendix F) R has a pole at 
.\" = O. Thus, we have the following. 

Lemma 15: In case (b), KO = 0 or -1. There is just 
one solution with K = KO' obtainable from the X = 0 
equation (76), and it has a pole at x = O. 

If we look again at the derivation of the N/ D 
equations (Sec. 4), it will be seen that the choices of 
x = 0 as the normalization point for D was not 
essential; any point x = xo would have done, with 
- 00 < xo < 1. It is therefore always possible to 
avoid case (b) by choosing some other value for xo, 
such that R no longer has a pole at xo. Then [since, 
as wiII be seen, KO = 0 or -1 only for cases (a) and 
(b)] one will recover case (a). 

Because of this, no further investigation of case (b) 
is necessary. 

(c) Second F.a. holds, one linearly independent 
solution, orthogonal to (p/u)!L. This is the case 
where the X = 0 homogeneous equation (76) has one 
solution (up to an over-all constant) and the X = 0 
inhomogeneous equation (74) has a I-parameter 
infinity of solutions. These give the only Nand D 
functions yielding solutions with K ~ 0; hence, by 
Lemma 3 and Appendix F they must all yield a 
single solution with K = -2 or -3 (the two cases 
arising according to whether the D function obtained 
from the homogeneous equations has p = 0 or 1) 
and no pole of R at .\" = O. We summarize in the 
following lemma. 

Lemma 16: [n case (c), KO = -2 or -3. There is a 
single solution with K = KO' which is obtainable 
from the X = 0 equations and has no pole of R at 
x = 0, the cases KO = -2 or -3 occurring when 
the solution Do of the homogeneous X = 0 equations 
has p = 0 or 1, respectively. 

Let us note in passing that the result just deduced, 
namely, that every solution N of the inhomogeneous 
equation (74) is just equal to a (first-order) poly
nomial times the solution of the homogeneous equa
tion, is far from obvious if one just looks at these 
integral equations themselves. One needs to know that, 
first, F = N/ D is an allowed solution of the problem 
with K ~ 0 and, then, that the uniqueness Lemma 3 
applies. It is here that previous treatments are not 
adequate, in that no assurance is given that F will 
be an allowed solution. 

Now look at the case X > 0, treating first Eqs. 
(70) and (71), valid for D(O) = O. The orthogonality 
condition for the inhomogeneous term imposes a 
linear condition 

)( 

L (Ai di + Bi k i ) = 0, (168) 
i=l 
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and for each choice of {d1 '" kx} satisfying this 
condition there is the I-parameter infinity of D 
functions 

x 
D(x) = .l [d i P;(x) + ki Qix)] + ). D 1(x), (169) 

i=1 

where Dl is the solution ofthe homogeneous equations. 
It can easily be seen that at least one of the A; 

or Bi is nonzero, indeed that one can never have 
Ai = Bi = ° for any value of i. For suppose this were 
possible for j = I (this clearly involves no loss of 
generality); then for X = 1 there would be no restric
tion on {d1 k1}, and hence there would be a 3-parameter 
infinity of D functions all yielding solutions F with 
K = 2 - 2q - P ~ 2 and hence, from Lemma 3, all 
yielding the solution with K = Ko (= -2 or -3). But, 
from Appendix F, this solution can only yield a 2-
parameter infinity of D functions [with D(O) = 0], 
which is a contradiction. 

Since not all the Ai and Bi are zero, the orthogonal
ity condition removes one (but only one) of the 2X 
independent parameters. In (169), this parameter may 
obviously be replaced by A, so that we deduce, in fact, 
that there is still just a 2x-parameter infinity of D 
functions, of the form 

2X 

D(x) = .l ai Di(X). (170) 
i=1 

Now, one can use arguments similar to those for 
case (a) above. From Lemma 3, the only solution F 
with K < 1 Kol (= 2 or 3) is that with K = KO' so that all 
solutions of the Nj D equations with X = 1 must yield 
this solution. Let us consider X = 2. 

It is easily seen that at least one of the functions 
Do' .. D J must have p = 0, for, if they all had 
p ~ 1, there would be four linearly independent D 
functions (Le., all of them) with K = 2X - 2q -
P ~ 3; on the other hand, Lemma 3 and Appendix F 
tell us that, if KO = -2, there are only two such 
functions, and, if KO = -3, only three functions. 

Because one of the Di has p = 0, it follows that D 
will have p = ° for every choice of {d1 ••• k 2} except 
when these parameters satisfy a linear homogeneous 
equation with at least one coefficient nonzero (ex
pressing the condition that the leading term of D 
vanishes). This condition will be satisfied by just 
a [2X - I (= 3)]-parameter subset of choices of 
{d1 ••• k 2}· 

When p = 0, K = 4 - 2q = 4, 2, ° .... If q > 0, 
K = IKol, and so Appendix F tells us that q > ° only 
for a (2X - I)-parameter subset of choices of {d1 ••• k 2}. 

If q = 0, I< = 4, and Appendix F tells us that we 
obtain a different solution F for every choice of 
{d1 ' •• k 2} (except that Fis independent of the over-all 

normalization). Since q = 0, these solutions have a 

pole at x = 0. 
Finally, consider the exceptional cases when p > O. 

If p=l, K=3-2q=3,1,-I···. Hence, if 
1<0 = -3, I< = KO; if KO = -2, K = 3. If P ~ 2, 
K ~ 2, and hence K = KO; but Appendix F tells us that 
this can only happen for a (2X - 2)-parameter subset 
of choices of {d1 ••• k2}. 

So we have deduced the next lemma. 

Lemma 17: In case (c) there is a (K - I)-parameter 
infinity of solutions with K = 4 and a pole at X = 0, 
obtainable from the X = 2 equations (70) and (71) 
[valid for D(O) = 0] by varying the set {d1 ••• k 2} 

subject to the orthogonality condition. If KO = -2, 
there is also a (K - I)-parameter infinity with K = 3 
(and a pole of R at x = 0), obtainable by varying the 
set {d1 ••• k2} subject also to a further linear condition. 

The extension of this result to arbitrary X ~ 2 
goes through in the same way. 

Now, let us look at Eqs. (66) and (67) valid for 
D(O) oF 0, for the case X > O. The orthogonality 
condition will again remove one of the parameters 
{d; ... k), which may be replaced by J., so that there is 
still a 2x-parameter infinity of D functions of the form 

2X-1 

D(x) = G(x) + L ai Dlx). (171) 
;=0 

Exactly similar arguments to those above then give 
us the following. 

Lemma 18: In case (c), there is a K-parameter 
infinity of solutions with K = 4 (and no pole of R 
at x = 0), obtainable from the X = 2 equations (66) 
and (67) by varying the set {d1 ' .• kx} subject to the 
orthogonality condition. If KO = -2, there is also a 
I<-parameter infinity with K = 3 (and no pole of R at 
x = 0), obtainable by varying the set subject to a 
further linear condition. 

Again, the extension to X > 2 needs nothing new. 

(d) Second Fredholm alternative holds, arbitrary 
number of linearly independent solutions, all or
thogonal to (pju)lL. This is the case where the 
homogeneous X = 0 equation has (say) r linearly in
dependent solutions, and the inhomogeneous X = 0 
equation has correspondingly an r-parameter infinity 
of solutions. Exactly the same arguments as for (c) 
above give the following result. 

Lemma 19: In case (d), KO = -2r or -(2r + 1). 
The solution with K = KO may be obtained from the 
X = 0 equations and has no pole of R at x = O. 
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For X = 0, there will be a solution only when 
orthogonality conditions of the form 

x 
~(Anidi+Bniki)=O, n=I"'r, (172) 
i=1 

are satisfied, and, when this is the case, the most 
general solution Dis 

. X r 

D(x) = G(x) + ~ [d; Pix) + k; Qb)] + ~ An Dn(x), 
i=1 n=1 

(173) 
with G = 0 for Eqs. (70) and (71). 

From Lemma 3 there is no solution with I< ~ 2r 
ex;cept the one with I< = 1<0; hence, the smallest value 
of X which is of interest is X = r + 1 (remember that 
I< ~ 2X). It will be shown that, for X ~ r + 1, (172) 
removes just r of the 2X parameters {di , ki } and, 
hence, that the most general sdiution D is still of the 
form 

2X 

D(x) = G(x) + ! ai Dlx). (174) 
i=1 

From Appendix F the solution with I< = 1<0 gener
ates a 2r-parameter infinity of D functions satisfying 
Eq. (70) with X = r. As these are the only possible 
ones, just r of the parameters {di k i } can be independ
ent [from (173)], i.e., when X = r, the orthogonality 
conditions remove just r of the parameters {di k i }. 

Since there are r equations, this is the greatest number 
possible, and so we conclude that just r parameters are 
also removed when X > r as required. 

Knowing that the most general solution D is given 
by (174), we can easily show, by similar arguments to 
those used for the previous 'cases, that there is a 1<

parameter infinity of solutions with each I< > 1<0, 

which can be obtained as in Lemmas 16-18. 

(e) Second F.a. holds, arbitrary number of linearly 
independent solutions, not all orthogonal to (pju)lL. 
If there are (r + 1) linearly independent solutions of 
the homogeneous X = 0 equations, the unique solu
tion F which they yield must have I< = 1<0 = -2r or 
- (2r + I) and must have a pole of R at x = 0 (since 
there is no solution of the inhomogeneous X = 0 
equations). Hence case (e) may always reduce to 
case (d) by a change in the normalization point for D. 
[See case (b) above.] 

8. THE CASE OF ARBITRARY f3 

With the results of the last section, the treatment 
for 0 < ~ < 2 is complete. It remains to consider the 
case of arbitrary {J > O-or rather to learn how to 
avoid considering it. 

The point is that, if F = Fo is a solution of the 

problem when L = Lo and P = Po, then F = <l>Fo is 
a solution of the problem when L = <l>Lo and P = 
<1>-1 Po, if <I> is any real rational function. This is ob
vious since (i) the replacement R --+ <I> R does not alter 
the validity of the conditions under (I) if the problem 
and (ii) since <I> is real, (II) is not affected either. 

For this reason, it is always possible to reduce the 
case of arbitrary {J to the case 0 < {J ~ 1. There is, 
however, a difficulty in doing this: namely, that the 
connection between the uniqueness indices for the 
two cases is not very simple unless restrictive assump
tions are made. This is due to the fact that (1) although 
the replacement F --+ cpF will normally introduce new 
poles of R, it will not do so if the original R possesses 
zeros coincident with poles of cp and (2) the replace
ment may also remove poles of R. 

To discuss this in more detail, it will be convenient 
to consider the case where <I> has just a single pole or 
zero. First, we have to tie up a loose end, namely, to 
ensure that the "transformed" problem still has F, 
L, and P satisfying the conditions presupposed in this 
paper (Sec. 1). The following is obviously true. 

Lemma 20: Let F = Fl be an allowed solution of the 
problem when L = Ll and P = PI and let Ll and PI 
satisfy the conditions of Sec. 1. Then, if - 00 < Xo < 1 
and k is an integer with 0 < k ~ f31' F = F2 == 
(x - xo)kFI is an allowed sQlution of the problem 
when P = P2 == (x - Xg)-kp1 and 

L = L2 == (x - XO)k( Ll - i~ ci(x - xo)-i); (175) 

also, P2 and L2 satisfy the conditions of Sec. 1, 
provided that constants Ci are chosen so that the 
square bracket is o(x-k

). The converse of this state
ment is also true. 

Now, let us look at the relation between 1<1 and 1<2' 

It will be convenient to assume that F, L, and N are 
analytic (and therefore well defined) at least out to 
the point xu' 

From Definition 1, the general relation is clearly 

(176) 

where ;1 is zero unless Fl has a pole at x = X o, in 
which case it is the order of the pole or k, whichever 
is less. 

Thus, there are two extreme cases: (a) if Fl has no 
pole at x = Xo, Kl = K2 - k; (b) if F1 has a kth 
order pole at x = XO, Kl = K2 + k. 

Ifwe are considering F] as a solution of the problem, 
case (a) will be the "usual" one in that there is 
no particular reason to expect a pole at x = xu' 
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However, if we are solving for F2 , it becomes case (b) 
which is "usual," because case (a) (or any inter
mediate one) can only occur if F2 happens to have a 
zero at x = xo' 

Now, let us return to the task which motivated this 
discussion, namely,to solve the problem for ~ ~ 2 by 
reducing it to the case where ~ is in the canonical 
range 0 < (3 < 2. If the original amplitude is F1 , then 
F2 can always be made to lie in the canonical range by 
a suitable choice of k: Indeed, unless ~ = integer, 
there are two possible choices for k, as one may have 
F2 with either 0 < ~ < 1 or 1 < ~ < 2. After the 
problem has been solved for F2 by the method 
described in the preceding sections, one can then 
transform back to F1 to obtain the solution of the 
original problem. The only difficulty is to keep track 
of the uniqueness index. 

For this purpose it will be simplest, and quite 
adequate for physical applications, to impose a 
condition that F1 has no pole at the point Xo' This then 
requires that F2 has a kth-order zero here, i.e., that 
the parameters are chosen in such a way that the N 
function for F2 has its first k derivatives vanishing, 
which will give k linear conditions: 

x 
Hn + 2 (Fnidi + Gniki) = 0, n = I··· k. (177) 

i=1 

In general, these will remove k of the 2X parameters 
{dL ' •• k x). Since the index K2 will "usually" be given 
by K2 = 2X and since there is usually just one solu
tion F2 for "almost" every choice of {d1 " • k) 
(Theorem 11), we deduce that there is "usually" a 
[(K2 - K) = K1J-parameter infinity of solutions satisfy
ing the condition with each even K2 ~ k. Finally, the 
restriction to even K2 docs not restrict the parity of 
(K2 - k) since one can always choose k to have either 
of two adjacent values, unless ~ = integer, as men
tioned above. So we deduce that there will "usually" 
be a Kl-parameter irifinity of solutions Fl with each 
K1 ~ O. 

Thus the uniqueness index retains, at any rate for 
the "usual" case, the significance it had for 0 < ~ < 2. 
A detailed discussion of all the exceptional cases along 
the lines of Sec. 7 would presumably allow a com
pletely general statement similar to Theorem 10. 

Finally, it is of interest to get some insight into 
the problems occurring if one were to try a direct 
N( D solution for {3 > 2. From Sec. 4 one can still get 
an N(D representation, with (ptu)!N being an L2 
solution of the integral equation (96). However, 
because of the term f3 in the definition of K, it is easy 
to verify that, instead of the inequality K S 2X, one 
has now k S 2X - b., when b. is the smallest even 

integer not greater than f3 (i.e., be = 0,2, ... for 
o < ~ < 2, 2 S ~ < 4," .). 

Thus, if there is only to be a K-parameter infinity of 
solutions, we expect that the N/ D equations cannot 
have solutions for every choice of the 2x-parameters 
{dl ' .• kx}; instead we expect solutions only if these 
satisfy be conditions. In other words, we expect that 
for ~ ~ 2 the integral equation for N no longer has 
a solution for every (L2) choice of the inhomogeneous 
term. 

APPENDIX A: DISPERSION INTEGRALS 

Here, we have collected a number of results con
cerning dispersion integrals over Holder continuous 
functions. One is valid when there is essentially 
Holder continuity even near and at the end points, 
and is taken more or less verba tum from Ref. 17. 
The remainder concern the case when the behavior is 
logarithmic in the sense of (24) of the text, or simple 
extensions of this case, and the results here are new, 
although the technique of proof is taken from Ref. 3. 

First, we give some simple facts used in the text. 

Lemma AI: Let 4>(u) be H.c. in a < u < b, and let 
F(4)[u]) have a bounded derivative with respect to 4> 
for all the values taken by 4> in this range. Then F 
is H.c. with respect to u in a < u < b. 

Proof: By the mean value theorem, since F has a 
bounded derivative, 

IF(4)[u']) - F(4)[uD\ < const 14>(u') - 4>(u)l. (AI) 

Lemma A2: The function UC is H.c. in a < u < b 
with Holder index c. 

Lemma A3: The product of two H.c. functions 
is H.c. 

Lemma A4: The inverse of a nonvanishing H.c. 
function is H.c. 

Proofs: In Ref. 17, Chap. 1. 

The result, valid when one essentially has Holder 
continuity near and at the end points, is the following 
(Ref. 17, Chaps .. 2, 3, and 4). 

Lemma A5: Let 1> be H.c. in any subinterval of 
o < u < 1 not including an end point, and near an 
end point (call it u = c) let 

4>(u) = 4>*(u)/lu - elY, (A2) 
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with 4>* H.c. near and at u = e and 0 ~ y < 1. Then 

<D(u) =!. (du' ~(u') (A3) 
1TJo u-u 

is real analytic in the u plane cut along 0 < u < 1 
and on the upper side of the cut approaches the limits 

1m <D(u) = 4>(u), (A4) 

P Sol 4>(u') Re <D(u) = - du' -,-- . 
1TO u-u 

(AS) 

The function Re <D is H.c. except near and at the end 
points. Near u = e, one has the following: 

From the mean value theorem, one has, for u < u', 

Ib(u') - b(u)1 < Itan b(u') - tan b(u)l, (Al3) 

1_1 ___ 1_1 < _1_ lu' - ul (A14) 
logu'logu ulog2 u ' 

from which the lemma follows. 

Lemma A7: If /j satisfies the conditions of Lemma 
A6, then for 0 < u < u' < b 

Isin2 (u') - sin2 (u)1 

< const [lu' - ul P + (u log3ur l lu' - ul], (AIS) 

(i) If y = 0, 

1<D(u)1 < const/log Itt - el; 

(ij) if 0 < y < 1, 

and also u1 sin2 u satisfies a similar condition for any 

(A6) y ~ O. 

1<D(u)1 < const lu - elY. (A7) 

On the interval 0 < u < 1, Re <D, in addition, satisfies 
the following: 

(i) If y = 0, 

Re <D(u) = ± 4>(e) log (_1_) + <Do(u); (AS) 
1T lu - el 

(ii) if 0 < y < 1, 
4>*(c) <Do(u) 

Re <D(u) = ±cot 1Ty + , (A9) 
lu - elY Itt - el y- E 

some € > O. Here the + and - signs hold for u = 0 
and u = 1, respectively, and in both cases <Do is H.c. 
near and at u = e. 

For the logarithmic behavior, we first need the 
following results. 

Lemma A6: Let 

Proof" Using the mean value theorem and remem
bering that log u diverges, we have 

Isin 2 b(u') - sin 2 /j(u)1 

< Itan2 /J(u') - tan2 /J(u)1 

< const (Iu' _ ull' + /_1 ___ 1_/) 
log2 u' log2 U 

< const (Iu' - ull' + 1 3 lu' - Ill). (A16) 
ulog u 

For u"t s1n2 u, one writes 

u'Y sin2 u' - u1 sin2 u = u'1(sin2 u' - sin2 u) 

+ sin 2 u(u'Y - uY) (A17) 
and uses Lemma A6. 

Now, we state the analog of Lemma AS for logarith
mic behavior near the end point. For simplicity of 
notation, we take the point u = O. 

Lemma A8: Let 4> defined on 0 < u < a be H.c. 
except near and at u = 0, and near this point let 

tan /j = 1m X!Re X, 
with 

Re X = log x + I(x), 

4>(u) = 4>*(u)u-Y 

(AlO) (some y, 0 ~ y < 1), with 

(A18) 

1m X and f being H.c. in 0 < u < a. Then, for 0 < 
u < u' < a, 

I/J(u') - /J(u)1 < const (Iu' - ull' + 1 2 lu' - ul). 
ulog u 

Proof: Since log u diverges near u = 0, 

Itan /J(u') - tan /J(u)1 

(All) 

< const (IU' - ull' + /_1 __ -1-1). (A12) 
log u' log u 

4>*(u) < const log-k u (A19) 

(some k, k ~ 1) and 

14>*(u') - 4>*(u)1 
< const [Ju' - ull' + u-l (log-(k+1

) u) lu' - ul] 

(A20) 
(all u, u', u < u'). Then 

<1>(u) =!. radu' ~(U') 
1T Jo u - u 

(A21) 
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is real analytic in the plane cut along ° < u < a and 
just above the cut 

1m <I>(u) = cP(u), (A22) 

for x' < x. Since 13 may be written 

l "'(l+() I cP(x ' ) - cP(x) 
13(x) = dx I ' 

",(I-d X - X 
(A30) 

P ia 
cP(u ' ) Re<l>(u) = - dil' -,--' , (A23) this is easily found to give 

7TO li-ll 

with Re <I> H.c. except near and at 1/ = O. Near 1I = 0, 

<I>(u) '"" (a du,' cP(u') + 0[1111-;' log-k 11I1]. (A24) 
JI "I 1I 

It is important to take notice of the fact that no 
statement is made about the continuity properties of 
Re <I> near u = 0, as none is needed in the text. It 
would in any case be very difficult to obtain such a 
statement in concise form. 

Proof: We folIow Ref. 3. Define x = 1/11, and write 

1",(1+£l , cP(x') 
Re<l> = dx --

a- 1 x' 

1",0-<> , cP(x') l.ro+<> I cP(X') + dx -- + P dx --
a-1 x' - X ,,(I-C) x' - x 

+ dx ---Loo , X cP(x') 

xU+d x' x' - X 

=/1 +/2 +/3 +/4 , (A25) 

with E > O. The first term gives the first term of (A24). 
(It will be seen in Lemma A9 below that the E can be 
ignored here.) For 12 and 14 , one has 

(",(1-<) 

1121 < const x-1Jo dx'x')' log-k x' 

< const x Y log-k x, (A26) 

l
ei) X log-k x' 

1/41 < const dx' - x'Y 
",(1+<) x' x' - x 

l
ei) llog-k (xy) 

= const xY dy - yi' 
1+< Y Y - 1 

1/31 < const xY(log-k x)(x-I' + log-(k+ I
) x) 

< const xY log-(2k+I) x. (A31) 

For x not on the real axis, write x = Ixl e- iO
, and 

J
IXI , cP(x') 

tI) = dx--
I x' 

11.£1 ,cP(x') lei) I X c/>(x') + dx -- + dx ---. (A32) 
1 x' - x 1"'1 x' x' - x 

The first term gives the first term of (24), and it is easy 
to verify that, for fixed () ¥= 0, the assumed bound on 
cP implies that the other terms are bounded by 
const Ixl)' log-Ie Ixl. This completes the proof of 
Lemma A8. Finally, the leading term of <I> will be 
computed explicitly. 

Lemma A9: Under the conditions of Lemma A8, 
as 1I -+ 0, 

(i) if y = 0 and k > 1, 

(1)(1I) = <1>(0) + logO-k) 1I + O(1og-k u); (A33) 

(ii) if y = 0 and k = 1, 

<1> = log (log II) + O(log-1 tt); 

(iii) if 0 < y < 1 and k 2: 1, 

(1)(11)/(11-1' log(1-k)U) -+ O. 

(A34) 

(A35) 

Proof: Cases (i) and (ii) involve standard integrals. 
For case(iii), write 

rex) = (IX dx'(log-k x') . x lr- 1
) 

ft~l 

< const xY log-k X. (A27) X (xY 10gO-k) X)-1 (A36) 

For /3' use 

cP(x') - cP(x) = x'Y[cP*(x ') - cP*(x)] 

+ cP*(x)(x'Y - Xi'). (A28) 

Assuming that fl has been chosen so that It <~y 
(this may always be done for the applications in the 
text), we conclude via (20) and Lemma 2 that 

IcP(x') - cP(x) I 
< const x'Y log-k x 

X (X- 21' lx' - xii' + x-1(1og-(k+1
) x) lx' - xl] 

(A29) 

and let)' = log x, y' = log x', and z = y'/y. Then, 
as )' -~ 00, 

APPENDIX B: PROOF OF THEOREM 1, 
PART (e) 

The proof of Theorem 1, part (e). of the text is given 
here. First we need the following. 

Lemma BI: Let 1 be H.c. near and at u = 0 with 
Holder index fl, and let 1(0) = O. Then the same is 
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true of 

(Bl ) 
Proof: Use 

g(u ') - g(u) = u-Il(f2(U' ) - f2(U» 

+ f2(U I)(U'- 1l - u-Il) (B2) 

and take u' < u. Then, by the mean value theorem, 
the first term is bounded by 

2u-llf(u) lui - ulll, U ' < U1 < u. (B3) 

Since f < const ull , the required result follows. 
Now consider 

I(x) == f. (00 dXI(XI - l)m [m F(x ' ) , (B4) 
TT J1 X' x' - x 

with m = a, a being defined as in Eq. (2S). One has 

I(x) = (00 dx' rf>(x ' ) , (BS) 
J1 x' - X 

Assuming that also m - oc + 3ft < 0, we deduce 
again that (x - 1)-(m-a+3/l)/(x) is H.c. near and at 
u = 1 and vanishes there and that the same is true 
of (x - I)-31l sin b(x). 

We can continue in this fashion until, for some n, 
[m - oc + (2n + I)ft] > O. Then, Lemma AS tells us 
that / itself is H.c. near and at x = 1, and hence from 
(9) the same is true of 

(x - l)m-a sin <5(x). 

If this quantity does not vanish at x = 1, the 
proof is c.omplete. If it does, then, from (9), the same 
must be true of I. Then we can take m = a-I 
and repeat the above arguments, if necessary, until 
m =0. 

APPENDIX C: BOUNDS ON AN INTEGRAL 

with 
rf>(x) = (x - 1)m-arf>*(x), 

Here we prove the statement in the text that the 
(B6) right-hand side of (106) vanishes as € -+ O. Write 

4>*(x) == (x-m (x - lY) sin 2 b(x). 
p(x) 

(B7) 

The square bracket is H.c. near and at x = 1; so, by 
Lemma AS, 

1-+ C sin 2 b(x) cot TT(IX - m)(x - 1)m-a, (B8) 

where C is the limit if the square bracket as x -+ 1. 
Using Lemma 2, one has 

sin b(x) cos b(x) = L(x) + (_x_)m lex) 
p(x) x-I 

+ i Ci 
. + L ~. (B9) 

;=1 (x - 1)' i Xi - x 

Examining the leading terms of both sides, one 
deduces that either o(l) = TTOC or o(l) = 0 (mod TT). 

In the latter case, write next 

rf>(x) = (x - I ) ",-a+llrf> *(x), (BiO) 

4>*(x) == (x-m (x - lY)(X - 1)-1l sin 2 t5(x). (Bl1) 
p(x) 

Assuming for the moment that m - IX + ft < 0, 
we see from Lemma AS that 

(x - l)-(m-a<-/l)I(x) 

is H.c. near and at x = 1 and vanishes there. Then 
balancing both sides of (9) tells us that the same is 
true of (x - 1)-IL sin o(x). 

Now write 

cp(x) = (x - 1)m-a+3IL4>*(x), (B12) 

cp*(x) == (x-m (x - t )a)(x _ 1)-31L sin 2 o(x). (B13) 
p(x) 

(
U)iIYI+b 

h(uu') == k(lIu ' ) U
' 

ul-YI(u') - u-YI(u)( I)"(U)~( ( ') ( »! = u or u ' - a u a 1I 
u' - U u' 

= l(u
'
) - I(U)(!!.-)"[O'(UI)O'(U)]! 

u' - u u' 

(
U

'IYI 
- U

IYI
) + [leu') or leu)] u' _ u 

X u'-IYI(~)o[O'(UI)O'(U)]~ 
tt' 

(el) 

Here, y == 1 - (3, 1== uPL, 0'== u-Pp, and the two 
alternatives hold for 0 < (3 ~ 1 and 1 ~ (3 < 2 (i.e., 
y ;;::: 0 and y ~ 0), respectively. It is clear that both I 
and a are H.c. near and at u = 0, that 0'(0) == 1, 
and that, if A = 0 (as is being assumed), then /(0) = O. 

First, it will be shown that, as u -+ 0, 

fdU'h(UUI) -+ 0 (e2) 

if 0 < 0 < ft. One has indeed, by writing z' = u'lu, 

(e3) 

[1 [1 u'lyl _ uIYI(u)1i 
du'lh21 < const dU'u'Il-lyl I -; 

.0 .0 u - U U 

< const uo. (e4) 
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In an exactly similar way, it follows that 

fdU' Ih(uu')1 < ~(€), (C5) 

where ~ is independent of u and tends to zero as 
€ --+ 0. This proves the required statement. 

APPENDIX D: THE SINGULAR OPERATOR ks 

The procedure outlined in Sec. 5 [Eq. (128) et seq.] 
is given here in detail, the essential idea being due to 
Cottingham.25 A brief discussion is also given of 
none-L2 solutions of the integral equation. 

Consider the variable 

fJ = log u. (01) 

The interval ° < u < 1 maps onto ° < 0 < 00. 

Since 

fdU If(uW = fOdfJ I](OW, (02) 

where 
](fJ) = e-!8f(u[fJ]), (03) 

the relations (1) and (3) map the set of functions f 
belonging to L2(0, 1) onto the set] belonging to 
L 2(0, (0). Obviously, if k(fJ, fJ') is the kernel of an 
operator in L2(0 1), then 

k(fJ, fJ') = e-!8e-!8'k(u[fJ], u[fJ']) 

is the kernel of the corresponding operator in L2(0, (0). 
In view of this, consider 

kifJ, fJ') = e-!8e-!8'klu[fJ], u[fJ'J). (04) 

From (114) or (115), ks is actually only a function of 
y == 0 - fJ', and, in fact, if y = ° (fJ = I), 

k(v)-~-Y
s. - TT sinh ty , 

or,ify¥=O, 

kir) = i sinh <tyy) . 
TT sinh (ty) 

Now, consider the decomposition 

ks = g + k., 
where 

g(fJ, fJ') = ks(fJ + 0'), 

ks(fJ, fJ') = ks(fJ - fJ') - ks(fJ + fJ'). 

(05) 

(06) 

(07) 

(08) 

(09) 

This is the decomposition referred to in Eq. (128) of 
the text. 

The operator g is Hilbert-Schmidt (and is there-

fore compact) since 

loodfJ loodfJ' IkR(fJ + fJ')1 2 = loodfJ ioodY Iks(Y)12, 

(010) 
which is clearly finite for both (5) and (6). 

Regarding k s' it will now be shown that the inverse 

(1 - Aks)-l is bounded in L 2(0, (0) except on the 
exceptional line of Lemma 4, in accordance with the 
statement of the text. First, we need the following 
standard results. 

Lemma DI: Iff(fJ) is in L2(0, co), so is 

/(p) == (2/TT)!iOOdO sin pOf(O), (011) 

and, in addition, 

f(fJ) = (2/TT)! 1'" dp sin pf}/(p). (012) 

Lemma D2: Let key) be an even function and be in 
L 1(-00, (0) and letf(y) be in L2(0, (0); defineJby 
(11) and define k by 

k(p) = (2/TT)! L"'dy cos PY key). (013) 

Then, k is bounded, and the following hold: 

(2/TT)! f~ dO sin pfJ 

X (ioodfJ'[k(fJ - fJ') '- k(O + O')]}(O'») 

= (2TT)!k(p)J(p), (014) 

(2/TT)!L"'dP sin pfJ[(2TT)!k(p)/(p)] 

= ioodfJ'[k(fJ - fJ') - k(fJ + O')]f(O'). (015) 

Lemma Dl is on p. 70 of Ref. 26, and Lemma D2 
follows from p. 90 of this reference if we observe that 

LoodfJ'[k(O - fJ') - k(fJ + fJ')]f(fJ') 

= I: k(fJ - fJ')f(O') (016) 

iff is defined for fJ < ° by requiring it to be odd. 
These results imply that the problem of finding 

solutions f, in L2(0, (0), of the integral equation 

f(fJ) = c(O) + ~ l'" (k(fJ - fJ') - k(O + fJ'»f(O') 
TT 0 

(017) 

[with c in L2(0, co)] is completely equivalent to that of 
finding solutions!, in L2(0, (0), of 

!(p) = c(p) + A(2/TT)!k(p)J(p), (018) 
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where c is related to c by (11) [and hence is in 
L 2(0, co)]. 

Since k is bounded, there will be an L2 solution for 
every c in L2 if and only if the equation 

1 - A(2j7T)lk(p) = 0 (019) 

has no solution for 0 < p < 00. 

Now, returning to the special problem at hand, it 
is seen that k == k s is indeed even and is in Ll (- co, co). 
One has,27 if y = 0, 

(2)\ _ A 1 
7T cosh2 7Tp 

(020) 

or,if y ~ 0, 

(~)'k _ A 2 sin 7Ty 
7T - cos 7Ty + cosh 7Tp , 

(021) 

and, using these expressions, we can easily verify that 
(19) has a solution if and only if A lies on the excep
tionalline of Lemma 4 of the text. This completes the 
proof of the statements made in the text. 

Next, let us make a heuristic examination of the 
possibility that the equation n = b + kn has solutions 
not in L2 • This may be done by looking for solutions 
(not in L 2) of 

no(O) = L"dOlk.(o, O')no(O'). (022) 

If Eq. (019) has a solution p = peA), then, when P is 
real (i.e., when A is on the exceptional line), it is clear 
that there is a solution 

no(O) = const sin PO. (023) 

[This follows from the orthogonality condition 

t7T f'" sin pO sin PO' dO = t5(p - P).] (024) 

If A is now moved off the exceptional line so that 
P becomes complex, one expects sin PO to remain a 
solution of (D22) as long as the integral 

L""dO'k.(o, 0') sin PO' 

converges. This requires that 

IImPI < HI - y), 

(025) 

(026) 

and it may be shown that this is satisfied throughout 
the A place except on the cut of the function peA); 
this is the line - co ~ A ~ 0 or 0 ~ A. ~ 00 for 
y ~ 0 or y < 0, respectively (Figs. 2 and 3). 

Thus, we expect that the general solution of the 
equation n = b + Akn is, for fixed b in L 2 , 

(027) 

where n1 is in L2 (and has a cut along the exceptional 
line of Lemma 4), n2 is not in L2 (and has a cut along 
the line just mentioned), and c is an arbitrary param
eter. 

These results agree with those of Refs. 5 and 7. Of 
course, nothing has been proved rigorously about 
none-L2 solutions (here or in Refs. 5 and 7), and, of 
course, these solutions may not be the only ones. 

However, in the special case that A lies between the 
two lines mentioned above, an Nj D argument also 
suggests that there is indeed a I-parameter infinity of 
none-L2 solutions of (96) of the text and that these 
are the only ones (apart from the unique L2 solution) 
which give rise to allowed solutions F of the problem. 

To see this, consider the Nj D equations. In the 
text (Sees. 4 and 6) it has been shown that any D 
function has, for A ~ 0, the asymptotic behavior 

(028) 

with p an integer and c in the range Hf3 - 1) < c < 
tf3. It was shown that, if one requires Nand D to 
satisfy the NjD equations with (pju)lN in L 2 , then 
one must have p ~ O. However, an examination of 
the asymptotic behavior of D and X (Sec. 4) reveal 
that, for A > 0 or < 0, for 0 < f3 ~ 1 or 1 < f3 < 2, 
respectively, one can have the equations satisfied in 
addition for p = -1, provided the L2 restriction is 
dropped. [Instead of being in L2 , (pju)lN is not in 
Lq for some q in the range 1 < q < 2.] 

Looking now at Eq. (161) of the text, we find that, 
if there are no coincident zeros, p = -1 implies that 

K = 2X + 1. (029) 

In particular, if X = 0, K = 1; hence, we deduce that 
the X = 0 equation 

n = (pju)lL + J kn (D30) 

has a I-parameter infinity of none-L2 solutions 
(corresponding to the I-parameter infinity of allowed 
solutions with K = I-we are assuming here that 
KO = 0 in Theorem 10 of the text). 

Since values of A. between the lines mentioned above 
can all be attained by redefining L ~ AL, with the 
new values of A in the range 0 < A < Amn>:: or 
Amin < A < 0 [for 0 < f3 ~ 1 or 1 < f3 < 2, respec
tively}, this substantiates the statement just made. We 
notice that the other half of the allowed range 
(Amin < A < 0 and 0 < A < Amax, respectively), 
where the NjD argument yields no none-L2 solution, 
corresponds always to A on the line where sin PO is no 
longer a solution of (22). This gives us confidence 
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that the I-parameter infinity of none-L2 solutions Lemma E3: Let S be some positive function, and 
found by the N! D approach is indeed the same as let K satisfy 
those found from the Fourier transform method just 
given. 

APPENDIX E: GOOD BEHAVIOR OF N 
AND D FUNCTIONS 

Here it is shown how to prove Lemma 6, parts (b) 
and (c) of the text, and also the statement in part (d) 
that R is in L2 • 

First, some results are needed about the general 
function spaces L'P(O, 1), i.e., sets of functions such 
that 

fdU If(u)iP 

exists, with 1 ~ P < 00. We shall just write L'P for 
(0, 1). 

Lemma E1: IffE Lq , thenfEL n for all n in the 
interval I ~ n ~ q. 

Proof: 

(El) 

so Ifi" is L(q/n)' Obviously, the function g(u) = 1 is 
in L", for all oc, hence, in particular for the oc such that 

!+_l =1. 
oc q/n 

(E2) 

Hence, by a standard result (Ref. 22, p. 42) the 
integral 

II'lfl n 

exists,which shows that f E Ln' 

Lemma E2: Let 

fdU' IK(uu')l m < const (E3) 

for 0 < u < 1 and some m such that 1 < m ~ 2, 
and define n by 

11m + lIn = 1. (E4) 

Then, for any q ~ n (~ 2),jE Lq implies 

Ir du' K(uu')f(u') I < const. (ES) 

Proof: Use Lemma El and the standard result 

(E6) 

fdu'(:~:JIK(U' u')j'Plr < const, 

du -- IK(u, u')1 < const, i1 (S(U'»)" 
o S(u) 

for some p, r, and s such that 

1 < r <p ~ 2, 

I!r + lIs = 1 

(hence, s ~ 2 and 1 < p!r < 2). Define q by 

IIp + l!q = 1 

(hence s ~ q ~ 2). ThenfE Lq implies that 

fdU'K(UU')f(U') 

is in L •. 

(E7) 

(E8) 

(E9) 

(EIO) 

(Ell) 

(E12) 

Proof: We follow the idea of Ref. 23, making use of 
the inequality (E6) at every step. The theorem is 
proved if it can be shown that f E Lq implies that 

sup tdu (ldu 'g(u)K(uu')f(u') < 00, (E13) 
Ilyll,=l Jo Jo 

where 

IIglir == fdLl Iglr. 
Write the integrand as 

(
grIV(u) S(u) K1/r(UU'») 

S(u') 

(EI4) 

X (gl-rIP(u) ~~:; Kl!S(UU')f(II'») , 

so that the integral is bounded by 

[I duI du' Ig(u)lr (:«;,~r KV1r(uu')J/P 

X [f duf du' Ig(u)IQO
-
r,

p
) (~~:Dq 

X KQls(uu') If(U'WJ/q. 

The first term is bounded (since Ilgll
ll 

= 1) by 

const sup Idu,(S(tI»)P K'P/r(uu'). 
O<u<l S(u') 

For the second, define u and t by 

u = sjq, 

lju + 1ft = 1, 

(EI5) 

(EI6) 
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so that 
tq(1 - r/p) = r. (EI7) 

Then, since IlfIIg and Ilgllr are finite, the second term 
is bounded by 

const sup du Ig(u)I Q(1-r/p) -- KoJ/S(uu') [J (S(U'»)Q ] 
0<,,'<1 S(U) 

~ const sup JdU(S(U'»)" IK(uu')I. (E18) 
0<,,'<1 S(u) 

This completes the· proof. 

Using the preceding results, we can prove the 
following. 

Lemma E4: Let m be some fixed number, 1 < m < 
2. Let 15 take on the values Qlllill ~ 15 ~ QIll:1X (with 
Qlllin ;;:: 0), and suppose there exists a continuous 
function a(Q), with 

a(Qmin) = (2/m) - 1, (EI9) 

and observe that the square bracket is certainly in L •. 
Now, use Lemma E3 again, with K = (u/u')J2k, P = 
r 1 == (2/m), r = (r1/m) [= (21m2)], and S(u) = ucls• 

Then, with a = (21m2) - 1, conditions (21) and (22) 
are again identical with (7) and (8); hence, the lemma 
tells us that u~'(k2f)(u) is in Ls where s = (1 - tm2)-1. 

We may continue in this way until we deduce that 
u~max(kn-1f)(u) is in Ls' where s = (1 - tm(n-ll)-l is 
sufficiently large that r (= 2/m(n+I» is less than m. 
Then, finally, Lemma 3 [with K = (ulu')~m3xk and 
choosing a = ° so that condition (21) is identical 
with (7)] implies that u~m3x(knf)(u) is bounded. This 
proves the lemma. Finally, this result can be used to 
make a statement about integral equations. 

Lemma £5: Let k satisfy the conditions of Lemma 
E4, let b(u) be in L 2 , and let Ibl < const !t°m• x. Then, 
any L2 solution of 

f = b + fdU'k(UU')f(U') (E27) 

a(Qmax) = 0, 

such that the kernel k satisfies 

(E20) satisfies If I < const u-~max. 

fdU' I (;,f C,)~k(UU')r < const, (E21) 

fdU /(:]" (:,rk(UU')/ < const, (E22) 

for some c(Q). For any function j(u) and any integer 
n > 0, defil)e 

(k l1f)(lI) = fdUn-lk(LI, U'l-l) fdUn-2 

X k(Un_l, Un_2) .•. fdU1k(1I2 U1)f(U I). (E23) 

Then, for every fin L2 and some n, 

(k"f)(u) < const u-dmax, 

Proof' First, observe that 

l/omill(kf)(u) = f dU 'CJlllillk(1I11')U'OmiI1(U') 

(E24) 

(E25) 

and that UOminJ is certainly in L2 iff is. [n Lemma 3, 
take K = (U/ll')Olllillk, P = 2, r = p/l11, and S(u) = 
ue/s• Then, if we choose a = (21m) - 1 (= r/s), 
conditions (21) and (22) are identical with (7) and (8); 
then, Lemma 3 tells us that ulJmin(kj)(ll) is in Ls where 
s = (1 - tm)-l. 

Next, choose 15 = 152 (> blllill ) such that it is possible 
to have a = (2/m2) - 1, write 

U02(k'lj)(II) = fdU' C:J2 k(uu')[II'02(kj)(u'»), (E26) 

Proof: Eq. (E27) implies that 

uomaxf(u) = uomax[(kb)(u) + (k 2b)(u) + ... (k n- 1b)(u)] 

+ udmax(kl1f)(u). (E28) 

Lemma E4 says that the last term is bounded, so 
consider the terms involving b. Since [uOmaxb(u)] is 
bounded, it is in Lp for all p; hence, we may use 
Lemma E2 to deduce that 

udmaX(kb)(u) = du' - k(UII')[U'dmaXb(u')] 11 (U )lJ max 

o U' 

(E29) 

is bounded [with a = 0, condition (E21) is identical 
with condition (E7)]. Then, we may use the lemma 
again to show that uOmax(k2b)(u) is bounded, and so 
on, for all the terms involving b. 

Now, we apply this general result to the problem 
at hand. The following will be proved. 

Lemma £6: For ° < (3 < 2 and A = 0, any L2 
solution of Eq. (96) of the text satisfies 

lu1IY1n(u)! < const, (E30) 

where y = 1 - (3. 

Proof' Lt is clear that uil)'lb is bounded. It will be 
shown that k satisfies the conditions of Lemma E4 
with bmin = 0 and 0Hmx = 1Iy/. 
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In the notation of Appendix C, write 

k = k1 + k2' (E31) 

k
1
(u, u') == leu') - l(u)(~)-h [a(u')a(u)]~, (E32) 

u' - u u' 

u'Y-uY ! l 
k2(u, u') == l(u')(u'u)- Y[a(u')a(u)]. (E33) 

u' - u 

Because of the standard inequality 

(II! + glm)l/m S (IIf,mf
m 
+ (Ilglm)l/

m
, (E34) 

is bounded if 

(0 + iy) - f-l < c < I + (0 - ty) 
or 

(0 - 11') - f-l < C < 1 + (0 + iy), 

for y ~ 0 and y SO, respectively, and that 

is bounded if 

-(0 - iy) sac < 1 + f - (0 + iy) 

(£42) 

(£43) 

(£44) 

(E45) 

it will be enough to verify that k t and k2 separately or 
satisfy the conditions of Lemma E4, with the same -(0 + iy) S ac < 1 + f - (0 - iy), (E46) 

choice of m, a(o), and c(o). 
For k1' we have 

Idlll(:T(:JktCUU')\ 
< constfdu(:J-c-lY lu' - ul/-1 

(11'" 
= const U'" Jo dYl-C-~Y Iy - 11"-\ (E35) 

which is bounded if 

for the two cases. These inequalities are compatible 
for the two cases if 

«(j - iy) < 1 + f - (0 + iy) 
a < or 00 

1 + (0 - ly) - (0 + ly) - f-l 
(E47) 

(for 0 + iy > f-l or S f-l) and 

(0 + iy) 1 + f - «j - ty) 
-----'-----=..:..-'-- < a < or 00 
1 + (0 + iy) (0 - iy) - f-l 

(E48) 
(for 0 - iy > f-l or S f-l). 

b - iy < c < 1 + 0 - iy. (E36) It is now straightforward (though very tedious) to 

Similarly, choosing 11m = 1 - (f-l - f) with 

0< (f-l - f) < 1, 
we see that 

(1 l(u)ac(lI);; I'" Jo du' u' u' k1(uu') 

(lit< < const 1I1-(1-Il)m Jo dyy-m(Hac-tY) Iy - lI m(II-1) 

(E37) 
is bounded if 

-(0 - ty) S ac < 1 - f-l + f - (0 - iy). (E38) 

These inequalities are compatible if 

_-:.(_0 _-.....;l=y.;...) _ 1 - f-l + f - (0 - iy) < a < or 00, 
1 + (0 - iy) - (0 - iy) 

(E39) 

for 0 > iy and 0 S iI', respectively (recall that 
-1 < y < 1 and 0 ~ 0). 

For k 2 , we may similarly use 

u'Y - uY .1 
Ik21 < u'lI(u'u)-~r (E40) 

u' - u 
to deduce that 

fdU leT (;,yk2(U, U')I (E41) 

verify that, provided we choose f-l - f < (1 - lyDI 
(2 - Iyl), the bounds for c and a are compatible for 
k1 and k2 and that one may choose a (0 = 0) = 
(21m) - 1 and a (0 = i lyD = O. This ends the proof 
of Lemma E6. From the above result, it is easy to 
deduce the following. 

Lemma E7: For 0 < fJ s 1 and A = 0, u-fJN is 
bounded. For 1 S fJ < 2 and A = 0, u-1Nis bounded. 

Proof: Since n = (plu)iN, one has 

(E49) 

for 0 < fJ s 1 and 1 S fJ < 2, respectively. It has to 
be shown that the vanishing of (J as u -+ 1 causes no 
infinity in this expression. One has 

(u-p or u-1)N(u) 

fJ 1 ii, H(u, u') [Il!"! I = (u- or u- )8(u) + du u 'n(u »), 
o [a(u'»)! 

(E50) 
where 

H(u, u') = (U,)!!YI (a(u'»)! k(uu') 
u a(u) 

u'-YI(u') - u-Yl(u) ( , Y ( , 
= u or u ) (J u). (E51) 

u' - u 
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In the course of proving Lemma E6, it was shown 
that the kernel [(uju')!lylk(uu')] satisfies the condition 
of Lemma E2; Hj[O'(u')]! differs from this only in that 
the bounded function [O'(u')O'(u)]! is replaced by the 
bounded function [O'( u')]!; hence, HI [O'( u')]! also 
satisfies the condition of Lemma E2, and so we deduce 
that the integral in (E50) is bounded. This completes 
the proof. 

Next we want to prove that p-fJN or u-1N is H.c. 
in 0 < u < 1. This is a direct consequence of the 
following [using (E50)J. 

Lemma E8: Let X(u) be bounded and defined 
H(u, u') by (E51). Then, for 0 < (J < 2 and A = 0, 

fdU'R(UU')X(U') 

is H.c. in 0 < u < 1, with Holder index A. equal to 
fl + E if r = 0 or equal to € + min (fl, Irl) otherwise, 
with E> O. 

Proof: It is obviously enough to establish the 
inequality 

fdU' IR(ulu') - R(u2u')1 < const lUI - u21),· (ES2) 

Let us write 

R = A + B, (ES3) 

A = leu') - J(u) ( ') _ 0' U , 
u' - u 

(E54) 

u"YI - u 'y' B == u'-iyi[l(u') or l(u)]O'(u'), (E55) 
tt' - U 

where the first and second alternatives will always 
refer to {J ~ 1 and {J 2 1, respectively. The inequality 
(ES2) is proved for A in Ref. 17, p. 47. For B we 
follow p. 79 of that reference. We define 

1== IB(ulu') - B(u2u')I, (E56) 

~ == U2 - 111, (E57) 

u == til, (ES8) 

a == Irl, (ES9) 

and write 

f = ft-2'" + f + J"+2"'. (E60) 
o 0 u+2L\ u-2A 

(If u - 2~ < 0 or u + 2~ > 0, the first or second 
terms will be absent, and there will be some obvious 
modifications of the argument.) 

Consider the last term. It has the bound 

1

,,+2£1. 1u+2A 
du'I(uI, U2, u') < const du' 

u-2A u-2A 

X u,-a(lu' - ula
-

I + Iu' - (u + ~)Ia-I)(u'/I or u/l), 

(E61) 

which may be seen on making the substitution 
y = u' ju to be bounded by ~J. as required. 

For the other two terms, use the identity 

u,a - ua u,a - (u + ~t 
u' - u u' - (u +~) 

_ ua - (u + ~t [(u + ~t - uta]~ 
= - + ~~~~--~--

u' - u [u' - u][u' - (u + ~)J 
(E62) 

The first term gives a contribution to S~+2.1. du'l 
bounded by 

~a du' -~--- (u' or u)/I, il '-a 

u+2A U - U 

which may be shown to be bounded by ~a log ~ or 
~/I (for a S fl and a > fl, respectively). The contri
bution to S~-2A may be treated similarly. The second 
term gives a contribution to f}'+2A du'l bounded by 

const ~ du '-~--Iu' - (u + ~W-l (u' or u)/I i
l ,-2 

u+2A U - U 

< const~ail du' ~,-a (u' or u)/I, (E63) 
u+2A u - a 

which is the same as the above expression, and 
similarly for its contribution to f~-2A. This completes 
the proof. 

Knowing that u- fJ N or u-l N is H.c., it is now 
possible to investigate the corresponding D function. 
The procedure is slightly different for {J ~ 1 and 
{J > 1, and we just give the argument for the first 
case. 

For (J ~ 1, we have 

u-fJN = u-fJB + f du R(uu')[u'-fJN(u')]. (E64) 

The first term vanishes at u = 0, and, by decomposing 
the integral into two principal-valued integrals and 
using Lemma AS, it may be seen that the same is true 
of the integral (remember that A = 0 throughout). 
Hence the quantity u- fJ N is zero at u = O. 

Now, consider 

1 il [u'-PN(u')]O'(u') 
D(II) = 1 - - du', + (pole terms). 

'1T 0 U - u 
(E65) 
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From Lemma A5, D has the properties listed in 
parts ( a) and (b) of Lemma 5 of the text. J f D does not 
vanish at the end points u = 0 and u = 1, then part (c) 
of this lemma will also be satisfied. If D does vanish, 
further work needs to be done. The procedure will be 
given in detail only for the more difficult case u = O. 
We need the following result, which may be proved 
by using the decomposition (E53) and a similar one 
for fl. 

Lemma £9: Let II be either equal to H as defined 
by (E51) or to 

~ u,Pl(u') - uPl(u) ,_p ( ') 
H= u au. 

u' - u 
(E66) 

Then, for 0 < p ~ 1 and A = 0, any positive b < 1 
and any bounded function X, 

fdU'h(U, U')(~J X(u') < const UHf (E67) 

(all IE > 0), where A = min (fl, b). 
We also need the extension of Lemma E8 to fl, 

which may be proved in the same way as that lemma. 

Lemma E1O: Let X be bounded and define fl by 
(E66). Then, for 0 < (3 < 1 and A = 0, 

fdu'fl(tt, u')X(u') (E68) 

is H.c. in 0 < u < 1 with Holder index A equal to 
IE + min (fl, fJ), with IE > o. 

We now proceed as follows. When D vanishes at 
u = 0, then, by substituting into the integral equation 
for N the identity 

u' 1 
(E69) 

uu'-u u'-u tt 

we deduce that 

Nl(U) = B1Ctt) + J flett, u')N1(u'), (E70) 

where Nl == N/u, and 

x (d. k. ) Bl = I c;--'- + c;--'- , 
1=1 II - Ci II - Ci 

(E71) 

where Ci == bi l
. 

Then, by repeated use of Lemma E9 (with b = 1 -
(3 - fl, 1 - (3 - 2fl, ... ), we deduce that Nl is 
bounded. Then Lemma E to tells us that Nl is H.c. in 
O<u<l. 

If N1(0) =F 0, then, by using 

1 lId' u'-PN1(u')a(u') (I ) = - u + po e terms 
1r 0 tI' - u 

(E72) 

together with Lemma AS, we again have a behavior 
of D near u = 0 which is in accordance with Lemma 
5, part (c), of the text. 

If N1CO) = 0, then, by using identities like (E69), 
one can show that 

Nl == (u - cX)N1 , 

Dl = (u - cx)Dt 

(E73) 

(E74) 

satisfy Nj D equations (E50) and (E65) with only 
(X - 1) pole terms. Now, the whole cycle from Lemma 
E7 onwards may be repeated, until either Dl (0) or 
N1(0) is nonzero, or else we arrive at the X = 0 
equations (no pole terms). In the latter case, each new 
cycle produces a new linearly independent L2 solution 
of the homogeneous form of Eq. (96); hence, from 
Theorem 7, the cycle will eventually terminate [by 
D 1(0) or N1(0) failing to vanish]. Thus, in all cases we 
end up with the behavior of Lemma 5 of the text, as 
required. 

The other cases [i.e., the end point u = 1, the case 
I < P < 2, and the proof that (pju)!N is in L2 in part 
(d) of Lemma 5] may all be dealt with by similar 
arguments. 

APPENDIX F: GENERAL N/ D DECOMPOSITION 

In this appendix the most general Nj D decom
position corresponding to a given amplitude is 
exhibited explicitly, so that the number of param
eters appearing for any particular case can be seen 
by inspection. This is necessary for Sec. 7. 

(a) Case where K 2 -1. Since K = 2X - 2q - P 
[Eq. (161) of the text], it is clear that there is a decom
position No! Do with q = 0, P = Po = 0 or 1, and 
X = Xo = !K or t(K + 1) (according to whether K 
is even or odd). Since q = 0, the rational function «) 

of Sec. 4 can have no zeros, and it must therefore 
be completely determined by the pole positions 
bl ••• b x' Hence No! Do is the only decomposition with 
q = 0 and p = 0 or 1 [apart from the normalization 
factor if Do(O) = 0]. Remembering that one always 
has q 20 and p 2 0, we see that the most general 
N(D decomposition for any X > XO is therefore given 
by N = 'Y No, D = 'Y Do with'Y as follows. 
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(i) If Do(O) = 1 and D(O) = 1, 

q 

IT (1 - x/ai ) 
~. = ~i=~~l ________ _ 

q ~ X - Xo· x (F1) 

IT (1 - x/hi) 
i~xo+l 

(ii) If Do(O) = 1 and D(O) = 0, 

Q 

IT (a i - x) 
0/ = AX ...:i=~..o.l ___ _ q ~ X - Xo - 1. x 

(F2) 

IT (hi - x) 
i~Xo+l 

(iii) If DoUJ) = ° and D(O) = 0, 

q 

II (a i - x) 
0/ = A --::.:i~o..:l,--_____ _ 

q ~ X - Xo· (F3) 

(iv) It is impossible to have Do(O) = ° and D(O) = 1 
without choosing one of the bi to be zero, which we 
agreed not to do (in Theorem 6). 

(b) Case where K < -1. In this case there is a 
unique decomposition No/Do with X = Xo == 0, q = 0, 
and P = Po == 14 The most general decomposition 
with X> ° is N = o/No and D = o/Do, with 0/ given 
by exactly the same expressions as above for the cases 
(i), (ii), and (iii) [(iv) not being allowed]; but the 
inequalities on q are now 

(i) q ~ X + tiKI or q ~ X + HIKI - 1), 
(ii) q ~ X + tiKI - 1 or q ~ X + HIKI - 1) - 1, 

(iii) q ~ X + tiKI or q ~ X + HIKI - 1), 

where the alternatives for K are even and odd, 
respectively. 

The number of parameters appearing for any values 
of K, X, and q can now be read off from the appropriate 
expression. 
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The quantum theory of linearly polarized light propagating in a I-dimensional cavity bounded by 
moving mirrors is formulated by utilizing the symplectic structure of the space of solutions of the wave 
equation satisfied by the Coulomb-gauge vector potential. The theory possesses no Hamiltonian and no 
Schrodinger picture. Photons can be created by the exciting effect of the moving mirrors on the zero
point field energy. A calculation indicates that the number of photons created is immeasurably small 
for nonrelativistic mirror trajectories and continuous mirror velocities. Automorphic transformations 
of the wave equation are used to calculate mode functions for the cavity, and adiabatic expansions for 
these transformations are derived. The electromagnetic field may be coupled to matter by means of a 
transformation from the interaction picture to the Heisenberg picture; this transformation is generated 
by an interaction Hamiltonian. 

I. INTRODUCTION 

We describe in this paper the quantum mechanics 
of light propagating in a I-dimensional cavity formed 
by two ideal, infinite, parallel, plane mirrors which 
move with arbitrary externally prescribed, timelike 
trajectories x = ql(t) and x = Q2(t). By "ideal 
mirrors" we mean mirrors which are perfectly con
ducting and whose effects may, therefore, be described 
by means of appropriate boundary conditions on the 
electromagnetic field at the ends of the cavity. 

Although the quantization procedure we use can be 
applied to other types of Bose fields with time
dependent boundary conditions, in particular the 
scalar field, only the case of the electromagnetic field 
has any obvious practical importance. The theory we 
give is, for example, relevant to the understanding of 
the operation of lasers with moving mirrors, a subject 
which has received some attention in the literature.1- 3 

This paper, for the sake of simplicity, treats only the 
case of linearly polarized light, so that the vector 
nature of the field does not playa very prominent role. 

Most of this paper is concerned with the free field. 
The term "free field," as used here, means that the 
only interaction of the light is with the cavity mirrors, 
not that the field is actually free. 

As we shall show, even the free quantum field has 
some rather remarkable properties: 

(1) There exists no Hamiltonian to describe the 
time evolution of the field and, consequently, there 
exists no Schrodinger picture. 

(2) Photons can be created from the vacuum by 
the exciting effect which the moving mirrors have on 
the zero-point energy of the field. Subject to the 
restriction of continuous mirror velocities, the number 
of photons created is not divergent. It is, in fact, 
ordinarily very small. 

(3) We also show how the usual standing-wave 
modes characteristic of a fixed cavity may be general
ized in a natural way to a cavity with moving mirrors 
by means of Ii group of automorphic transformations 
of the wave equation. 

II. THE BOUNDARY CONDITION 

We begin by formulating the theory classically. 
Assuming that the electric field E(x, t) is polarized in 
the z direction, we may write 

A = Ak, 

E = Ek = - oA k at ' 

B I A oA • B' = cur = - ax ) = ), 

(1) 

where i, j, k are the usual triad of unit vectors, B is 
the magnetic field, and A is the vector potential in 
the Coulomb gauge. According to Maxwell's equa
tions, A, E, and B all satisfy the simple wave equation 

(2) 

where we have chosen units in which the velocity of 
light (c) equals one. For fixed mirrors, the usual 
continuity requirement on E is that E = 0 at the 
mirrors. For moving mirrors, the natural generaliza
tion is that the electric field vanishes at the mirrors in 
the Lorentz frames in which the mirrors are instantane
ously at rest. We now show that this condition is 
satisfied if the condition that A vanishes on the bound
aries is satisfied. We require, therefore, that 

(3) 

2679 
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Consider now a Lorentz transformation parametrized 
by v = vI. The transformed electric field is 

E' = y(E + v x B) = -y - + v - k. (
OA OA)A 
ot ox 

(4) 

When v is put equal to qi(t), i = 1,2, and A is evalu
ated for x = qi(t), then oAjot + voAjax is just the 
directional derivative of A along the mirror trajectory 
and, hence, is identically zero. 

Since the vector nature of A plays no role in the 
subseq uent formulation of our field theory, we 
generally use the symbol cP instead of A in discussing 
the abstract properties of the theory, and we reserve 
the symbol A for particular applications to electro
magnetism. Also, we generally consider ,p to be 
dimensionless. 

After we perform the quantization of the field, 
cP(x, t) will become the field operator of the theory 
(really an operator-valued distribution). Because of 
the boundary conditions (3), all quantum fluctuations 
of the field are assumed to be suppressed at the 
mirrors. This, of course, cannot be expected to occur 
with ordinary real mirrors, which do not behave at all 
ideally at very high frequencies (for instance, in the 
X-ray range). Nevertheless, it is reasonable to apply 
the results of our quantum theory to cavities which 
are approximately ideal at optical frequencies and 
below, provided that the physical observables one 
calculates do not depend appreciably (particularly in 
a divergent way) on contributions from the very high 
frequency modes. It is fortunate and not at all 
a priori obvious that it is possible to formulate a weII
defined quantum theory which satisfies these con
ditions within the boundary-condition idealization 
and the additional idealizations that the mirrors have 
precisely defined trajectories and that there be no 
radiation reaction on the mirrors. 

It is an immediate consequence of the vanishing 
boundary conditions on ,p(x, t) that, except for the 
case of fixed mirrors, the quantum theory we are 
constructing does not possess a Hamiltonian. The 
proof does not depend on whether ,p(x, t) is a fr.ee 
or an interacting field. Suppose, by way of contradIC
tion, that there were a Hamiltonian. This would imply 
the existence of a unitary time-translation operator 
Vet, to) with the property 

,p(x, t) = V+(t, to)cP(x, to)U(t, to)· 

However, if we require the point (x, to) to lie on a 
mirror trajectory, then ,p(x, to) = 0 by the boundary 
conditions, and it is impossible to get a nonzero value 
of ,p(x, t) by a unitary transformation. 

It follows as a corollary that no SchrOdinger 
picture exists for the moving mirror system. 

The same sort of argument can be used to show that 
no momentum operator exists. This is true even for 
the case of fixed mirrors. 

III. SYMPLECTIC STRUCTURE OF THE SPACE 
OF CLASSICAL SOLUTIONS 

Since the wave equation (2) is linear, it will be 
satisfied by expectation values of the field operator in 
any given state. Therefore, it is to be expected that the 
structure of the space of classical solutions of Eq. (2) 
will be important in constructing the quantum theory. 
These solutions are known to have the general form 

g(x, t) = gl(t - x) + g2(t + x). (5) 

The wave equation is second order in time and, 
viewed as an initial-value problem, its solutions are 
specified by giving values for both the field and its 
first time derivative along anyone spacelike curve in 
the (x, t) space. For simplicity, we generally specify 
initial conditions along a constant-time line. 

We now define the vector space S to consist of all 
real solutionsf(x, t) of Eqs. (2) and (3) for whichf 
and of/at are square-integrable over x for arbitrary 
fixed time. Iffl(x, t) andf2(x, t) are any two elements 
of S, we define their bracket product to be 

iq2 (t) a 
{Il I f2} = f2(X, t) - flex, t) dx, 

Ol(t) at 

B a a 
hath~h&h-hath. W 

The value of the bracket product is independent of 
time; its time derivative may easily be shown to vanish. 
Because of the existence of the anti symmetric form 
{fll f2} = -{f21 fl}, S forms a symplectic space in a 
natural way. The form {fl I f2} is nondegenerate; that 
is, for every fleX, t) ¢ 0, there exists an!2(x, t) such 
that {fl I f2} ~ O. To prove this, definef2 by its initial 
conditions at time to in such a way that 

except possibly very close to the mirrors, and 

a 
- f2(X, to) = -ft(x, to). 
ot 

Then {fl \ !2} is positive definite. 
The expression 
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corresponding to the classical field energy, is not 
conserved when one has moving mirrors. Physically, 
this occurs because of the Doppler shift undergone by 
light while being reflected. 

The elements of S obey the equation 

iq2(t') '§ 
f(x, t) = D(x, t; x', t') -,f(x' , t') dx', 

ql(I') at 
(7) 

where D(x, t; x', t') is called the propagator or the 
commutator function and possesses the following 
properties: 

(a) D(x, t; x', t') satisfies the wave equation and 
the boundary conditions in both the unprimed 
and primed variables. 

(b) D(x, t; x', t') = -D(x', t'; x, t). 

(c) D(x, t; x', t) = O. 

(d) 0
2

2 
D(x, t; x', t')! = :~2 D(x, t; x', t')! at I=t' ut t=I' 

(8) 

(9) 

= L D(x, t; x', t')/ = O. (10) 
otat' 1=1' 

(e) i D(x, t; x', t,)1 ot 1=1' 

= -~ D(x, t; x', tl)1 = b(x - x'). (11) 
at' 1=1' 

If we choose to specify f by giving initial conditions at 
a particular value of t', we see that Eq. (7) provides 
the general solution of the initial-value problem. 

The construction of the commutator function 
proceeds by the method of images as follows. For 
I-dimensional light propagation with no mirrors 
present, the commutator function is easily shown to 
be 

DF(x, t; x', t') = HE(1 - t' - x + x') 

+ E(l - t' + x - x')], (12) 

where E is the usual sgn function 

E(U) = 1, U> 0, 

= -1, U < 0. (13) 

DF is equal to +! or -!, depending on whether 
(x, t) is in the forward or backward light cone of 
(x', t'), and is zero for spacelike separations. The 
construction of the propagator for arbitrarily moving 

FIG. I. The propa
gator D(x, t; x'. t') 
for light contained in 
a cavity bounded by 
moving mirrors. The 
cavity is located be
tween the mirror tra
jectories ql(t) and 
q2(t). The point (x', t') 
and its image points 
are indicated by 
heavy dots. The prop
agator is equal to 
+i or -~ in the 
rectangles marked 
(+) or (-) and is 
zero elsewhere. The 
image mirrors are 
indicated by dashed 
lines. 

mirrors is of the form 

T 

D(x, t; x', t') = ~(-I)iDF(x, t; x;, t;), (14) 
i 

where (x;, t;) includes (x', t') and also an infinite set 
of image points chosen so as to preserve the boundary 
conditions at the mirrors. A diagram showing 
D(x, t; Xl, t') for a particular fixed value of (x', t') is 
given in Fig. 1. Both (x', t') and its image points are 
indicated by heavy dots. Inside the rectangles marked 
(+) or (-), the propagator has the value +i or -i. 
Elsewhere, the propagator is equal to zero. The image 
mirrors, along which vanishing boundary conditions 
are also satisfied, are indicated with dashed lines. The 
construction of the D function can always be made, 
provided only that the mirror trajectories are every
where timelike. The reader should try visualizing the 
propagator in terms of square pulses moving back and 
forth in the cavity and suffering reflections at the 
walls. 

Consider now a set of vectors IA,,} and IBn}, n = 
1, 2, ... , 00, in S with the following properties: 

{Am\An}=O, 

{Bm IBn} = 0, 

{Am IBn} = brun° 

(15) 

If every member of S can be expressed as a linear 
combination of the IAn} and the IBn}, then these 
vectors are said to form a canonical basis for S. We 
now show by constructing an explicit example that it 
is indeed possible to span S with a canonical basis. 
Let fn(x) be a complete set of real orthonormal 
functions on the interval ql (0) to q2(0) relative to the 
inner product 
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and obeying suitable boundary conditions, for 
instance,fiql(O» = fn(qz(O» = O. Now define 

L
a2 CO) 

An(x, t) = D(x, t; x', O)ln(x') dx', 
aICO) 

Bn(x, t) = _La.co) aD(x, t; x', t') I In(x') dx'. (16) 
al (0) at' 1'=0 

Since the functionsfn(x) are complete, arbitrary initial 
conditions at t = ° can be expanded in terms of them. 
Hence, by Eq. (7), the functions An(x, t) and Bn(x, t) 
do form a basis for S. The fact that this is a canonical 
basis is easily established by evaluating the bracket 
products at t = O. 

Given a canonical basis, we may now write an 
arbitrary vector in the space in the form 

00 

If} = LYn IAn} + Zn IBn}, (17) 
n=l 

where the Yn and Zn are real constants. Taking matrix 
elements of Eq. (17) with the various basis vectors 
gives 

Yn = -{Bn If}, 

Zn = {An If}, 

so that we can write 

II} = 11Bn}{An I I} - IAn}{Bn If}· 
n 

(18) 

(19) 

symplectic operators and form a group called the 
infinite symplectic group. Symplectic operators are 
used for transforming from one canonical basis to 
another. It is clear that if the set IAn}, IBn}, n = 1, 
.. " 00, forms a canonical basis, so does the set 
UlAn}, U IBn}. 

IV. QUANTIZATION OF THE FIELD 

We now perform the algebraic part of the program 
of quantizing the field, using a method developed by 
SegaJ.4 We define a mapping :R from vectors in S onto 
Hermitian operators in the Hilbert space K of physical 
states. The space K, of course, is yet to be defined. 
The mapping is defined to have the property 

[:R(fl), :R(f2)] = -i{fl If2}' (23) 

Suppose we pick a canonical basis An(x, t), Bn(x, t) 
in S. Then we define 

:R(An) = Pn' 

:R(Bn) = qn, (24) 

from which follow the canonical commu~tion 

relations 

[Pn' Pm) = 0, 
[qn, qm) = 0, 

[Pn' qm] = -ibmn · 

(25) 

We can now recognize the important operator relation For arbitrary fin S, we now have 

L IBn}{A,,1 - IA"}{B,,I = I, (20) 

" 
where I is the unit operator in the symplectic space. 
By writing Eq. (19) in the function language and -
comparing with Eq. (7), we can see that Eq. (20) is 
equivalent to the relation 

L B,,(x, t)An(x', t') - A,,(x, t)Bn(x', t') 

5t(f) = 5t(~ IBn}{An If} - IAn}{B" If}) 
= 1 [-{II A"}q,, + {II Bn}p,,] 

" 
= {II ~ B"Pn - A"qn} 

= {II r/>}, (26) 

n 
= -D(x, t; x', t'). (21) where we have introduced the field operator r/>(x, t), 

defined as 
Let us now discuss more generally the subject of 

linear operators in S. If V is any such operator, we 
define the adjoint of V by the equation 

{II V Ig} = -{gl VIP Ij}, (22) 

where If} and Ig} are arbitrary elements of S. We 
have used the notation V'I' instead of V+ to emphasize 
that this adjoint is different from the usual Hilbert
space one. For instance, VV'I' is not necessarily a 
positive operator; in fact, {II VV'I'If} = 0 for all If}. 
The identity (VW)'I' = W'I'V'I'may be readily verified 
by using a basis expansion of the operators V and W. 
An important class of operators are those obeying the 
relation UU'" = U"'U = I. These operators are called 

(27) 
n 

Note that, with this definition, by the use of Eq. (21), 

[r/>(x, t), r/>(x', t')] = -iD(x, t; x', t'). (28) 

In particular, the commutator is zero for spacelike 
separations, a fact which is an important requirement 
for relativistic causality. Moreover, because of Eq. 
(11), 1> and 7T = a1>/ot satisfy a b-function commuta
tion relation at equal times. 

The inverse to the mapping :K may be expressed by 
the formula 

I(x, t) = -i[:R(f), 1>(x, t)]. (29) 
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The field operator cf> is required to be independent 
of the particular canonical basis in which one chooses 
to expand it. This means that the basis vectors An' Bn 
and the operators Pn' qn must transform con trag red i
ently. 

V. THE NUMBER OPERATOR 

To complete the quantization program, we want to 
define the Hilbert space K and to give the theory a 
particle interpretation. We can do this by defining a 
number operator for the theory. Once the number 
operator N is defined, K can be taken to be the Fock 
space engendered by N. 

Proceeding first in a general way, we pick an arbi
trary canonical basis IAn}, IBn} in S with associated 
canonical operators Pn' qn. One can pass over to 
creation and annihilation operators a! and an by the 
relations 

qn = (an + a~)1.J2, 
Pn = -i(an - a~)1.J2, 

with the inverse relation 

(30) 

(31) 

More complicated relations than (30) and (31) are 
possible, but these are sufficiently general, since the 
more complicated relations can always be regarded 
as compositions of (30) and (31) with appropriate 
symplectic transformations. The number operator 
associated with the IAn}, IBn} basis is then 

(32) 
n 

The way in which N depends on the choice of basis 
may be expressed explicitly by means of the following 
relation: 

N = L t(qn - iPn)(qn + iPn) 
n 

= L t({Bn I cf>} - irAn I cf>})({Bn I cf>} + irAn I cf>}) 
n 

= -t L {cf>I[IBn}{Bnl + IAn}{A,,1 
n 

+ i IBn}{Anl -i IAn}{Bnll 14>} 
= -t{4>1 J + ill4>}. 

The operator 

n 

(33) 

(34) 

determines the basis dependence of N. The symplectic 
operators U which commute with J determine the 
changes of basis which leave N invariant. They form 
a subgroup G(J) of the symplectic group. One easily 
verifies that JV) = - J and J2 = - I, so that J is 
itself a symplectic operator. It turns out that not only 

is J basis dependent, but so is the group G(J). This 
amounts to the statement that G(J) is not a normal 
subgroup. Note in Eq. (33) that, because cf> is an 
operator, {4> I 4>} is equal to infinity, not zero. 

In function language, J is written as 

J -- D(i)(x, t; x', t') 

= L Bn(x, t)Bn(x' , t') + An(x, t)An(x' , t') (35) 
n 

and is called the anticommutator function because it 
is the vacuum expectation value of the field operator 
anticommutator: 

D(i)(x, t; x', t') 

= (01 4>(x, t)4>(x' , t') + 4>(x' , t')cf>(x, t) 10). (36) 

Equation (36) may be verified by substituting Eqs. 
(30) into Eq. (27) and normal-ordering the field
operator anticommutator. 

We have established, then, that there is a !-to-l 
correspondence between the choice of a number 
operator and the choice of an anticommutator func
tion. What this choice should be, however, cannot be 
determined from the formalism of the theory, but 
must be made on physical grounds. Also, the choice 
involves more than just a matter of convenience 
because, since we are dealing with a dynamical system 
with an infinite number of degrees of freedom, the 
Fock spaces K engendered by different number 
operators need not necessarily be identical. We need, 
therefore, to define the number operator in order to 
be able to determine what are the allowed physical 
states of the field. 

VI. THE FIXED-MIRROR PROBLEM 

As a means toward this end, consider the case of a 
cavity with fixed mirrors located at x = 0 and x = L. 
This problem is amenable to traditional field-quanti
zation techniques, and, when treated by these means, 
the choice of an anticommutator function emerges in a 
very natural and satisfying way. The wave equation 
can be solved by means of Fourier transformation, 
and the general form of the classical solution is 

f(x, t) = I (n7Tric"e-iknt sin (knx) + c.c., 
n~l 

k n = n7T/L, (37) 

which separates into a sum of positive- and negative
frequency pieces. The set of sequences {cn} form a 
complex Hilbert space J in a natural way. The passage 
to quantum theory is made by second-quantizing this 
Hilbert space, introducing creation and annihilation 
operators a~ and an which create and destroy photons 
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in the mode n. The states of the field upon which an 
and a~ act lie in a Fock space K. The number of 
photons in the mode n is measured by the operator 
a~an' The total number of photons N = Ln a~an is 
invariant under changes of basis in J. The field 
operator is written 

cp(x, t) = L (n7T)-!a ne-u."t sin (knx) + H.c. (38) 
n 

The presence of the factor (n7T)-i causes cp and 7T to 
obey canonical equal-time commutation relations and, 
more generally, causes Eq. (28) to be satisfied. The 
time development given in Eq. (38) can be regarded 
as being generated by the Hamiltonian 

H = L k1la~an' 
11 

using the Heisenberg equation of motion. Then an is 
interpreted as an operator in the Schrodinger picture 
and an(t) = ane-ifnt as an operator in the Heisenberg 
picture. This Hamiltonian also leaves N independent 
of time. 

A canonical basis in the space S, which will give the 
same N as the traditional theory, is 

An = (tn7T)-i sin (knt) sin (k"x), 

Bn = (ill7T)-i cos (knt) sin (k"x). (39) 

Then the function 

D(;)(x, t; x', t') 

= L (in7T)-1 sin (knx) sin (knx') cos [kn(t - t')] (40) 
n 

is time-translationally invariant, corresponding to the 
time-translational invariance of N and, in particular, 
the vacuum of N. This invariance is the real physical 
justification for the traditional definition of N. The 
function D<il is the imaginary part of the positive
and negative-frequency propagators 

D(±) = HD ± iD(i), 

which explains the rationale of the use of the super
script <il. 

Equation (40) can be summed to give D(i) in closed 
form. For instance, its equal-time value can be 
calculated to be 

D(;)(x, t; x', t) = _ 1. log , s~n [t7T(X - x')/L] ,. (41) 
7T Sin [l7T(X + x')/ L] 

This exhibits a logarithmic divergence when x = x'. 
It is interesting that, in one dimension, the anti
commutator function in the absence of mirrors 
Djp exhibits an infrared divergence and is infinite 
everywhere. If, however, it is renormalized by sub
tracting an infinite constant, its equal-time behavior 
for x near x' is similar to that of Eq. (41). 

VII. SCATTERING 

For a system with moving mirrors, one cannot find 
a D(i) function which is time-translationally invariant 
for all times. However, let us now pose a sort of 
"scattering" problem. We consider a system in which 
the mirrors are fixed with separation Ll for - 00 < 
t < tl (region I), after which they move arbitrarily 
(region II) until time t2 and then again become fixed 
(region III), this time with separation L 2 • Let Cr 
denote the forward light cone passing through the 
points (q1(t1), t1) and (Q2(t1), t1) and Cm denote the 
backward light cone passing through the points 
(Q1(t2), t2) and (Q2(t2), t2)' Since the mirror motion is 
determined in a manner causally independent of the 
field dynamics, the description of the system for 
t < tl must be independent of whether the mirrors 
move later on. This means that the D(i) function (40) 
appropriate for a fixed cavity of length Ll should be 
used to define N in this region. Similarly, in region III 
the D(;) function for a fixed cavity of length L2 should 
be used. But notice now that the function D~il propa
gates into region III by means of the wave equation. 
Also, DWr propagates backward in time into region I. 
The point is that these two functions do not necessarily 
have to be identical. This can be seen by considering 
an example in which region II is so small that the light 
cones C I and C 1lI intersect. Inside the rectangle formed 
by their intersection both Diil and Dm take on their 
fixed-mirror values. However, from the form of Eq. 
(41) it is clear that Dlil and Dii>r are not generally 
going to agree in the overlap region. 

Thus, the N's used for regions I and III are, in 
general, different. The state 10,) which has the 
properties of a vacuum in region I will not be vacuum
like in region 1lI, but will have some probability of 
containing real energy-carrying photons. We may 
think of this effect as being a physical manifestation 
of the zero-point energy of the field (for the fixed
mirror problem an infinite, but L-dependent constant) 
being partially converted into a particle form by the 
exciting effect of the moving mirrors. In the moving
mirror region II, the very concept of photons becomes 
muddy, just because the absence of photons (namely, 
a time-translationally invariant vacuum state) cannot 
be defined. There are many ways of defining N in 
region II as a function of time so as to connect con
tinuously to N, and NIII , but all of them are rather 
artificial. Another possible physical interpretation of 
the creation of photons is that they are radiated by 
currents necessarily associated with the moving 
mirrors. We have here a suggestive link between the 
concept of radiation and that of zero-point field 
energy. 
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It is interesting to compare our results for the cavity 
with moving mirrors to the situation that occurs in a 
simple one-mode problem, namely, the harmonic 
oscillator with a time-dependent coupling constant: 

(42) 

All of the quantization machinery we have been using 
can be applied here in the same way; in this case, the 
bracket product is just the Wronskian 

(43) 

The analogous "scattering" problem here is the 
creation, because of the changing potential, of 
excitations in a state which was originally the ground 
state of the oscillator. Again, as in the moving-mirror 
problem, this is a purely quantum phenomenon and 
does not occur in the classical theory. 

Unlike the oscillator problem, for the moving
mirror problem, we have to show that the changes 
in the number operator caused by the motion of the 
mirrors leave the number operator defined in the 
same Hilbert space throughout. This is not easily 
proven, but later we give an argument, though not a 
proof, that it is true, provided that the mirror 
velocities ql and q2 are continuous. 

VIII. MODE FUNCTIONS 

First, however, we need to discuss how one obtains 
analytic expressions for the functions in S. Consider 
the transformation of variables 

t - x = feu - S), 

t + x = g(u + s). (44) 

For arbitrary functions f and g, this transformation 
has the property of automorphically mapping the 
wave equation into itself: 

(45) 

The very extensive class of moving-mirror problems 
for which the boundary conditions (3) are separable 
by means of such transformations, and which are 
thereby rendered exactly soluble, we call type-A 
problems. As a simple example, let 

t - x = ell
-

S
, 

t + x = e"+s (46) 

within the forward light cone of (x, f) = (0,0). The 
ratio X/f depends only on S and not on u, so that (46) 
is appropriate for solving the problem of two uni
formly moving mirrors which intersect at (x, t) = 

(0, 0). For instance, the canonical mode functions 

An(s, u) = (tmr)-l sin (2t5mru) sin (2(Jn7Ts), 

Bn(s, u) = (in7T)-l cos (2(Jn7Tu) sin (2t5n7Ts) (47) 

describe a cavity with one fixed mirror and one mirror 
with velocity v = tanh [I/(2(J»). Note that these form 
a particularly natural basis for the definition of the 
number operator in the quantum theory and that the 
vacuum so defined will possess translational invari
ance in u. Physically, this is a scaling invariance, the 
wave equation being unchanged by x -->- bx, t -->- bt 
for any constant b. Clearly, any type-A problem is 
going to exhibit some such translational invariance 
and is going to possess a natural choice of a number 
operator, the vacuum state of which will share this 
invariance. Furthermore, there will exist a quasi
Hamiltonian which generates these translations. In 
the case described by Eqs. (47), this is of the form 

(48) 
n 

The mode functions (47) also may be separated 
into positive- and negative-frequency parts, "fre
quency" here referring to Fourier transformation 
with respect to u. A typical negative-frequency 
solution, expressed in terms of x and t, is 

in(x, t) = (t - X)26nlTi - (t + x)26nui. (49) 

These mode functions were obtained by a different 
means by Solimene5 and, more recently, by Baranov 
and Shirokov. 3 In the adiabatic limit v« 1, one 
obtains 

2 (in7T ). (n7TX) in ,-...J i exp -; log t SIn ----;;t . (50) 

These resemble the mode functions for a fixed cavity, 
except that the cavity length L = vt is now a slowly 
varying function of time. The derivative of the phase 
angle defines the frequency and is seen to be n7T/vt = 
n7T/L, which is the limit one expects. Notice that, if we 
interpret fn as the vector potential A n for the electro
magnetic field, then A n consists of oscillations at 
constant amplitude, but that the electric field En = 
-aA,jat and the magnetic field Bn = -aAnlax have 
amplitudes which are roughly proportional to IlL. 
These decreasing amplitudes result from the spreading 
of the field energy throughout the expanding cavity 
and the loss of energy at the moving mirror because 
of the Doppler effect. 

We now want to extend our discussion of the uni
formly moving mirror to more general situations. For 
simplicity, we restrict ourselves henceforth to type-A 



                                                                                                                                    

1686 GERALD T. MOORE 

problems where only one mirror [with trajectory q(t)] 
is allowed to move. The other mirror is required to lie 
at x = 0 and also at s = O. We see from Eqs. (44) that 
now only one transformation function! = g is needed. 

We introduce a real function R(t), which we require 
to satisfy the equation 

R(t - q(t» = R(t + q(t» - 2. (51) 

Mode functions for the moving-mirror problem may 
then be written down in the form 

!n(x, t) = e-inuR(t+x) - e-inuR<t-x), n = 1,2, .. " 00. 

(52) 

The complex conjugate functions !~(x, t) are also 
solutions. The mode functions vanish at the moving 
mirror because of Eq. (51), In fact, one may identify 
R with the inverse of the function! of the transforma
tion Eqs. (44). 

The construction of mode functions amounts then 
to solving Eq. (51). If R(t) is a given function, then 
finding the corresponding trajectory q(t) is a purely 
algebraic problem. We list a few examples below: 

(a) R(t) = 2b log t; 

q = {tanh [1/(2b)]}t = vt. 

(b) R(t) = t 2/(J2; 
q = d2/t. 

(c) R(t) = 1Y.1(t - T)/T, t < T, 

= 1Y.2(t - T)/T, t> T; 

q(t) = T/1Y.1, t < T(1 - 1/1Y.1) , 

= [(1Y.1 - 1Y.2)(t - T) + 2T]/(1Y.1 + 1Y.2), 

(53) 

(54) 

T(1 - 1/1Y.1) < t < T(l + 1/1Y.2)' 

= T/1Y.2, t > T(l + 1/1Y.2). (55) 

Example (b) shows that it is possible to obtain, in 
certain cases, mirror trajectories which have the un
physical property of being in part spacelike. Example 
(c) yields a trajectory which, at first sight, looks like 
an example of a "scattering" problem such as we 
were considering in connection with the number 
operator. However, since the mode functions go 
through the scattering region without becoming 
intermixed or changed in amplitude, there is, in fact, 
no scattering. This is true of any type-A problem 
which asymptotically approaches a fixed-mirror 
problem as t -+ ± 00. 

The construction of the R func.tion when q(t) is a 
given function can be made by means of a perturba
tion technique in the adiabatic limit q« 1. We 

rewrite Eq. (51) as a more conventional boundary
value problem by putting 

R(t =f x) == R(x, t), 

oR = =f oR , 
ot ox (56) 

R(±q(t), t) = R(=fq(t), t) - 2. 

Now we introduce a scaled coordinate ~ = x/q(t) and 
write the differential Eq. (56) in terms of ~ and t. The 
result is 

(1 =f ~ .) oR ± oR = 0 
q o~ q ot ' 

R(~ = ±1, t) = R(~ = =f1, t) - 2. (57) 

Let us now look for solutions which in the limit rj « 1 
reduce to the positive-frequency solutions for the 
fixed-mirror problem. Generalizing from our adiabatic 
result [Eq. (50)] for the uniformly-moving-mirror 
problem, we guess that the major portion of the time 
dependence of the R function is f q-1 dt. Putting 

R = g + f(1/q) dt, (58) 

we get 

(I =f ~rj) og ± q og ± 1 = O. (59) 
o~ ot 

We are assuming that g is a slowly varying function of 
time, and, to indicate this, we set s = Ef, where € is a 
small parameter. Then 

(1 =f ;€q') og ± €q og ± 1 = 0, 
o~ os 

, dq 
q == - (60) 

ds 

We next assume that g(;, s) can be expanded in a 
Taylor's series in €: 

00 

g(;, s) = L g(n\~, s)E", (61) 
n~O 

The function g(O) is easily calculated up to an additive 
function of s: 

g(O) = =f; + IY.IO(S) , (62) 

This satisfies the boundary condition given in Eqs. 
(57), so that the higher-order functions must obey 

g(n)( -1, s) = g(1/)(l, s). (63) 

Substituting (61) into (60) and equating powers of 
€, we get 

og(k) og(k-1) og(k-l) 
- =f ;q' -- ± q -- = 0 k = 1,2,3, .. '. 
0; 0; as ' 

(64) 
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We now expand the functions g(k) in a power series in 
; (only a polynomial is needed): 

Ie 

g(H)(;, s) = IO(k;(S)(±ni • (65) 
i=O 

Substituting into (64) gives 

(66) 

This recursion relation may be written in a form 
which allows an iterative solution for all the O(kj in 
terms of IXk- i ,0: 

1 i[ -(;-1) ]" O(kJ = - -:- q q O(k-l,}-l 
] 

1 ' £Ii 
= ; (-q), -, i [lXk- i .O]. 

J. c s 
(67) 

To make IXk " well-defined, we also need the definition 
of aoo , which is chosen so as to obtain the right result 
for g(O): 

0(00 = JS q-l £Is. (68) 

Equations (64) may be used to solve for the g(k) 

functions one at a time. Solving the kth equation 
determines g(k) up to an additive function Clk+I,O(S) 

which is found by applying the boundary condition 
(63) to the solution for g(k+l). In particular, one finds 
that O(~o(s) = 0, so that we can take 0(10 = 0. The 
resulting solution for R, when substituted back into 
Eq. (52), yields the mode function 

To any order, this mode function by construction 
satisfies the boundary conditions at the mirrors 
exactly, but it is only approximately a solution of 
the wave equation. We next derive a perturbation 
expansion which to any order is an exact solution of 
the wave equation, but to finite order only approxi
mates the boundary condition on the moving mirror. 

If we apply the boundary condition (63) to Eg. (67), 
we discover 

k 1, d; 
I :-, q' -d i (Clk-j,O] = 0, k = 2,3, .. '. (70) 

j=1.3,'·' J. S 

We notice that each of these equations involves either 
odd or even subscripts for the ClIO' but never both. 
Since ClIO = 0, it is consistent to require ClLO = 0 for 
I odd. Equation (70) is then satisfied for all even values 
of k. The remaining equations may be written in the 
form 

1= 1,2, .. " (71) 

where we have put 

(72) 

These equations can be solved one at a time in an 
unambiguous manner, starting from Yo = 1 (q. The 
first few are listed below: 

1 
Yo = -, 

q 

1 ( 2q12) 
Yl = - 3! -q" + --;; , (73) 

The expressions become more and more cumbersome 
and involve higher and higher derivatives as one 
proceeds further. 

Using Eq. (67) and putting now € = 1, we may 
write the R function in the form 

<Xl k 1 ' di . 
R = I ~ ~ (=j=q)'-d i [O(k-;,O];'. (74) 

k=O 1=0). t 

After interchanging the order of summation and 
using Taylor's theorem, this becomes simply 

00 

R = ~>k,O(t - x). (75) 
k=O 

Substituting into Eq. (52) gives the set of mode 
functions 

fn(x, t) = exp [-in7r f+xCgYI(t')) dtl] 

- exp [ - in7rf-x 

C~yz(t'») dtl (76) 

which is the desired expansion. 
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The convergence properties of the expansions (69) 
and (76) are not known, though it would seem a 
minimal assumption that q(t) be analytic for real t, 
since the expansions require the use of arbitrarily high 
derivatives. In practical cases, one is usually only 
interested in the tirst few terms, and it is reasonable 
to suppose that the remainder which one neglects is 
small, whether or not all the higher derivatives exist. 

IX. JOINING OF TWO TYPE-A PROBLEMS 

We may write down a canonical basis which corre
sponds to the natural number operator of a type-A 
problem with one moving mirror as 

An(x, t) = (2mr)-!{cos [mrR(t - x») 

- cos [mrR(t + x)]}, 

Bn(x, t) = (2n1T)-!{sin [n1TR(t + x») (77) 

- sin [n1TR(t - x))}. 

For R(t) = t/L this reduces to the fixed-mirror basis 
of Eqs. (39). Now suppose we consider a mirror 
trajectory q(t) which is a junction of two (or more) 
type-A motions: 

and 

q(t) = q1(t), t < 0, 

= q2(t), t > 0, (78) 

We detine the natural number operator for q1 to be 
N1 and that for q2 to be N2. We want to calculate 
(011 N2101)' If q1 and q2 are asymptotically stationary as 
t -+ - 00 and t ->- + 00, respectively, then (011 N21 01) 

is the average number of photons created by the 
motion of the mirror q(t). If we find that this is tinite, 
it will constitute evidence that the Hilbert space is 
preserved by the "scattering" and that our quantum 
theory has well-defined physical states. 

The general formula for (Oil N2101) for a number 
operator N2 detined with respect to a basis IAk2 }, IBk2 } 

and a vacuum state 101 ) detined with respect to a 
basis IA uI }, IB"l} is found by expressing the creation 
and annihilation operators associated with the former 
basis as linear combinations of the creation and 
annihilation operators associated with the latter basis, 
using Eqs. (31), (26), (27), and (30), and then normal
ordering N2 • One gets 

k,n 

+ ({B~'21 BnI } - {A k2 1 An1}n 
= (02 / N 1 102), (79) 

the last step following from the symmetry of the 
result with respect to interchange of the two bases. 
The condition that (OIl N2 101) be zero, namely, 

{Ak21 Bn1} = -{Bk2 1 AnI} 

and 

also implies that N2 = N I • This means that any 
symplectic transformation which leaves the vacuum 
invariant leaves the number operator inva 'iant also. 

The matrix elements needed for Eq. (71) may be 
calculated at t = 0, using Eqs. (77). The results are 

{Ak2 1 Bnl } = (2n1T)-!(2k1T)-! 

fQO a 
x cos [k1TR 2(x)] - sin [n1TR l (x)] dx, 

-00 ox 
(80) 

{A k2 1 AnI} = (2n1T)-!(2k1T)-! 

X fao cos [n1TR I (x)] a cos [k1TR 2(x)] dx. 
-00 ox 

(83) 

Upon substituting Eqs. (80)-(83) into Eq. (79), we get 

Assuming that Rt(x) and R2(x) are sufficiently 
smooth functions, we can calculate a series expansion 
for the integral of Eq. (84) in the adiabatic limit by 
doing repeated integrations by parts. Suppose, to 
begin with, that we assume that the series can be 
approximated adequately by just the first term. Then 
we get 

f kn == I i:}n1TR; - k1TR~)ei1l1rRl+ik·1TR. dx I 

I n1TR; - k1TR~ IQO I (85) 
~ n1TR; + k1TR~ -00 • 
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By repeatedly differentiating Eq. (5), we obtain the 
following equations: 

, 1 + q, ) 
R (t - q) = --. R (t + q , 

1 - q 
(86) 

2" I + . 2 

R"(t - q) = q . 3 R'(t + q) + (--~) R"(t + q). 
(I - q) I - q 

(87) 

In the approximation of Eq. (85) we find that hI! 
vanishes exactly if (MO) = (MO). After substituting 
Eq. (86) into (85), pulling out a factor [(MO) - (MO)], 
and otherwise neglecting (h(O) and (MO) compared to 
one, we get 

Now, from our earlier perturbation calculation, we 
know that 

interest, we can still interpret Eq. (90) summed over 
11 but for fixed k to be the number of photons created 
in the mode k by the "scattering." The effect is, of 
course, much too small to be measured experimentally. 

We next show that for continuous mirror velocities 
\011 N2 101) is finite. To do this, we have to integrate 
the integral in Eq. (84) by parts once more. We get 

I[ I d ('l7TR~ - brR~)JlqO I 
fI.ll ~ I17TR{ + /(7TR~ dx Il7TR~ + k7TR~ -flO' 

(92) 

By exactly the same sort of calculation as before, but 
now using Eq. (87) as well as (86), we can show that 

(011 N2101) ~ qf,(qJO) - ql(0))2 L 11k 6' (93) 
/I.k (11 + k) 

This time, however, the sum is finite: 

(94) 

R~(qo) ~ llql(qo), 

R~(qo) ~ ljq2(qo). 
Equation (93) gives a result which is of order l/c4, 

(89) which is ordinarily very small indeed. 

However, qo is just the transit time for light across the 
cavity at t = 0, and in this time q1 and q2 change very 
little from their value at t = 0, which is qo' Therefore, 
it is consistent with our approximation to put R1(qo) = 
R2(qo) in Eq. (88). After doing this and substituting 
1.." into Eq. (84), we obtain 

I . kll 
(011 N 2 101) "'" -; ('MO) - q1(OW.2 -~-4' (90) 

7Tk.,,(k + 11) 

The factor [(MO) - {MO)]2 is very small, but Lk,n kill 
(k + n)4 diverges logarithmically. This may be seen 
by letting m = k + n and writing 

Thus, a discontinuity in mirror velocity creates an 
infinite number of photons. This result is not too 
surprising if we recall that, in classical electromag
netism, it is accelerations which give rise to radiation. 
Here, we have an infinite acceleration, and it is not 
unreasonable that we get an infinite amount of 
radiation. This is, of course, a crude argument, since 
we are dealing with idealized mirrors and not charged 
particles. 

For mirror motions which do not have velocity 
discontinuities, but for which the velocity changes at 
a rate fast compared to the mode frequencies of 

X. INTERACTIONS 

So far, we have been concentrating exclusively on 
the properties of the free field. If we now allow the 
field to interact with another dynamical system (for 
instance, the active medium in a laser), we must again 
circumvent the difficulty that the interacting system 
does not possess a total Hamiltonian. On the other 
hand, we want to avoid having to come to grips with 
the complexities and divergences which usually 
characterize interacting field theories. We simply 
want to show how the standard methods of field 
theory can also be applied to interacting systems with 
moving mirrors. 

As we demonstrate in this section, the unitary 
transformation S from interaction picture to Heisen
berg picture provides a formal definition of the inter
acting field dynamics which does not depend on the 
existence of a total Hamiltonian or a free radiation 
Hamiltonian. We begin by deriving the properties of 
this unitary transformation for the case of a resonant 
cavity with fixed mirrors. In this exceptional case, 
there is, of course, a free radiation Hamiltonian. 
However, we shall discover, after finishing the deriva
tion, how to generalize the definition of S to apply to 
systems with moving mirrors. 

For the sake of definiteness, we work with a 
particular example of an interacting system. Physi
cally, we can think of this example as describing the 
dipole interaction of light with a gas of two-level 
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atoms of mass M. Let us define '/{Ja(x, t) and '/{Jb(X, t) 
to be two nonrelativistic boson fields describing 
matter contained in a fixed box B somewhere between 
the resonant-cavity mirrors. In the absence of inter
actions, '/{Ja = '/{JaO and '/{Jb = '/{JbO obey the field equations 

. o'/{J;o ( 1 0
2 

, ). ( ) 
1- = - - - + E; '!f'jO, ] = a or b. 95 

ot 2M ox2 

They also obey suitable boundary conditions (periodic 
boundary conditions in B will do) and have equal
time commutation relations characteristic of annihila
tion operators: 

['/{JiO(X, t), '/{JkO(X', t») = 0, 

['/{Jjo(X, t), lP;o(X', t») = OjkO(X - x'). (96) 

In the case where the resonant-cavity mirrors are 
fixed, not only Eqs. (95) but also Eq. (2) for the vector 
potential Ao may be derived from a Hamiltonian Ho, 
which is, of course, just a sum of Hamiltonians for the 
three fields involved. Now let us couple these three 
fields by adding to Ho an interaction Hamiltonian 

where 

Hint = Y r A(x, t)j(x, t) dx, Ju 
(97) 

j(x, t) == 'lJI~(x, t)lP/,(J" t) + 'lJI~(x, t)lPa(x, I). (98) 

In the SchrOdinger picture not only the total Hamil
tonian H but also Ho and Hint are independent of 
time. Given any operator in the SchrOdinger picture, 
in particular the vector potential A(x, T), the corre
sponding Heisenberg and interaction picture operators 
are then 

A(x, t) = eiHit-rlA(x, T)e-iJi(t-T), 

Ao(x, t) = eilloU-rlA(x, T)e-iHoU-T). (99) 

Therefore, 
A(x, t) = S+(t, T)Ao(x, t)S(t, T), (100) 

where 
Set, T) = eiHoU-"e-iHU-T). (l01) 

The unitary operator S(t, T) transforms from the 
interaction picture to the Heisenberg picture. It obeys 
the equation 

. oS(t, T) 
1-- = Hint(t)S(t, T), (102) 

ot 
where 

H . (t) = eiflo(t-r)H· e-iIloU-rJ (103) 
lilt lnt 

is the interaction Hamiltonian in the interaction 
picture. In this particular case, 

(104) 

We see now that Eqs. (100), (102), and (104) make 
sense even for a system with moving mirrors and 
that they provide a formal solution to the interacting 
problem. The field Ao(x, t) is the free vector potential 
field operator which we have constructed in preceding 
sections of this paper. We now define Set, T) by Eqs . 
(102) and (104) as well as the initial condition 
SeT, T) = 1. Since the operator S is generated by a 
Hermitian Hamiltonian Hint(t), S is formally unitary. 
Also, S clearly depends only on t and not on x. 
Hence, the equal-time commutation relations of the 
fields A, 'lJIa' and 'lJIb are the same as those of Ao, lPaO, 
and 'lJIbO and are thus independent of time. 

Equations (100), (102), and (104) and the three free
field equations (2) and (95) are sufficient to enable 
one to derive interacting field equations for A, lPa' 
and 'lJIb' Inside B, these turn out to be 

(105) 

1- = - - - + E '" + "A,,, . .OlPb ( 1 0
2 

) 
ot 2M ox2 b rb (ra 

It is easily verified that the function 0(1 - t') X 

D(x, t; x', t') is the causal Green's function associated 
with Eq. (2): 

(~ - (22)[()(t - t')D(x, t; x', t')] 
ot2 ox 

= o(x - x')o(t - t'). (106) 

Therefore, assuming the interaction is turned on at 
time T, we may write the first of Eqs. (105) as the 
integral equation 

A(x, t) = Ao(x, t) 

+ r dx (00 dl'()(t _ t')D(x, t; x', t')j(x', t'). 
JH J 

(107) 

Similar equations for 'lJIo and 1f!b may be derived in 
terms of the Green's functions of the free atoms. The 
results of iterating these three integral equations are 
equivalent to the results obtained by solving Eq. (102) 
using the Dyson perturbation theory.6 

XI. CONCLUDING REMARKS 

We have shown how the theory of linearly polarized 
light propagating in a I-dimensional cavity may be 
quantized by utilizing the symplectic structure of the 
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space S. There would appear to be no great difficulty 
in extending our theory to the case of nonzero mass 
particles and to three spatial dimensions. 

In applications of our theory to practical experi
mental situations, the creation of photons from the 
zero-point energy is altogether negligible. Since, in 
practice, mirror trajectories are not known exactly 
because of experimental errors, it is reasonable and 
mathematically simplifying to assume that they are 
always type-A trajectories. 

The Dyson expansion does not provide a rigorous 
solution to the problem of including interactions in 
the theory. It may not converge and its individual 
terms may even be infinite. However, in this respect, 
having stationary mirrors is no particular advantage 
over having moving mirrors. 
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1. INTRODUCTION 

Quantum statistics is classified as either Bose or 
Fermi statistics. The usual reasoning is as follows. 

When a state 0/ is operated upon by any permuta
tion P, the result is physically the same state, apart 
from the case of accidental degeneracy; thus, Po/ = 
co/. Take a transposition (i, k) as P, then p20/ = 

c2tV = 0/; hence, c = ± I. The generalization of P 
to any permutation also gives c = ± I, which permits 
only symmetric and antisymmetric states. In the 
former, the maximum occupation number is infinity, 
and, in the latter, it is one. The commutation relations 
of creation and annihilation operators are 

[ak , an± = 6kl , [a,., al )± = 0, (1.1) 

where [ , ]± represents the commutator for Bose 
statistics and the anticommutator for Fermi statistics. 

The generalization of the quantum statistics has 
been carried out in several ways. One is to replace the 
above statement Po/ = ely by the following statement: 

The expectation value of any observable A is the same 
in the state Po/ as in the state tv, i.e., ('Y, AO/) = 
(Po/, APO/). The statistics generalized in this way is 
called parastatistics and was studied by Green,l 
Volkov,2 Kamefuchi and Takahashi,3 and others. 

Parastatistics is classified as para-Fermi statistics 
and para-Bose statistics. In para-Fermi statistics of 
order p, a I-particle state can be occupied by up to p 
particles. The case p = I in the para-Fermi statistics 
is the ordinary Fermi statistics. In para-Bose statistics 
of order p, a wavefunction in a state vector can be 
anti symmetric with respect to at most p particles, 
though the maximum occupation number is infinite. 
The case p = 1 in the para-Bose statistics is the 
ordinary Bose statistics. The commutation relations 
for p = 2 and 3 are obtained in Ref. 3. For example, 
for p = 2, 

akatam ± amatak = ±26lmak + 26kla"" (1.2) 

amakat ± at akam = 26kzam , (1.3) 
akaZa m ± ama1ak = 0, (1.4) 
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of creation and annihilation operators are 
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where [ , ]± represents the commutator for Bose 
statistics and the anticommutator for Fermi statistics. 

The generalization of the quantum statistics has 
been carried out in several ways. One is to replace the 
above statement Po/ = ely by the following statement: 

The expectation value of any observable A is the same 
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called parastatistics and was studied by Green,l 
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is the ordinary Fermi statistics. In para-Bose statistics 
of order p, a wavefunction in a state vector can be 
anti symmetric with respect to at most p particles, 
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where upper and lower signs correspond to para-Fermi 
and para-Bose cases,respectively. From these com
mutation relations, a~la;210) is shown to be orthogonal 
to a~2a~1 10) for kl :/= k 2 • For p = 2, in the possible 
nonzero n! (n is the number of particles) state vectors 
a+ a+ ... a+ 10) == 11 2· .. n), which are generated 

kl k2 ku 

by operating n creation operators to zero vector, and 
state vectors, which are not identical on permutation 
of only alternate operators in the product of creation 
operators operating to zero vector,3 are independent 
of each other. For example, for three particles with 
different kl' k 2, and k3' there are three independent 
states out of 3! = 6, i.e., 

1123)(= T 1321», 

1231)(= T 1132», 

1312)(= T 1213». 

The number of independent states is n!/[(ln)!]2 for 
even nand n!/{[t(n - I)]! [Hn + I)]!} for odd n, 
for all different n states. 

The second way of the generalization is to postulate 
simply that the maximum number of particles in a 
I-particle state to be a finite number which is denoted 
by v, and that a state of a system is characterized by 
specifying a number of particles in each I-particle 
state'¥ = Inl, n2 , ••• ) = (a~)nl(a~2)'" .. '10), ni ~ v. 
The statistics defined in this way was introduced by 
Gentile. 4 It is an intermediate one between Bose 
statistics and Fermi statistics and is called inter
mediate statistics. The creation and annihilation 
operators in the intermediate statistics are commutable 
for different k and realized by 

a+ -
k -

o 
1 

.J2 

o 1 

,,/2 

"";v 
o 

(1.5) 

- ~. 

The commutation relations for y = 2 can be shown 

to be 

akakak = 0, 

aka kat + 2at akak = 2ak , 

++ ++ + ++ -2 aka"ak ak + akak ak ak ak ak akak - , 

[ak' atJ- = 0, k =;t. t, 

[a k , all- = 0. 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(LlO) 

(1.11) 

The number of different state vectors for a given 
set of numbers of particles in the specified I-particle 
states is one for intermediate statistics and not one, 
in general, for para-Fermi statistics. Thus, the para
Fermi statistics does not lead to the intermediate 
statistics. Intermediate statistics has no mathematically 
natural basis in any symmetry properties of wave
functions or any generalized field quantization 
scheme. Gentile4 and Schubert5 obtained the distribu
tion functions in intermediate statistics. ter Haar6 

discussed the nature of the statistics and regarded the 
case of N (total number) = y (maximum number in 
one state) as a physical case. 

Application of the intermediate statistics to the 
Heisenberg model of the ferromagnetism is briell~ 

mentioned. Usually, the magnon in the Heisenberg 
model is regarded as a boson, neglecting the kine
matical interaction. In the system of N spins of S = .~. 

no more than N reversed spins can exist. Then what 
difference would arise in treating the system as an 
assembly of bosons or as an assembly of particles 
obeying intermediate statistics of y = N? The 
susceptibility at zero field below the critical tempera
ture is infinity for the former and finite for the latter. 
The details will be discussed in the future. 

Another generalization of statistics is Okayama's 
statistics. 7 The commutation relations derived by 
Okayama are 

akata m - aiamak = Oklam, (1.12) 

.2 akalam = 0, 
(perm) 

(1.13) 

and the other two are the same as Eqs. (1.8) and (1.9). 
Kamefuchi and Takahashi3.8 showed that thecommuta
tion relations (1.12), (1.13), (1.8), and (1.9) give only 
null vectors in Hilbert space when applied to a system 
of many degrees of freedom 3 and that Okayama 
statistics is to be regarded as a modified version of 
parastatistics which provides a consistent theory only 
when applied to a system of just one degree of 
freedom.s Okayama statistics is neither para-Fermi 
statistics nor intermediate statistics. The distribution 
function in the intermediate statistics follows neither 
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from para-Fermi statistics nor from Okayama statistics 
(in the latter, the distribution has no meaning). 

In this paper, the grand partition function of the 
ideal gas obeying intermediate statistics is obtained, 
and physical quantities in 1-, 2-, and 3-dimensional 
cases are calculated. The results show a gradual 
shift of thermal properties from Fermi statistics to 
Bose statistics as v increases from I to co. 

2. THERMAL PROPERTIES OF IDEAL GAS 
OBEYING INTERMEDIATE STATISTICS 

The grand partition function E(oc, f3) for the system 
obeying intermediate statistics, of which the number 
of particles in one state is at most v, is expressed by 

00 

E(oc, f3) = .I .I 
N-O nk 

tnk=i\' 
max {nk}=V 

= IT (1 + e-(a+PEd + e-2(a.+ PEk) + ... 
k 

+ e-v(a+PEk) 

. 1 _ e-(a.+PEk)(V+U 

= IJ 1 - e-(a+PEk) 
(2.1) 

where f3 = l/klJT, oc = -f3fl, kB is the Boltzmann 
constant, T the absolute temperature, fl the chemical 
potential, N the number operator, and k labels a 
I-particle state. The number of ways of placing 
particles in n distinct boxes with no more than v 
particles was given by ter Haar6 and by Fisher.9 

The differentiation of 3 with respect to f3Ek gives 
directly the average number of particles in the state k, 
that is, 

_ a log E 
n - ----

k - of3Ek 

1 = ---"'--
elT.+PEk - 1 

'1'+1 
(2.2) 

The result agrees with that found by Gentile4 and 
others.5•6 

Consider N free particles (obeying intermediate 
statistics) contained in the n-dimensional box each 
bfwhose edge lengths is L( = Vl/n). Periodic boundary 
conditions are imposed. 

The energy eigenvalue E)JIJl2"')Jn for the free particle 
in the periodic condition is 

n Jj2 7r2 2 

£1'11 ..... ·)In = I -2 ,2 fli , (2.3) 
;=1 m L. 

where fli = 0, ± 1, ±2, ... and m is the mass of the 
particle. When the volume of the system V(E Ln) is 
sufficiently large, the density of energy levels geE) is 

obtained from Eq. (2.3) as 

geE) = ~ ( 2m )In Ein-l. 
rCin) 47r/j2 

In the limit V ~ co, log E(oc, f3) reduces to 

lim .llogE(oc,f3) 
V-oo V 

(2.4) 

1 100 (1 - e-(IT.+PEHV+U) 
= - geE) log «(IE) dE. (2.5) 
Vol - e- a+ 

Substituting Eq. (2.4) into Eq. (2.5) and integrating 
by parts, we have 

(2.6) 

where 

The integrals of the first term and the second term 
in the bracket in Eq. (2.6) converge when oc > O. The 
integral of the difference, however, converges even 
when oc < O. The integral of the difference for oc < 0 
is equal to the difference of the analytic continuations 
(to the regions oc < 0) of the analytic functions 
defined by the integral of the first term for ot > 0 and 
that for the second term. 

The function 4>(z, s) is defined bylO-12 

00 zn 
4>(z, s) == I -; 

n=1 n 

and its analytic continuations. It has integral repre
sentation 

z 100 

t
s
-

1 

4>(z, s) == - -t- dt, when z < 1. (2.7) res) 0 e - z 
We define 

K(ot, s, ')I) == 4>(e-lT., s) - (')I + l)I-S4>(e-a(v+1\ s), 

- co < ot < 00. (2.8) 
From Eq. (2.6), we have 

N = _ a 10gE(oc, f3) = V K(OC In ')I) 
Oot Iln' 2", , 

(2.9) 

E = - 0 10gE(ot, f3) = In~ .-fot In + 1 ')I) (2.10) 
o{J "2 {J),n n.\ ,2" " 

P = 1. log E(oc, {J) = _1_ K(ot In + 1 ')I) 
V {J {JAn' "2 " 

(2.11) 

for the mean number N, energy E, and the pressure p. 
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The specific heat at constant volume Cv is given by 

- in ~(~OC) K(OC, in, v). (2.12) 
).nfJ aT T,N 

Since the partial differentiation of Eq. (2.9) gives 

( Ooc) K(OC, in - 1, v) = l!... K(OC, tn, v), (2.13) 
aT V.N 2T 

the specific heat becomes 

Cv = tnNkB(!n + 1) K(oc',i n.1+ 1, v) 
K(OC, 2n, v) 

_ in K(OC, in, v) ). (2.14) 
K(OC, in - 1, v) 

For the purpose of introducing an explicit expression 
in terms of T, we define To by 

VIN = v = ().nh=To' (2.15) 

Then Eq. (2.9), where v is the specific volume, can be 
written in the form 

TITo = [K(OC, tn, v)t2/n. (2.9') 

In the specific heat (2.14), 0( is regarded as a function 
of the temperature T/To, with use of (2.9'). In the 
pressure equation (2.11), oc is regarded as a function 
of the sp~cific volume (V/N»),-n by Eq. (2.9). 

In Eq. (2.8), the singular point z = 1 in </>(z, s) is 
canceled by subtraction, and 0( = 0 is not a singular 
point in K(OC, s, v) for finite v. Hence, the specific heat 
and the pressure in the intermediate statistics for 
finite v have no singularity. Since K(OC, s, 1) = 
-rjJ(-ra.,s) and K(OC,S, (0) = </>(e-Il,s),the specific 
heat (2.14) for Fermi statistics and that for Bose 
statistics are the same function of T/To when oc is 
eliminated by Eq. (2.9') in the case of two dimen
sions. This was pointed out by Toda and Takano13 

and by May.l4 

3. HIGH- AND LOW-TEMPERATURE LIMIT 
AND HIGH- AND LOW-DENSITY LIMIT 

When oc ~ + 00, K(IX, S, v) tends to rfJ.. Then we 
have 

pfJ = l/v 
and 

(3.1) 

(3.2) 

irrespective of v and n. This means the results of 
classical statistics are obtained, when the specific 
volume is large or the temperature is high. 

Consider the case IX ~ - 00. Using the asymptotic 
expansions (A4) and (AS), we have 

),n """ V ( )!n 
ran + 1) -oc 

(3.3) 
v 

and 

pfJ).n ~ V (_IX)!n+!. (3.4) 
rein + 2) 

Eliminating oc from Eqs. (3.3) and (3.4), we have 

n [ran + 1)J(n+2)/n().n)(n+2)/n 
pfJ). - -- ran + 2)v2/n V • 

(3.5) 

Equation (3.5) holds as }"n/v --+ 00 for fixed v. It does 
not hold for fixed J..n/v as 'V --+ 00. 

Inserting the first three terms of (A4) or (AS) into 
Eq. (2.8) and using it in Eq. (2.14), we have 

2ev = i172 _1_ (-ocr1 
nNkB v + 1 

(3.6) 

2 1 (V v )21n 
= i17 v + 1 ).n rein + 1) 

2 1 ( 'V )2/n T 
= f17 'V + 1 r(tn + 1) To' 

(3.7) 

after the cancellation of the contribution of the first 
and the second terms. Again, Eq. (3.7) is not to be 
used as v --+ 00 for fixed T, but for fixed v as T ~ O. 

For the case v = 00 (Bose statistics), the limit 
IX ~ 0 corresponds to v --+ 0 or v ~ Vc' In this limit, 
we have 

)'''/v = r( -in + l)lX!n-l + ~(-~n) - O(~(in - I), 

n = 1,3, (3.8) 

).n/v = -log [1 - e-a], n = 2, 

pfJ).n = r( -tn)lX!n + ~(in + 1) - oc~(tn), 
n = 1, 2, 3, (3.9) 

using the LindelOf expansion. Here, ~(s) is the 
Riemann ~ function. Thus, 

},,3/V -+ },,3/vc == ~G), n = 3, 

p(3). 2 -+ ~(2) - (J..2/v)e-).'/v, 

).2/V -+ 0, 

p{3). -+ ~G) - 217(V/).), 

)./v -+ 0, 

n = 2, 

n = 1. (3.10) 

When we substitute the first two terms of the 
Lindelof expansion to Eq. (2.14) and retain the leading 
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FIG. 1. Specific heat in one dimension. 

term, we have 

(3.11) 

(3.12) 

for one dimension, 

Cv 2'(2) --=-
NkB log (1 - e-a

) 
(3.13) 

= 2,(2) T 
To (3.14) 

for two dimensions, and 

2Cv 5 ~;(-i) 3s(i)! 
--=-----0( 
3NkB 2 s(i) 2J7T 

(3.15) 

for three dimensions. Defining Ac and Tc by 

A; = sm = (To)~ 
v Tc 

(3.16) 

and eliminating rt. from Eqs. (3.8) and (3.15), we have 

2Cv 5 '(-i) 3'(i) [(To)! (To)~J 
3Nkn =2s(i) - (2.J2)7T Tc - T (3.17) 

for T ~ Tc' For T < Tc, let rt. = 0 and A3 jv = s(i); 
then 

(3.18) 

-~--~--~---~----

05 1.0 IS lO T ?5 
To 

FIG. 2. Specific heat in two dimensions. 

~=I 
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FIG. 3. Specific heat in three dimensions. 

FIG. 4_ Pressure in 
one dimension. 

FIG. 5. Press ure in 
three dimensions. 
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FIG. 6. Pressure in 
three dimensions. 

These equations for the ideal Bose condensation have 
been derived for the sake of comparison. 

The specific heat vs reduced temperature is shown 
in Figs. 1-3 and the pressure vs volume is shown in 
Figs. 4-6, in 1-, 2-, and 3-dimensional cases, respec
tively. These figures show gradual shifts from Fermi 
to Bose statistics as v increases. 

When v is small, the increase of v causes noticeable 
changes of physical quantities. The difference between 
v = 1 and v = 2 is especially large. When v becomes 
large, the shift to Bose statistics becomes slower as the 
dimension increases. 

The specific heat for finite v is larger at low tempera
ture and smaller at high temperature than that for 
v = 00 (Bose statistics). The pressure decreases 
monotonically as v increases and diverges as V/N --+ 0, 
except in the case v = 00. For large VIN or large 
T/To, the pressure and the specific heat tend to those 
of the classical ideal gas. 
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APPENDIX: PROPERTIES OF r/>(z, s) 

The function c/>(z, s) (see Fig. 7) is defined by 

co zn 
c/>(z, s) = L -;, Izl < 1, (AI) 

n=l n 

and its analytic continuations. 
For s = 0, 1, 2, Eq. (AI) reduces to 

c/>(z,O) = z/(I - z), 

c/>(z, 1) = -log (1 - z), 

c/>(z,2) == L 2(z) (dilogarithm). 

The analytic continuation of (AI) is given by the 
Lindelof expansionlO 

co (log zt 
c/>(z, s) = f(1 - s)( -log Zy-l + L '(s - n) --, 

n=O n! 

for s ¥: 1, 2, .... 
Ilog zl < 27T, (A2) 

Taking the limit s --+ m, m = 2, 3, ... , we havell •15 

c/>(z, m) = (log z)m-I['IjJ(m) - 'IjJ(I) - log log (!)] 
(m - I)! z 

+ if ,em _ n) (log z)n , 
n=O n! 

n*m-I 

where 'IjJ(z) = r'(z)/f(z). 
m = 2, 3, 4, ... , (A3) 

Asymptotic expansions of c/>(z, s) and c/>(exp (7Ti)Z, s) 
for nonintegral values of s are given by KatsuraI2 : 

(log z)" 
c/>(z, s) = - . + r(I - s)( -log zy-l 

res + 1) 

m (27T)2nB + L n (log zy-2n 
n=1 reS + 1 - 2n)(2n)! 

. (A4) 

c/>(exp (7Ti)z, s) = - (log z)S - i (1 _ 2I - 2n) 

res + 1) n=1 

(27T)2nBn (1 )s-2n 
X ogz 

f(s + I - 2n)(2n)! 

+ O((Iog Zy-21/!-2), (AS) 

where Bn is the Bernoulli number.16 
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FIG. 7. The function r/>(z, s). 
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Taking the limit s -+ m, m = 2,3, ... , we have 

cp(z, m) = _ (log z)m 
m 

(log z)m-l + ["P(m) - "P(l) - log log (z-l)l 
(m - I)! 

m2:2n (27T)2nB 
+ L n (log zr-2n 

n=l (m - 2n)! (2n)! 

+ O((log Z)-l). (A6) 

For m = 2, the equation 

Liz) + L 2(1 - z) = l7T2 - log z log (1 - z) (A7) 

holdsY 
Tables of cp(z, i), cp(z,2), cp(z, i), cp(z, t), and 

cp(z, - t) were calculated using these formulas. 
Tables of Fermi-Dirac functions 

FS_l(~) = r(s)cp(-exp (~), s) (A8) 

by McDougall and Stoner18 and by Chisnall,19 
together with the relation 

cp( -z, s) = cp(z, s) - 21- Scp(Z2, s), (A9) 

were also useful for numerical calculation for some 
part. 

These properties of fez, s) functions can be used in 
several topics in the statistical mechanics.20 
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The general relation between the infinitesimal generator of a I-parameter subgroup of canonical 
transformations and the usual finite generating functions is obtained. This relation is found to be simply 
a generalization of the Hamilton-Jacobi equation. When the latter relation is solved for the finite generat
ing function, the connections for a finite transformation can be determined without the need for integra
tion of the associated infinitesimal transformation. 

1. INTRODUCTION 

Within the framework of classical dynamical 
theory, one usually defines canonical transformations 
on the coordinates and momenta 

Q = Q(q,p), P = P(q,p), 

q == (Ql,q2,'" ,q/l)' P == (Pl,P2,'" ,Pn) (1) 

such that Hamilton's canonical equations remain 
invariant. We denote the family of all such trans
formations as 

This family of transformations can be represented by 
points in a 2-dimensional Euclidean phase space r 
with coordinates (Q(q, p), P(q, p». The point (q, p) is 
associated with the identity transformation. 

The connections (I) can be generated by assuming 
a generating function F, explicit in one old and one 
new canonical variable n-tuple. In the notation of 
Goldstein l consider 

P = _ oF I • 

aQ 
(2) 

It can be easily shown that the transformation T 
generated in this manner is a member of b. One can 
then associate with a particular function Fl a unique 
point in r space. 

By a linear Legendre transformation one can pro
duce functions explicit in other variables. For example, 
consider 

F2(q, P) == (11 - Q . O~)Fl(q, Q), 

P 
= OF2 Q = oF2 

oq , oP , (3) 

where a dot denotes n-tuple contraction. 
Similarly, the functions Fa(P, P) and F4 (p, Q) can 

be generated. It is apparent, however, that, since 
mapping by Legendre transformation is not one-to
one, functions of one type, Fk , cannot be placed in 

one-to-one correspondence with points in r space. 
For example, take F2(q, P) = q . P. Then from (3) 
we have 

oF2 oF2 
P = aq = P, Q = oP = q, 

and F2(q, P) = q . P generates the identity transforma
tion. However, inverting (3), we have 

Fl(q, Q) = (11- p. O~)F2(q, P) == 0 
and, hence, representation in terms of functions Fl 
alone is not possible. It is now clear that, in order to 
associate a generating function F with each point in 
r space, one must employ functions of more than one 
type. 

The fact that b actually constitutes a group of 
transformations allows the use of Lie representa
tion theory and avoids the ad hoc mathematical 
description in terms of the generating functions Fk • 

Consider an arbitrary observable Il'(q, p) and its 
associated transformation 

(4) 

where 

1'(r) == exp [r(~: . :q - ~:; . :p) l 
with r a real I-tuple parameter. It can be shown2 

that the operators T(r) generate canonical transforma
tions for arbitrary w(q,p). One then associates with 
each observable w(q, p) a I-parameter subgroup of 
transformations b w characterized in r space by a 
continuous curve emanating from the identity element 
(Q, P) == (q, pl. An arbitrary canonical transforma
tion can be generated by a representation of the 
form (4). 

Although the more lucid Lie representation is 
convenient from the point of view of infinitesimal 
transformations, the generation of finite transforma
tions requires the evaluation of the formal operator 
T(r) in closed form. Since the latter evaluation is not 

2698 
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always technically feasible, a procedure analogous 
to (2) is desirable. It is evident that we must somehow 
generalize the generating functions Fk to incorporate 
the parameter T such that all elements of b w may be 
generated. In order to circumvent any direct evalua
tion of T(T) for a given observable w(q,p), the 
connection between )I'(q, p) and the new generating 
functions Y k must be made in the neighborhood of 
the identity transformation. 

With this objective in mind, realizing that only the 
functions F2 and F4 can be associated with the identity 
transformation, we consider the following generaliza
tion of the function F2 which incorporates the param
eter T, subject to the assumption that T = 0 generates 
the identity transformation. We define Y 2 == 
Y 2(q, P, T) such that 

oY2 . oY2 p(q, P, T) = -, Q(q, P, T) = -. (5) 
oq oP 

The function Y 2(q, P, T) characterizes the subgroup 
of transformations lo". with possible singularities for 
specific values of T. In the analysis that follows, we 
obtain the general relation between the functions :F ~ 
and \1'. Direct evaluation of T(T) is obviated by solving 
the relation below for :T ~ . 

2. GENERAL RELATION BETWEEN FINITE 
AND INFINITESIMAL GENERATORS 

For all arbitrary observable g(q. pl. one defines the 
canonically transformed observable G(q. p. T) by 

G(q. p. T) == T(T)g(q. pl. 

It can be easily shown that 

~!:.i = oG . 01\' _ oG . ow == [G, lI'J. (6) 
dT oq op op oq 

the Poisson bracket of G with l\'. Since calculation of 
a Poisson bracket can be made with respect to any 
pair of canonical variable II-tuples. we have 

oG all' oG 01\' oG all' oG 01\' -'---'-=_._-_.- (7) 
oq op op oq oQ oP oP oQ 

Using (5) and (6), one obtains 

dQ = !l(0:F2) = [Q, w]. 
dT £IT oP 

Employing (6) and (7) with slight rearrangement, we 
have 

( 0 (Oy,,)) (OW) (all') (OQ) (all') 
oP OT" '1.T= oP () + oQ /,' oP O,T= oP q,; 

U~) 

Similarly, we have 

dp = 0 = !!,,-(0:F2). 

dT dT oq 
Using (6) yields 

( 0 (OY2)) (all') 
oq a; P,T = oq p,; (9) 

We have repeatedly used the fact that, under b 1O , 

W(q, p, T) == T(T)W(q, p) = \I'(q, p) 

which, together with the function theorem for Lie 
representations (see the Appendix), implies 

w(q,p) = w(Q(q,p, T),P(q,p, T». (10) 

Integrating either (8) or (9) and using the other to 
simplify the additive function yield 

_2 = w(Q(q, P, T), P) + 4>(T). (O:F ) 
OT 1','1 

Since, for fixed ll', all generators of the form l\' + 4>(T) 
constitute an equivalence class in that they represent 
the same curve in r space, we take 4>(T) == O. Hence, 
using (10), we have 

O~2 = W(00:2, p) = w(q, 0~2), (11) 

which can be solved for functions Y 2(q, P, T). To fix 
any undetermined constants, we impose the boundary 
conditions at T = 0, 

:T/q, P, 0) = q . P = q . p, 

a Y21 aT H= w(q, p(q, P, 0)) = w(q, Pl. (12) 

The resulting function generates the I-parameter 
subgroup of transformations b w except at possible 
singular points in T. Existence of such singularities is 
substantiated by the fact that, although the operators 
T(T) can be placed in one-to-one correspondence with 
points in r space, the family of functions Y 2 cannot. 
Since :T 2 and :T 4 have no common explicit n-tuple 
dependence, they cannot be singular simultaneously; 
hence, one can always find a finite generator for an 
arbitrary observable )I'(q, 1'). 

It is also noteworthy that, by taking l\' = -H, the 
Hamiltonian, and T = t, we see that T(T) produces 
transformations backwards in time from (q(t), p(t»-+ 
(q(O), p(O)). Then one obtains 

o (~ ( 0:F2 ) -0 J'2(q(t),p(O),t»)=-H -:;:,-,p(O) 
t u p(O) 

( oY ) 
= -H q(t), Oq(;) , ( \3) 
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which is the familiar Hamilton-Jacobi equation. 
Hence, (11) is simply the generalization of (13) to the 
arbitrary infinitesimal generator w(q, p). In analogous 
fashion, :F 2 is simply the generalization of the action 
integral 

:F~[Q, P] = f ( Q . ~: + w(Q, P)) dT + q . p 

to within a constant additive term, which is necessary 
to satisfy (12). 

Relations similar to (11) can be deduced for each 
of the other generating functions :Fk • For example, 
one can show in a similar manner that 

0~1 = -w( q, 0~1) = -w( Q, _ ~~1). (14) 

However, to determine a unique function :F 1, one 
must impose boundary conditions in a region where 
:F1 is nonsingular. Since this is not possible in the 
neighborhood of the identity, it would be necessary 
to evaluate T(T) at T = TO such that representation of 
T(TO) in terms of:F1 would be nonsingular. But direct 
evaluation of T(T) is precisely what we have tried to 
avoid. Consequently, (14) is not useful from the 
standpoint of computational convenience. Similar 
conclusions hold for the relation in :F3 • The first 
equality in (14) has been deduced previously.3 To 
illustrate our method for obtaining finite transforma
tions of the form (4) from the infinitesimal generator 
w(q,p), we now consider a specific example. Suppose 
that II' = f(q)p + g(q) with n = I for simplicity. 
Substitution into (II) yields 

0:F 0:F 
_2 = f(q) _2 + g(q). (15) 
aT oq 

Under the change of variable 

we obtain 
f dq 

z == f(q)' 

0:F2 0:F2 A() -=-+gz, 
aT oz 

where g(z) == g(q(z». The general solution to this 
equation can be easily shown to be of the form 

:F2 = aCT + z) - G(z) , 
where 

G(z) == J g(z) dz 

and a is an arbitrary function of (T + z). Invoking 
(12) immediately gives 

:F2 = PZ-l(T + z(q» + G(T + z(q) - G(z(q) , (16) 

where Z-1 denotes the inverse function of z(q). Con
sider, specifically,J(q) = q2 and g(q) = 0, from which 
we obtain z(q) = _q-l. Substi~ution into (16) gives 

:F2(q, P, T) = Pq(1 - Tq)-l. 

This function :F2 generates the connections 

Q(q,p, T) = q(l - Tq)-1, 

P(q,p, T) = p(l - Tq)2. (17) 

It is easy to show that the latter formulas describe 
canonical transformations for all values of T -:F- q-l. 

To check the validity of (17), we evaluate T(T) 
directly. For w(q,p) = q2p we have 

G==q2~-2qp~. 
oq op (18) 

Under the change of variable (q, p) --+ (q, s) and 
s == qpt, we obtain 

Substitution into (18) gives 

T(T) = exp (-T _0_), 
O(q-l) 

which is easily recognized as the translation operator 
in the variable q-l. Hence, we have 

Returning to the variables (q, p) gives (17) immedi
ately. 

The above heuristic example demonstrates the 
usefulness of (11) in obtaining (4) for a given observ
able w(q,p). As mentioned previously, relations 
analogous to (11) hold for each :Fk ; however, only 
those in terms of :F2 or :F4 are practical from a 
computational standpoint. Also, the general condi
tion (10) allows solution in terms of either q or P 
for .72 , Hence, one can solve the simpler of the two 
relations stated in (11). 
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APPENDIX 

In the context of the I-parameter subgroup of 
canonical transformations lJw , we state the following 
theorem. 
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Theorem: For the canonical transformation 

(;) = T(T)(~), 

yeT) == exp [T(~: . :q - ~: . :p) 1 
the arbitrary observable a(q, p) transforms such that 

A(q, p, T) == T(T)a(q, p) = a(Q(q, p, T), P(q,p, T». 
(AI) 

To prove this theorem, we first consider infinitesimal 
transformations. Then we have 

A(q,p, T) = a(q,p) + T[a, \\'1, 
Q(q, p, T) = q + T[q, \1'], 

P(q, p, T) = P + T[p, 1\'). 

We define 4>()..) such that 

4>()..) == a(q,p) + h[a, w) 

- a(q + )..T[q, w), p + )..T[p, w)), 

and evaluate 04>/0).. to first order in T: 

- = T(a, w] - T - . - - - . - = O. 04> (oal ow oal OW) 
0).. oq T=O op op r~O oq 

Hence, for infinitesimal transformations we have 

4>(0) = 4>(1) = 0, 

which yields 

a(q,p) + T[a, w) = a(q + T[q, 11'], p + T[p, 11')). 

Since lJw has the group property, this result can be 
iterated to yield (AI). 
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The following three statements about the zeros of the grand partition function of a lattice gas with 
negative (attractive) interactions are proved: (1) Not all the zeros will be on the unit circle in the high
temperature limit if forces of higher order than 2-body are included; (2) in the low-temperature limit they 
will, in general, lie on the unit circle; (3) it is possible to have the zeros dense in the complex plane. It is 
also shown that not all polynomials with positive coefficients and roots on the unit circle are a grand 
partition function of a lattice gas. 

Since Lee and Yangl proposed that the roots of the 
grand partition function for a lattice gas lie on the 
unit circle for attractive 2-body forces, there has 
been much speculation about the possibility of a 
similar theorem for more general forces. Also, the 
converse theorem that every polynomial with positive 
coefficients and roots on the unit circle is the grand 
partition function for some lattice gas has been 
considered as a conjecture. 

It will be shown that the possibility of conjectures 
of the first type is limited as follows: If higher-order 
interactions are included, then some of the roots will 
always lie off the unit circle for sufficiently high 
temperature if all forces are attractive. Furthermore, 
it is possible to devise interactions which distribute 
the roots all over the complex plane in such a manner 
that they become dense as n --+ 00. The second 

conjecture will be shown to be wrong by a counter
example. 

In order to simplify the notation, the mathemati
cally equivalent Ising-type model will be considered in 
place of the lattice gas. The most general Hamiltonian 
for 11 spins a j , iJ2 , ••• , an' which are I or -1, then 
reads 

n 

.JC = - L J It IT a k - H L a k • (1) 

(The summation over fl runs over all subsets of the 
11 spins. which contains at least two spins.) The first 
term represents interactions between the spins, while 
the second term is the interaction between the spins 
and a magnetic field H. We require 

JIt ~ 0, for all fl, 

in order that the system be ferromagnetic. 
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Theorem: For the canonical transformation 

(;) = T(T)(~), 

yeT) == exp [T(~: . :q - ~: . :p) 1 
the arbitrary observable a(q, p) transforms such that 

A(q, p, T) == T(T)a(q, p) = a(Q(q, p, T), P(q,p, T». 
(AI) 

To prove this theorem, we first consider infinitesimal 
transformations. Then we have 

A(q,p, T) = a(q,p) + T[a, \\'1, 
Q(q, p, T) = q + T[q, \1'], 

P(q, p, T) = P + T[p, 1\'). 

We define 4>()..) such that 

4>()..) == a(q,p) + h[a, w) 

- a(q + )..T[q, w), p + )..T[p, w)), 

and evaluate 04>/0).. to first order in T: 

- = T(a, w] - T - . - - - . - = O. 04> (oal ow oal OW) 
0).. oq T=O op op r~O oq 

Hence, for infinitesimal transformations we have 

4>(0) = 4>(1) = 0, 

which yields 

a(q,p) + T[a, w) = a(q + T[q, 11'], p + T[p, 11')). 

Since lJw has the group property, this result can be 
iterated to yield (AI). 
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The following three statements about the zeros of the grand partition function of a lattice gas with 
negative (attractive) interactions are proved: (1) Not all the zeros will be on the unit circle in the high
temperature limit if forces of higher order than 2-body are included; (2) in the low-temperature limit they 
will, in general, lie on the unit circle; (3) it is possible to have the zeros dense in the complex plane. It is 
also shown that not all polynomials with positive coefficients and roots on the unit circle are a grand 
partition function of a lattice gas. 

Since Lee and Yangl proposed that the roots of the 
grand partition function for a lattice gas lie on the 
unit circle for attractive 2-body forces, there has 
been much speculation about the possibility of a 
similar theorem for more general forces. Also, the 
converse theorem that every polynomial with positive 
coefficients and roots on the unit circle is the grand 
partition function for some lattice gas has been 
considered as a conjecture. 

It will be shown that the possibility of conjectures 
of the first type is limited as follows: If higher-order 
interactions are included, then some of the roots will 
always lie off the unit circle for sufficiently high 
temperature if all forces are attractive. Furthermore, 
it is possible to devise interactions which distribute 
the roots all over the complex plane in such a manner 
that they become dense as n --+ 00. The second 

conjecture will be shown to be wrong by a counter
example. 

In order to simplify the notation, the mathemati
cally equivalent Ising-type model will be considered in 
place of the lattice gas. The most general Hamiltonian 
for 11 spins a j , iJ2 , ••• , an' which are I or -1, then 
reads 

n 

.JC = - L J It IT a k - H L a k • (1) 

(The summation over fl runs over all subsets of the 
11 spins. which contains at least two spins.) The first 
term represents interactions between the spins, while 
the second term is the interaction between the spins 
and a magnetic field H. We require 

JIt ~ 0, for all fl, 

in order that the system be ferromagnetic. 
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With 

(2) 

the partition function can be written as polynomial 
in Z2: 

n 

Z = A . z-nIa;z2n-2;, (3) 
;=0 

A = exp ((3 I J/1)' (4) 
JIEA n 

[#('1') is the number of spins in the set '1']. Since a 
necessary condition for Z(z) = 0 to have its roots on 
the unit circle is a j = a n-j and since this will in 
general be fulfilled only if JI, = 0 for #(ft) odd, the 
summation over ft in the following is restricted to 
#(ft) even. 

In order to prove the first statement, we expand a j 

in powers of (3: 

a) = vtin (I - 2(3 I,tin J /1 + 0(f3
2») 

#(d=J #(/1) CHIl 
#(I,nv) (HId 

(II) rh] (2/) (II - 21) . ~ = . - 2(3 :2 a21 I I . _ k + 0((3), (6) 
) 1=1 A'odd ( ] 

With 

a21 = I J/1' 
/1.Et!n 

#(/1)=21 

x = Hz + z-1), 

one has the following formulas: 

[Hz - Z-1)]2 = x2 
- 1, 

i (~)Z"-2j = 2nx n
, 

;=0 .I 

(7) 

(8) 

(9) 

(10) 

Using these formulas, we can write Z as a polynomial 
in x: 

[in1 [in] (I) ) 
Z = A2" (xn + (3 A~1 ( -I )k'x"--2/,;r~_ a2/ k + 0«(32) , 

(12) 

Since z being on the unit circle implies that x is real 
and since - I < x < I, it will be sufficient to show 
that Z(x) = 0 does ~ot have all real roots for (3 small 
enough. Since Z (aside from a factor x if II is odd) 

can be considered as polynomial in X2, Newton's 
inequaJity2 can be applied to the first three coefficients 
in this polynomial, giving the following necessary 
conditions for all the roots of Z(x) to be real: 

1 . ([tn] - 1)bi - [tn] . 2 . bo . b2 ~ 0, (13) 

bo = 1 + 0«(32), 

[!n] (I) 
bk = (_I)k(3I~' au k + 0«(32), k > o. (14) 

Since the first term in (13) is of the order (32, while 
second is of the order fJ, if a2l > 0 for some 1 > I, 
the inequality in (13) will always fail for sufficiently 
small fJ, if we have that J/1 ~ 0 for all ft and J/1 > 0 
for some ft such that #(fl) > 2. This concludes the 
proof of the following theorem: 

Theorem 1,' In the Ising model with nonnegative 
interactions of even order, if at least one interaction 
of higher order than two is different from zero, then 
for sufficiently high temperature the zeros of the 
partition function will not all lie on the unit circle. 

For smaIl T, however, one will generally have all 
the roots lying on the unit circle, if J/1 = 0 for #(ft) 
odd. In order to prove this, notice that, if in (5) the 
summation in the exponential contains at least one 
J/1 > 0 for each set 'I' with #('1') = j, then the corre
sponding a j can be made arbitrarily small by making 
fJ sufficiently large. This condition can be stated as 
follows: 

Condition 1,' A subset 'I' of n spins is said to fulfill this 
condition if there exists a subset ft such that #(ft () '1') 
is odd and J" > O. 

Suppose every '1', for which 1 ~ #('1') ~ n - 1, 
fulfills Condition 1; then for sufficiently small 
temperature 

n-1 
'1:,a j < 2. (15) 
;=1 

Again, writing Z as polynomial in x, we have 

n 

Z = ~:ajTln-2jl(x), (16) 
;=0 

where Tk(x) is the kth-order Tschebycheff polynomial 

Tk(X) = cos [k arccos (x)]. (17) 

Since (15) implies 



                                                                                                                                    

ZEROS OF GRAND PARTITION FUNCTION FOR LATTICE GAS 2703 

one has, for sgn Z, 

sgn [Z(x l)] = (_1)1, (19) 
for 

Xl = cos (hr/n), 1= 0, 1, ... , n. (20) 

This proves that Z(z) = 0 has 2n roots on the unit 
circle. Since the same will hold if the system of n spins 
is composed of several non interacting systems of 
spins, each of which has its zeros on the unit circle, a 
set Y may alternatively fulfill the following condition: 

Condition 2: A subset y of n spins is said to fulfill 
this condition if lit = 0 for all subsets p of the n spins, 
which are neither contained completely in y nor in the 
complement of y with respect to the n spins. 

The theorem can then be stated as: 

Theorem 2: In the Ising model for n spins with non
negative interactions of even order, if every subset of 
the n spins fulfills either Condition I or Condition 2, 
then for sufficiently low temperature all the zeros of 
the partition function will lie on the unit circle. 

To prove that roots can lie everywhere in complex 
plane, we consider first a system of 211 spins with only 
2nth-order interaction ]<2") and define 

y = exp [_tU(2n)]. 

The partition function for this case is 

Z = Ar2n [!(l + Y)(Z2 - 1 )2n 

(21) 

+ HI - Y)(Z2 - 1)2n], (22) 
with the roots 

z; = (ap + l)/(ap - 1), 

ap = exp (15/211) exp [i(1 + 2p)/2n], (23) 

15 = log [(1 - y)/(1 + )1)], p = 0, 1, ... ,211 - 1. 

If the exponentials are evaluated in a Taylor series, 
one finds that the root of maximum modulus becomes, 
for fixed y and large n, 

z~ "" 411/(15 + in). (24) 

Next we consider the case of 2n groups of m spins 
each with very strong 2-body interactions connecting 
all the spins within each group. The only other 

interaction shall be 2n-order interactions between one 
spin from each group. In the limit where the 2-body 
forces become infinite, the partition functions become 
identical to (22) with zm in place of z and J(2n) being 
the sum of the 2n-body interactions. By taking 
n = mm and then letting m -->- 00, it is easily seen that 
one has the following theorem: 

Theorem 3: In the Isin'g model with nonnegative 
interactions of even order in the limit of an infinite 
number of spins, the zeros of the partition function 
may become dense in the complex plane. 

Finally, for a counterexample to the second 
conjecture, consider 

(y + 1 )3(y2 - ty + 1) = y5 + iy4 + iy + 1. (25) 

This is clearly a polynomial with roots on the unit 
circle and nonnegative coefficients 

In order to make a2 = ° consistent with (5), some 
of the J" have to be 00. Since n = 5, only 2-body and 
4-body interactions have to be considered. Making 
one of the 4-body interactions 00 is not satisfactory 
since this implies a1 ~ 1. Next, trying only with 2-
body interactions, we see that J1,2 = J1,3 = J1,4 = 00 

is a choice which makes a1 as large as possible. In 
this case too, however, one has a1 < I, which con
cludes the proof of the following theorem: 

Theorem 4: Not all polynomials with positive 
coefficients and zeros on the unit circle are the parti
tion function for some Ising model with nonpositive 
(ferromagnetic) interactions. 
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1.'he e9uations of m?tion of the ph~sical 2-body problems of relativistic electrodynamics are differ
entIal-dIfference equatIOns. However, In the unphysical 2-body problem in which one particle responds 
only to retarded fields and the other only to advanced fields, the equations of motion are differential 
equations. These differential equations are solved in the center-of-momentum frame by the elementary 
me!hod of findi~g integrating ~actors. Solutio~s in an ~r?itrary Lorentz frame are found by a method 
whIch parametrIzes the world lInes on the partIcle velOCItIes. All of the constants of the motion contain 
interaction contributions; this appears to be a characteristic feature of relativistic particle dynamics. 

I. INTRODUCTION 

Existing intuition with respect to the interactions of 
charged particles is rooted primarily in the exactly 
solvable problems of a single particle in an external 
field (the nonrelativistic 2-particle problem is reduc
ible to this form). The only previously known exact 
solutions of a 2-body problem of relativistic electro
dynamics are the circular-orbit solutions found by 
Schild I for the case of half-retarded plus half-advanced 
interactions. Other known exact results take the form 
of existence and uniqueness theorems2 and include a 
demonstration by Driver that, for sufficiently large 
values of the product of initial relative velocity and 
initial separation, instantaneous specification of posi
tions and velocities guarantees existence and unique
ness for all time of the solution to the problem of two 
charges interacting via retarded fields (without radia
tion damping) where the motion is confined to one 
dimension as a consequence of initial conditions. 3 

Approximate methods which have been used include 
expansion of the equations of motion in powers of 
c- l about the nonrelativistic limit, expansion of the 
solutions in powers of the mass ratio of the two 
charges,4 and expansion of the equations of motion in 
powers of e2j(mc2r) (where r is the instantaneous 
interparticle separation in some Lorentz frame) about 
the free-particle limit.5 

It is the differential-difference structure of the 

of the constants of the motion and the presence of an 
asymptotically surviving interaction contribution to 
the constant associated with Lorentz invariance.6 We 
restrict ourselves to the case in which the particle 
motion is confined to one dimension as a consequence 
of initial conditions. Section II is devoted to the inte
gration of the equations of motion in the center-of
momentum frame. The resulting world lines are given 
by Eqs. (11)-(15). 

The possibility of an instantaneous interaction de
scription of particle motions in relativistic dynamics 
has been explored by Currie and by Hill.5 One result 
of this exploration is a convenient Lorentz-invariant 
parametric representation of the world lines of a 1-
dimensional 2-particle problem. 7 This representation 
permits exploration of a Hamiltonian formulation of 
the dynamics, which is necessarily an instantan
eous-interaction description, because Hamilton's equa
tions are differential equations. Section III obtains 
this parametric representation for the dynamics of 
Sec. II; the general results are given by Eqs. (16), 
(30)-(32), (34), (35), (37), and (41), with the explicit 
parametric representation of the world lines in the 
center-of-momentum frame given by Eqs. (45) and 
(52). These results conform to the general framework 
of Ref. 7. 

II. AN EXACTLY SOLVABLE ELECTRO
DYNAMIC 2-BODY PROBLEM 

equations of motion which makes most electrody- We consider two-point particles of masses m l and m2 

namic 2-body problems hard to handle. We consider and charges el and e2 in three dimensions whose 
here the one electrodynamic 2-body problem which is motion is confined to one dimension as a consequence 
without this difficulty-the problem in which one of the initial data. In this case, the magnetic and radia
particle responds only to retarded fields and the other tion fields due to one particle vanish at the location of 
particle responds only to advanced fields. Despite the the other. We consider only the case ele2 > 0, set 
unphysical nature of this problem, the results shed c = I, and assume that always Xl > X 2. The Lienard
light on certain aspects of relativistic particle dynamics, Wiechert expressions8 for the fields of a point charge 
such as the presence of interaction contributions to all yield, for the retarded and advanced fields (EI)ret and 

2704 
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t2r = tl - [Xl(tl) - X2(t2r)], (1 c) 

t2a = tl + [Xl(tl) - X2(t2a)]. (1d) 

The fields (E2)ret and (E2)adv, at particle 2 due to 
particle 1, are 

(E2)ret = - el 2(1 - VI(tlr»), (2a) 
[XI(tlr) - X2(t2)] 1 + Vl(tlr) 

tlr = t2 - [Xl(tlr) - X 2(t2)], 

tla = t2 + [Xl(tla) - X2(t 2)]· 

(2b) 

(2c) 

(2d) 

We distinguish two exactly solvable cases. In case (A), 
particle 1 responds only to advanced fields and par
ticle 2 only to retarded fields. In case (B), which is 
case (A) time reversed, particle 1 responds only to 
retarded interactions and particle 2 responds only to 
advanced interactions. 

By inserting the appropriate fields from Eqs. (1) 
and (2) in the relativistic equations of motion 

d ( mivi( til ) 
dt; [1 _ V;(ti)]! = eiEi

, 
(3) 

we obtain 

d ( mlvl(tl) ) ele2 (1 + (}V2(t2») 
dt1 [1 - V~(tl)]! = [X1(t1) - X2(t2)]2 1 - (}V2(t2) , 

(4a) 

d ( m2vlt2) ) ele2 (1 + ()VI(tI») 
dt2 [1 - V;(t2)]! = - [XI(tl) - X 2(t2)]2 1 - (}Vl(tl) , 

(4b) 
with the light-cone condition 

tl - t2 = ()[Xl(t1) - X2(t2)]· (4c) 

In case (A), () == -1; in case (B), () == + 1. 
The light-cone condition (4c) implies that differ

entiation with respect to ti is related to differentiation 
with respect to t2 by 

dt2 = 1 - OVl(tI) (5) 

Conserved quantities H, P, and K can be found by 
the elementary method of looking for integrating 
factors, if (5) is used to rewrite the equations in terms 
of a single time. The conserved quantities, which we 

identify respectively as energy, momentum, and the 
constant of the motion associated with Lorentz invari
ance, are 

H = ml (1 - vi)-! + ml1 - v;)-! 

+ ele2(xi - X2rt. (6) 

P = mIvI(1 - vir! + m2v2(1 - v~r! 
- Oel e2(xl - x2)-t, (7) 

and 

K = ml(x1 - V 1tl )(1 - vi}-! 

+ m2(x2 - V2t2)(1 - vn-! 

+ !el e2(x l - X2)-I[Xl + X 2 + (}(tl + t2 )]. (8) 

By Lorentz-transforming Xi' ti , and Vi in the conven
tional manner, one can show that Hand P form a 2-
vector while K is an invariant (or, equivalently, the 
one nonvanishing component of an antisymmetric 
2-tensor). Algebraic elimination among Eqs. (6)-(8) 
in the center-of-momentum frame P = 0 yields 

ml(1 - vi)-! + e1e2(m2/E)2[xl - (K/E) - (ele2/E)rl 

= UE + (milE) - (m~/E)] (9) 
and 

ml1 - v;r! + ele2(ml/E)2[-x2 + (K/E) 

- (ele2IE)r1 = UE - (milE) + (m;/E)], (10) 

where E = (H2 - P2)! is the invariant center-of
momentum frame energy. Equations (9) and (10) have 
the form of energy conservation laws for a particle in 
a fixed Coulomb field with the unusual feature that the 
strength and location of the fixed Coulomb field 
depend on E. 

Equations (9) and (10) can be readily integrated to 
yield the world lines. The result can be written con
cisely by introducing the parameters 

p, == E4 + mf + m: - 2E2m; - 2E2m: - 2mim~, 

bi == 4p,-lmlm~ele2' 
b2 == 4p,-lm~m2eIe2' 

and the new variables 

YI == Xl - K/E - (ele2/p,E)[(E2 - mil- m~], 

(11) 

Y2 == X 2 - KIE + (ele2/p,E)[(E2 
- mD2 

- m:J. (12) 

The turning points are at YI = bl and Y2 = -b2 ; the 
solutions are 

ti - tlO = 01 {p,-!(E2 + m; - mD(y; - bD! 

+ 8p,-%ele2mim:E tanh-1 [YII(y~ - b~)!]}, 
(13) 

t2 - t20 = 02{p,-!(E2 - m~ + m~)(y~ - b~)! 
- 8p,-ieIe2mim:E tanh- I [Y21(y~ - b~)!]}, 

(14) 



                                                                                                                                    

2706 R. A. RUDD AND R. N. HILL 

where (Ji = -1 for ti < tiO and (Ji = +1 for ti > fiO. 

The integration constant tiO is the turning time of the 
ith particle. 

The set of integration constants H, P, K, flO' t20 

cannot be independent since we began with a pair of 
second-order ordinary differential equations whose 
solution should involve only four constants. The time
translation invariance implies that the sum of turning 
times t10 + 120 is independent of H, P, and K; hence, 
the difference tlO - t20 must be dependent on Hand 
P. The calculation of the Appendix shows that 

tlO - t20 

= 8{2e1e2Eft-\E2 - m~ - m~) 

- 8ft-!e1e2mim~E tanh-1 [ft!(E2 - mi - mi)-l]}. 

(15) 

III. PARAMETRIC FORM OF THE WORLD 
LINES 

Differential conditions which guarantee the Lor
entz invariance of instantaneous action-at-a-distance 
relativistic dynamics have been given by Currie and by 
Hill. 5 The general solution of these conditions for the 
special case of two particles in one dimension has been 
obtained by Hill, and the resulting equations of motion 
integrated to obtain a convenient parametric form for 
the world Iines.7 In this section, we consider the 
specialization of these general results to the 2-body 
problems of Sec. II. 

We begin by summarizing the relevant general 
results from Ref. 7. Two functions f(~, nand g('1, ~) 
define a Lorentz-invariant four-constant family of 
pairs of world lines 

Here, ~ and '1 are Lorentz-invariant parameters for 
the two world lines; C1 , C2 , <1>, and ~ are the four con
stants of the motion. The Lorentz invariance can be 
easily verified: 

Under the transformation ti ---* r; = ti + to (time 
translation), 

C1 ---* c~ = C1 + to, 

C2 ---* c~ = C2 - to, 

and <1> and ~ are left unchanged. Under the transforma
tion Xi ---* X; = Xi + Xo (space translation), 

Ci ---* C; = Ci + Xo, 

and <1> and ~ are left unchanged. Under the transforma
tion 

and 

ti ---* t; = (t i - vxi)(l - V2)-! 

(pure Lorentz transformation), 

C1 ---* c{ = c1(1 - v)!(1 + v)-!, 

C2 ---+ c~ = c2(1 - vf!(1 + v)!, 

<1> ~<1>' = <1>(1 - v)(1 + v)-I, 

and ~ is left unchanged. 
The velocities of the particles are given by 

VI = (<1> - ~)/(<1> + ~), (l7a) 

V2 = (<1> - '1)/(<1> + '1). (17b) 

Because <1> is a constant of the motion, it is clear from 
(17) that parametrizing the world lines on ~ and '1 is 
essentially a Lorentz-invariant way of parametrizing 
the world lines on the particle velocities. The choice of 
a numerical value for <1> picks out an inertial frame. 
The fields Ei at the locations of the particles, obtained 
from Ei = miaiei1(l - v7)-!, are 

1 m1 _3(0'1)-1 
E=---~'J-

1 2 e1 oe (18a) 

and 

E2 = ! m2 '1_!(02g)-I. (18b) 
2 e2 0'12 

We define functions 0:( ~, 'Yj, ~) and f3( ~, 'Yj, ~) by 

of og 
0: == f - ~ o~ + g - '1 0'Yj , (19a) 

f3 == of + og. (19b) 
a~ 0'Yj 

Then it is easily shown by equating (l6b) and (l6d) 
that the relation between ~ and 'Yj for which the par
ticles' world points are simultaneous in the frame 
specified by <1> is given by 

0: = <1>f3. (20) 

It can also be shown from (16) and (19) that the light
cone condition t1 - 12 = Xl - X 2 is equivalent to 

rx(~, 'Y/, ~) = 0, (21) 

while '1 - f 2 = - (Xl - x 2) is equivalent to 

f3(~, 'Yj, ~) = o. (22) 
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Equations (21) and (22) can also be obtained from 
(20) by letting <I> approach 0 or 00 to get the limiting 
inertial frames in which the world points connected by 
one or the other light-cone conditions are simultan
eous. 

The fields given by Eqs. (1) and (2) can be rewritten 
in parametric variables by the use of (16), (17), (19), 
(21), and (22). The result is 

(EI)ret = 4e2['1ret(~' m-I{t1[~, '1reM, 0, m-2
, (23a) 

(EI)ady = 4e2'1ad"(~' ~){Ct[~, '1ad"(~' 0, m-2
, (23b) 

(E2)ret = -4eI~ret('1, O{Ct[~ret('1, ~), '1, m-2, (24a) 

(E2)ady = -4eI[~ad"('1, O]-I{t1[~adY('1' ~), '1, m-2, 

(24b) 

where '1reta, 0 and ~adv(1], ') are obtained by solving 
Ct = 0 for '1 and for ~, respectively, while 1]adv(~' 0 
and ~ret('1, 0 are obtained by solving t1 = 0 for '1 
and for ~. Equations which specify /(~, 0 and g('1, 0 
for various electrodynamic 2-body problems now 
follow from equating (l8a) to an appropriate linear 
combination of (23a) and (23b) and (I8b) to a linear 
combination of (24a) and (24b). The resulting equa
tions are again differential-difference equations, ex
cept in the two cases solved in Sec. II. 

We consider case (A) [E1 = (EI)adv, E2 = (E2\etl 
first. The equations to be solved are 

o"iA 1 ( )-II:-! -1 2 Oe = -jfm I eI e2 " 1] Ct, 

02gA 1. ( )-1 t-I -! 2 
-2 = -8m2 eI e2 " '1 Ct, 
0'1 

(25a) 

(25b) 

with '1 and ~ related by t1 = O. The relation between 
~ and 1] can be made explicit by differentiating t1 = 0 
and using (25) to obtain 

d1] = _ (O"iA) (a2gA)-I = _ ml ~-i'1i. (26) 
d~ ae a'12 m2 

Integration yields 

mI~! + m2'Y}! = A-1a), (27) 

where the integration constant A is an arbitrary func
tion of ~. Next, we obtain Ct. By differentiating (19a) 
and using (25), it follows that 

dCt = i()(2(e1e2)-1(ml ~-!17-1 d~ + m2~-lYj-! dYj). (28) 

Equation (28) can be integrated with the aid of (26) 
and (27) to obtain 

ct = -4ele2[ml~-! + m21]-! - CWA(O]-l, (29) 

where the integration constant c depends arbitrarily 
on ,. Equations (27) and (29) can be used to express 

the right-hand side of Eq. (25a) for 02f/O~2 completely 
in terms of ~. Integrating twice with respect to ~ then 
yields 

f'>.(~, ~) 

4 A2[2 2 -It! + 1. -lA-I( 2 2) = el e2 mlm2v " 2V c - mi - m2 

+ 2mim~v-!(1 - cN~) In w,mll + ~h + /2' 
(30) 

(31) 

and 

(32) 

The integration constants hand h are arbitrary 
functions of ,. From Eqs. (19) and t1 = 0, it follows 
that 

gA = ct - /A + (~ - 17)a/A/O~. (33) 

Equation (27) can be used to express the right-hand 
side of (33) completely in terms of '1. The result is 

gA(1], ') 

4 A2[2 2 -I! + 1 -IA-I( 2 2) = e1eZ m1m2v 17 2 V C - mi - m2 

+ 2m;m~v-!(1 - cN'1) In Wll])/l -1]ft - /2' (34) 

where 

r ( ) = 2m2CN'1! - (c - m; + mDA + vi 
g'1 -! l' (35) 

2mzcA2'1] - (c - mi + mi)A - v~ 

Next, we consider case (B) [EI = (EI)ret' E2 = 
(E2)advl. The equations to be solved are now 

o"iB 1 ( )-It-! RZ ae = -8m l el e2 " '11', 

OZg 
B 1 ( )-11: -!R2 

-2 = -8mZ e1eZ "17 1" 
O'Y} 

(36a) 

(36b) 

If we introduce new dependent and independent vari
ables according to ~' = ~-I, 1]' = '1]-1, f' = ~-IJ, and 
g' = '1-lg, we find that ct' = t1, t1' = ct, and that cases 
(A) and (B) are interchanged. Hence, the solutions of 
(36) can be found from those already obtained for 
(25); they are 

/B(~, ') = ~f;,.(~-I, '), 

gB(Yj, '> = YjgA('1-1
, ,>. 

(37a) 

(37b) 

We see from (39) that! and aj/a~ are infinite when 
either rIa) = 0 or rtC~) = 00. It is clear from the 
parametric form of the world lines given in (16) that 
these infinities of f and af/o~ must correspond to 
Xl = 00, 11 = TOO before and after the collision.9 
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We use a subscript b to refer to t = - 00 and a sub
script a to refer to t = + 00. I n order to distinguish 
~a and ~b' we note that with $ > 0, V1b < VIa' when 
combined with (17a) yields ~b > ;a' Hence 

i -! A2 -1[( 2 2)A t] 
;bA = ;alJ = (2m1c ) c + 1111 - 1112 + V , 

(38a) 
i -! 2 -1 2 2 A i 

;a.\ = ;011 = (2m1cA) [(c + 1111 - m2) - v ]. 

(38b) 
Similarly, V2b > V2a implies 'YJb < 'YJ,,; then 

! -i (2 \2)-1 [( 2 + 2)A t] 'YJbA = 'YJaB = 111 2Cl C - 1111 m2 - v , 

(39a) 
i -!. A2 -1 ( 2 2 A !] 

'YJaA = 'YJbB = {2m2c ) [c - m1 + m2) + v . 

(39b) 

Asymptotically as t -+ ± 00, Hand P approach their 
free-particle values 

The invariant center-of-momentum-frame energy also 
approaches its free-particle value 

and, by using (17), we then find that 

2 2 2 ! -i -! ! 
E = m1 + m2 + m1m2(;b'YJb +;b 'YJb) 

2 2 ! -! -! ! 
= ml + m2 + mlm2(;a'YJa + ~a 'YJa)· (40) 

By using (38) and (39) in (40), we discover that 

used, one finds that 

$;;-I~A = <l>C]1l1 = CA2 = E2A 2. (44) 

The parametric form of the orbits in the center-of
momentum frame can now be found. We consider 
case (A) first. The use of (30), (31), (41), (42), and 
(44) in (16a) and (16b) produces 

Xl = U(c1 + E-1A-Y;) + (c2 + EA!2)] 

+ 2ele2f.l-lE-l{ -m~(E2 + mi - mD 

+ iE2(E2 - m~ - mD 

+ m~f.lA~![A;!(E2 + mi - m~) 
- ml(1 + E2Nm-1

}, 

tl = Hec i + E-IA-Y'l) - (c2 + EA!2)] 

+ 2ele2f.l-IE-I{ _!E2(E2 - mi - mD 

+ mlm~(E2 + m~ - mD(l - E2N;) 

(45a) 

X [A;!(E2 + mi - mD - ml(l + E2A2;)rl 

- 4m~m~E2f.l-! In jrf(~)I}. (45b) 

The demonstration that the parametric form of the 
center-of-momentum-frame world line given in (45) 
agrees with the form given by (13) can be made by 
noting that YI, as defined by (12), equals bl [defined 
in Eq. (11)] at the turning point, where VI = 0. It 
follows from (l7a) and (44) that the center-of-momen
tum-frame turning point occurs at ; = ~tpA in case 
(A) where 

;tPA = $cPA = E-2A-2. (46) 

The use of (46) in (45a) shows that the value of Xl at 
the turning point is 

(41) xltp = H(cI + E-1A-y;) + (c2 + EA!2)] 

Equations (11), (32), and (41) then imply that 

v = f.lA2. (42) 

The other three functions of integration in! and 
g [Am, hW, and/2m] cannot be identified asymp
totically and are a manifestation of the redundancy in 
the parametric representation.1o 

An asymptotic evaluation also shows that 

i i 'h-~ l--! -! m! p = -t(ml~b + m21)b)'V + t(ml"b + m2rlb )'V 
t ! m-i (t-! -!)mi = -Hm1;" + m2'YJ,,)'V + t m1"" + m21)" 'V. 

(43) 

The value $cp which $ takes on in the center-of
momentum frame can be found by setting P = 0 in 
(43) and solving for $; if (38), (39), and (41) are then 

+ bl + e1e2f.l-IE(E2 - mi - m~). (47) 

Thus, we must have 

(48) 

It can now be shown, by using (11), (45a), (47), (48), 
and the definition of 0i which follows (14), that 

OI(Y~ - bi}! 
2e1e2f!-!E- I m1m;(1 - E2N;) 

(49) 

It follows from (31), (38a), (45a), and (47)-(49) that 

rrC;) = at - ;!A)/(;! - ~tA) 
= -;;A;~~~JYt - Ol(yi - bi)!]! 

x [Yl + Ol(yi - bi)!r!. (SO) 
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The use of (38), (49), and (SO) in (4Sb) yields the form and 
(13) for the world line with 

foCt]) = ('YJ! - 'YJrA)/(t]! - 'YJ!A) 

t lO = H(c i + E-lA-Yl) - (c2 + EA/2)] 

- el e2P,-l E(E2 
- m~ - m~) 

8 2 2E -! t h- l [ !(E2 + 2 2)-1] + ele2mlm2 P, an p, ml - m2 . 
(SI) 

A considerable amount of the labor involved in carry
ing out the details of algebraic manipulation required 
to obtain the world line of particle 2 can be avoided by 
noting, from inspection of (16), (30), (31), (34), and 
(3S), that the interchange of ml and m2 and the re
placement of ~ by 'YJ carry I into g + 2( 'YJ 11 + 12)' 

into 

and 

into 

Xl - H(CI + E-IA-lj'l) + (C2 + EA/2)] 

-X2 + H(cl + E-IA-lj'l) + (c2 + EA/2)], 

tl - H(cl + E-lA-lj;) - (C2 + EA/2)] 

-t2 + H(cl + E-lA-lj'I) - (c2 + EAh)]. 

Hence, (4S) is replaced by 

X2 = H(c i + F"IA-Y;) + (c2 + EA/2)] 

+ 2ele2p,-IE-I{m~(E2 - m~ + m~) 
- tE2(E2 - m~ - mD 

- m~p,A'YJ![A'l(E2 - mi + mD 

- m2(1 + E2N'YJWI}, (S2a) 

t2 = H(c i + E-IA-YI) - (c2 + EA/2)] 

+ 2ele2P,-IF"I{tE2(E2 - mi - mD 

- m~m2(E2 - mi + mD(1 - E2N'YJ) 

X [A'YJ!(E2 - m~ + mD - m2(1 + E2N'YJWI 

+ 4m~m~E2p, -! In Wi'YJ)I}. (S2b) 

The turning point is at 

(53) 
where 

X2tp = H(ci + E-IA-Y;) + (c2 + EA/2)] 

- b2 - ele2P,-lE(E2 - m~ - m~). (54) 

The remaining calculations go through as for particle 
1; we have 

(55) 

e2(Y~ - b~)t 
2el e2/l -tE-lm~m2(1 - E2N'YJ) 

= - --,-~~----~~------~---
A'YJt (E2 - mi + m~) - m2(1 + E2N'YJ) , 

(56) 

! -i[ e (2 b2)!]! = -'YJbA'YJaA Y2 - 2 Y2 - 2 

X [Y2 + e2(Y~ - b~)tr!. (57) 

Using these in (52b) produces an expression for the 
world line of the form (14) with 

t20 = H(cl + E-lA-~) - (c2 + EA/2)] 

+ ele2P,- IE(E2 - m~ - m~) 

- 8ele2mim~Ep, -! tanh- l [p,!(E2 - m~ + m~rl]. 
(58) 

The result (15) for the difference in turning times fol
lows from (11), (51), and (58). 

The same change of variables (~' = ~-l, 'YJ' = 'YJ- l , 

f' = ~-y, and g' = 'YJ-lg) which was used to obtain 
/B and gB from IA and gA can be used to obtain the 
world lines for case (B) from the world lines for 
case (A). Under this change of variables, 

Taking account of (44), we see that the effect of this 
change of variables, which interchanges cases (A) and 
(B), is to interchange cp!af/a~ with cp-!(f - ~afla~) 
and cp!ag/a'YJ with cp-!(g - 'YJag/a'YJ). It now follows 
from (16) that this interchange carries Xi -Hcl + c2) 

into itself while carrying ti - HCl - c2) into its 
negative. Hence, the form of the world lines for 
case (B) is the same as for case (A), but the sign of 
tlO - t20 is reversed. This agrees with the results of 
Sec. II. 

It can be readily verified that thefandg obtained in 
this section exhibit the behavior for ~ near ~b and for 
'YJ near 'YJb which was deduced in Ref. 7 [Eq. (151)]. A 
Hamiltonian formulation of the present dynamics can 
be obtained by insertingfand g into the general results 
of Ref. 7. If this is done, it will be found that the 
constants Hand P of Sec. II, which are made unique 
by the demand of asymptotic reduction to free-particle 
form, agree with the Hand P of Ref. 7. However, the 
constant K of Sec. II, which cannot be made unique 
by the demand of asymptotic reduction to free-particle 
form, differs from the K of Ref. 7 by a constant which 
depends on ,. 
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APPENDIX: COMPUTATION OF THE DIFFER
ENCE IN TURNING TIMES tlO - t 20 

Comparison of the sum of Eqs. (9) and (10) with 
Eq. (6) yields 

(m21 E)2 (mIl E)2 

X1(tl) - KIE - e1e21E X2(t2) - KIE + e1e21E 

I =----- (AI) 
X 1(tl) - X 2(t2 ) 

It follows from clearing fractions in (AI) and intro
ducing the variables Yj defined by (12) that 

m~y~ + (E2 - m~ - mDYIY2 + m~y~ 
+ (2mlm2ele2)2,u-l = O. (A2) 

Equations (A2) can be solved for either Yl or Y2 , with 
the results 

2m;Yl = _(E2 - mi - m~)Y2 + ,ut9?lY~ - bDt , 

(A3) 

2m~Y2 = _(E2 - mi - m~)Y1 + ,ut9?l(yi - b~)t, 
(A4) 

where the 9?j are ± 1. For 11, 12 -+ ± 00, Yl -+ + co 
and h -+ - co. Consistency between (A3) and (A4) 
then requires that 9?1 = 9?2 in these limits; continuity 
implies that 9?j can change sign only at the turning 
points Yt = b1 and Y2 = - b2 • 

It can be shown from Eqs. (A2)-(A4) that 

9?1,u-t(E2 + mi - m~)(y; - bDt 

-t(E2 2 + 2)( 2 b2)t - 9?2,u - ml m2 Y2 - 2 = Yl - Y2 (AS) 

and 

- [Yl + 9?1(Y~ - bi)t][Y2 + 9?2(Y; - bDt] 

= 8(mlm2ele2)2,u-2(,u! + E2 - m~ - mD. (A6) 

Equation (A6) and the relations 

9?j tanh-1 [Yil(y~ - b~)t] 
= In Ibi1[Yi + 9?;(Y~ - b~)t]l, 

t h-' [ t(E2 2 2)-1] an ,u - m1 - m2 

= In [(2m1m2)-\,ut + E2 - mi - m~)] 

now yield the result 

2 

L 9?j tanh-1 [Yil(y~ - b~)t] 
i=1 

= tanh-1 [,ut(E2 - m~ - m~rl]. (A7) 

By the use of (12), (AS), and (A7) in the light-cone 
condition (4c), it follows that 

tl - t2 

= e9?I{,u-t(E2 + m~ - m~)(y~ - b~)t 
+ 8,u -iele2mim~E tanh-1 [Yl1(y~ - bi}!]} 

- 89?2{,u -t(E2 - m~ + m~)(y~ - b~)t 
- 811--iele2mim~E tanh-1 [Y2\Y~ - b~)t]} 
+ e{2ele2E,u-l(E2 - mi - m~) 

- 8,u -iele2m~m~E tanh-1 [,ut(E2 - mi - m~rl]}. 
(A8) 

A comparison of (A8) with the result of subtracting 
Eq. (4) from Eq. (13) shows that 9?j = ee j and yields 
Eq. (15). 

• Section III is based on a thesis submitted to the University of 
Delaware in partial fulfillment of the requirements for a M.S. degree 
awarded in June, 1969. 
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Wavefunctions for He, Li+. Be2+, and Q6!- are presented. They were determined by using reduced 
modified Bessel functions of the second kind, k.(qr). The z dependence of energies calculated using such 
functions for high values of z is found to be the same as for the Hartree-Fock functions. 

Bishop and Somorjai1 have recently shown that the 
ground-state energies of the helium series calculated 
with k.(qr) functions are in excellent agreement with 
the best Hartree-Fock values.2 The functions k.(qr) 
are reduced modified Bessel functions of the second 
kind and are defined by 

k.(qr) = (qrY K.(qr), 

where K.(x) is the normal modified Bessel function of 
the second kind. The parameters v and q were optim
ized variationally! for He, Li+, Be2+, and 06+ for a 
total wavefunction of the form 

where 

and r1 and '2 are distances of the two electrons from 
the nucleus. The normalization constant N is given by 

N-2 = 22\'Hq-37T[r(V + lWB(2v + t, t), 
where B(x, y) is the beta function. 

The excellence of the energy results has encouraged 
us to verify whether or not the wavefunction itself is 
equally satisfactory. We have therefore evaluated the 
radial function 

Pm:(r) = rNk.(qr) 
for which 

47T f" P~s(r) dr = 1, 

for several values of r and using the optimized values 
of q and v which were found before. l In Table T, we 
display for various r values both PBS(r) and the 
difference between PBS(r) and the best Hartree-Fock 
values, given by Roothaan, Sachs, and Weiss2, 
PHF(r). The latter values were normalized such that 

47T LX) P;n,(r) dr = 1 

and were obtained from the equations 

P () 
_ ~ C;R;(r) 

HF r - r .t. ' 
47T 

R;(r) = [(2ni!wi(ni)l1i+irl1i-le-~ir. 

It should be noted that the n;'s in Table VI of Ref. 2, 
are, in fact, ni - I and that for z = 3 of the same 
table it appears to us that the first two columns of 
coefficients (C;) should be interchanged. 

Table I shows that the difference between the two 
wavefunctions (~) is strikingly small, in spite of the 
fact that k.(qr) function contains only two parameters, 
whereas the Hartree-Fock function for He, for 
example, contains two ~ values and eleven linear 
coefficients. It would appear that, as well as producing 
good energies, the k.(qr) basis set also gives quite 
accurate wavefunctions. 

It was apparent from the previous work1 that, as z, 
the nuclear charge, increased, the ground-state energies 
of these two-electron systems were improved; we have 
now determined the energies for some high z values 
(10-100) to determine whether we approach the same 
z limit as the Hartree-Fock case. The optimized q and 
v values together with the energies are given in Table 
II. We find that the difference between our energies 
and -Z2 + iz is practically constant (0.1089 a.u.), and 
we may therefore write 

E = -Z2 + iz - 0.1089 

for high z values. This can be compared with the 
result of Linderberg3 who has calculated the Hartree
Fock energy to be 

E = _Z2 + iz - 0.11100317 - 0.OO105525z-1. 

It is apparent that for high z values our energies will 
approach the Hartree-Fock values. 

The evidence given here supports the contention 

2711 



                                                                                                                                    

TABLE I. Radial functions for He, Li+, Be1+, and 0'+. 

He Li+ 
r(a.u.) 

BeH 06+ 

PBs(r) a& PBs(r) a PBS(r) .1 PBs(r) .1 

0.01 0.01375 0.00061 0.02599 0.00063 0.04042 0.00060 0.11343 0.00044 
0.02 0.02662 0.00085 0.05000 0.00079 0.07715 0.00062 0.20876 0.00010 
0.03 0.03880 0.00091 0.07237 0.00072 O.1l074 0.00041 0.28874 -0.00034 
0.04 0.05038 0.00085 0.09327 0.00054 0.14150 0.00011 0.35538 -0.00068 
0.05 0.06141 0.00071 0.11282 0.00030 0.16966 -0.00021 0.41036 -0.00089 
0.10 0.10961 -0.00041 0.19326 -0.00094 0.27785 -0.00134 0.55538 -0.00027 
0.15 0.14825 -0.00148 0.25036 -0.00150 0.34373 -0.00128 0.56656 0.00093 
0.20 0.11921 -0.00214 0.28955 -0.00135 0.37939 -0.00050 0.51501 0.00134 
0.25 0.20380 -0.00235 0.31480 -0.00073 0.39350 0.00047 0.43955 0.00098 
0.30 0.22304 -0.00218 0~32920 0.00009 0.39244 0.00130 0.36051 0.00029 
0.35 0.23775 -0.00174 0.33518 0.00093 0.38096 0.00184 0.28768 -0.00043 
0.40 0.24861 -0.00122 0.33468 0.00164 0.36261 0.00206 0.22500 -0.00099 
0,45 0.25621 -0.00041 0.32925 0.00217 0.34000 0.00200 0.17331 -0. ()() 137 
0.50 0.26102 0.00033 0.32014 0.00250 0.31505 0.00172 0.13189 -0.00157 
0.55 0.26348 0.00105 0.30836 0.00262 0.28916 0.00129 0.09940 -0.00162 
0.60 0.26394 0.00171 0.29471 0.00256 0.26332 0.00078 0.07431 -0.00156 
0.65 0.26272 0.00228 0.27984 0.00235 0.23820 0.00024 0.05518 -0.00!43 
0.70 0.260\0 0.00275 0.26424 0.00202 0.21428 -0.00030 0.04074 -0.00126 
0.75 0.25630 0.00311 0.24833 0.00161 0.19182 -0.00079 0.02993 -0.00107 
0.80 0.25154 0.00336 0.23241 0.00114 0.l7l00 -0.00124 0.02189 -0.00089 
0.85 0.24599 0.00352 0.21672 0.00065 0.15188 -0.00162 0.01595 -0.00073 
0.90 0.23981 0.00357 0.20144 0.00014 0.13445 -0.00193 0.01158 -0.00059 
0.95 0.23313 0.00353 0.18670 -0.00035 0.11868 -0.00217 0.00839 -0.00047 
1.00 ·0.22607 0.00342 0.17259 -0.00082 0.10448 -0.00235 0.00606 -0.00038 
l.OS 0.21873 0.00323 0.15918 -0.00126 0.09177 -0.00246 0.00436 -0.0003J 
1.l0 0.21120 0.00299 0.14651 -0.00167 0.08043 -0.00253 0.00314 -0.00025 
1.15 0.20355 0.00269 0.13458 -0.00203 0.07035 -0.00254 0.00225 -0.00020 
\.20 0.19584 0.00236 0.12341 -0.00234 0.06143 -0.00252 0.00161 -0.00016 
1.25 0.18813 0.00200 0.1l299 -0.00261 0.05355 -0.00247 0.00115 -0.00013 
\.30 0.18047 0.00161 0.10329 -0.00284 0.04661 -0.00239 0.00082 -0.00010 
1.35 0.17289 0.00121 0.09429 -0.00302 0.04052 -0.00229 0.00059 -0.00008 
lAO 0.16542 0.00080 0.08597 -0.00316 0.03517 -0.00218 0.00042 -0.00006 
1.45 0.15810 0.00039 0.07830 -0.00327 0.03050 -0.00206 0.00030 -0.00004 
1.50 0.15094 -0.00002 0.07123 -0.00334 0.02641 -0.00193 0.00021 -0.00002 
1.55 0.14396 -0.00042 0.06473 -0.00339 0.02285 -0.00180 0.00015 -0.0000\ 
1.60 0.13718 -0.00081 0.05877 -0.00340 0.01975 -0.00167 0.0001l 0.00000 
}.65 0.13060 -0.00119 0.05330 -0.00339 0.01706 -0.00155 0.00007 0.00001 
1.70 0.12424 -0.00155 0.04831 -0.00336 0.01472 -0.00142 0.00005 0.00002 
1.75 0.1l809 -0.00189 0.04375 -0.00331 0.01269 -0.00131 0.00004 0.00002 
1.80 0.H211 -O.0022l 0.03959 -0.00324 0.01093 -0.00119 0.00003 0.00003 
1.85 0.10647 -0.00250 0.03580 -0.00317 0.00941 -0.00109 0.00002 0.00003 
1.90 0.10100 -0.00278 0.03235 -0.00308 0.00810 -0.00099 0.00001 0.00003 
1.95 0.09575 -0.00304 0.02922 -0.00298 0.00696 -0.00089 
2.00 0.09072 -0.00327 0.02637 -0.00287 0.00598 -0.00081 
2.05 0.08590 -0.00348 0.02378 -0.00276 0.00513 -0.00073 
2.10 0.08\30 -0.00366 0.02144 -0.00265 0.00441 -0.00066 
2.IS 0.07691 -0.00383 0.01932 -0.00253 0.00378 -0.00059 
2.20 0.01272 -0.00397 0.01740 -0.00242 0.00324 -0.00053 
2.25 0.06872 -0.00410 0.01566 -0.00230 0.00278 -0.00047 
2.30 0.06492 -0.00420 0.01409 -0.00218 0.00238 -0.00042 
2.35 0.06\30 -0.00429 0.01268 -0.00207 0.00204 -0.00038 
2.40 0.05786 -0.00435 0.01140 -0.00196 0.00174 -0.00034 
2.45 0.05459 -0.00441 0.01024 -0.00185 0.00149 -0.00030 
2.50 0.05149 -0.00444 0.00920 -0.00174 0.00127 -0.00027 
2.5S 0.04855 -0.00446 0.00826 -0.00164 0.00109 -0.00024 
2.60 0.04576 -0.00447 0.00742 -0.00155 0.00093 -0.00021 
2.65 0.04312 -0.00447 0.00665 -0.00145 0.00079 -0.oooJ9 
2.70 0.04061 -0.00445 0.00597 -0.00136 0.00068 -0.00016 
2.75 0.03824 -0.00442 0.00535 -0.00128 0.00058 -0.00014 
2.80 0.03600 -0.00439 0.00480 -0.00120 0.00049 -0.00013 
2.85 0.03388 -0.00434 0.00430 -0.00112 0.00042 -0.00011 
2.90 0.03188 -0.00429 0.00385 -0.00105 0.00036 -0.00010 
2.95 0.02998 -0.00423 0.00345 -0.00098 0.00031 -0.00008 
3.00 0.02819 -0.004\6 0.00309 -0.00092 0.00026 -0.00007 
3.05 0.02651 -0.00409 0.00277 -0.00086 0.00022 -0.00006 
3.10 0.02491 -0.00401 0.00248 -0.00080 0.00019 -0.00006 
3.15 0.02341 -0.00393 0.00222 -0.00075 0.00016 -0.00005 
3.20 0.02200 -0.00385 0.00198 -0.00070 0.00014 -0.00004 
3.25 0.02066 -0.00316 0.00177 -0.00066 0.00012 -0.00003 
3.30 0.01940 -0.00367 0.00159 -0.00061 
3.35 0.01822 -0.00358 0.00142 -0.00057 
3.40 0.01710 -0.00348 0.00127 -0.00054 

" ~ .. PBS([') - PHF(n. 
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TABLE II. Parameter values and energies for some that kyCqr) functions will be useful for solving atomic 
He-like ions. problems at the Hartree-Fock level. They are simple, 

z j) q E(a.u.} {1& contain only two parameters for optimization, and 
present no particular problem for integration. 

10 0.471211 9.500317 -93.85882 0.10882 Note added in proof" Though there are undoubtedly 
20 0.485611 19.498010 -387.60884 0.10884 misprints in Table VI of Ref. 2. for z = 3, our remedy, 
30 0.490409 29.497253 -881.35885 0.10885 
40 0.492801 39.496710 -1575.10886 0.10886 the interchange of the first two columns of coefficients, 

50 0.494241 49.496481 -2468.85886 0.10886 is probably not correct and, therefore, the safest 
60 0.495201 59.496331 -3562.60886 0.10886 procedure would be to ignore column 5 of our Table 1. 
70 0.495889 69.496323 -4856.35886 0.10886 
80 0.496401 79.496149 -6350.10886 0.10886 

1 D. M. Bishop and R. L. Somorjai, J. Math. Phys. 11, 1150 
90 0.496801 89.496090 -8043.85886 0.10886 (1970). 

100 0.497121 99.496045 -9937.60886 0.10886 • C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. 
Phys. 32, 186 (1960). 

·L\.=-z2+h-E. S J. Linderberg, Phys. Rev. 121, 816 (1961). 
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Several examples of singular behavior which are not apparent in the line element are discussed. It is 
shown that the presence of such singularities depends on the manner in which coordinate patches are 
assembled to form the entire manifold. It is shown that the usual connection of a coordinate patch with the 
Taub metric to a patch with the NUT metric is singular in the sense of this particle. 

1. INTRODUCTION 

The method of obtaining a geometry for a model 
universe that satisfies the Einstein equations may be 
outlined quite roughly as follows: (1) Obtain a metric 
which satisfies the equations, perhaps using several 
coordinate patches; (2) piece these patches together 
to form a "complete" manifold. The term "complete" 
is usually taken as meaning geodesically complete,l 
but here it is used in the sense of a complete uniform 
space.2 The latter notion is felt by the author to express 
most precisely the desired notion and to be more con
venient in practical cases.3 The term global singularity 
is used to indicate some property of the model uni
verse which causes it to fail to be a smooth manifold 
with a well-behaved causal structure and which is not 
observable just by inspection of the metric tensor. Not 
much attention has been given to global problems 
beyond the recognition that, if the universe is regarded 
as the union of several pieces, the universe must be well 
behaved at the boundary between them. A distinct 
exception to this last remark is some of the work of 
Misner,' who has explicitly remarked on the need for 
global considerations in the construction of model 

universes. In this article, several types of global singu
larities are discussed, and consideration is given to how 
one might recognize a strange (but not necessarily 
singular) local behavior as an indication suggesting the 
presence of a global singularity. 

The operation of "piecing the patches" together, 
mentioned above, is a little more elaborate than one 
might deduce from the statement as given. If the mani
fold is not quite well behaved, there may be a need to 
"complete" it by the addition of singular points.l - 3 A 
corollary to the consideration of certain global singu
larities, which provoke the need for such completion, 
is the possibility of discussing how one would obtain 
the singular points correctly if (as would occur in 
practice) they were not provided in advance. Finally, 
it will be seen how these singularities may appear in 
an actual assembly of a universe in a case which has 
appeared in the literature. 

2. THE CONICAL SINGULARITY 

The 2-dimensional surface with line element 

(1) 
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and periodicity (r, 8) = (r, 8 + nrp), with n integral 
and 4> fixed, but unequal to 27T (that is, the ordinary 
cone), exhibits a well-understood but, nonetheless, 
unusual singular behavior. It is worthwhile to restate 
these well-known data in a fashion which emphasizes 
the global nature of the behavior. The local geometry, 
as determined from the line element, is flat wherever it 
is defined. Consequently, the curvature-tensor com
ponents as calculated in a local Cartesian coordinate 
system (and therefore in all coordinate systems) vanish 
identically, and their limits-as one considers points 
approaching the cone vertex-vanish. Since the polar 
coordinates used exhibit a coordinate singularity at 
r = 0, one would normally obtain the local geometry 
by examining patches for decreasing r (usually by 
inspection) rather than by using a new coordinate 
patch. For this manifold, it has been observed that 
the former procedure yields a misleading impression 
and the latter procedure (because of the singularity) 
is impossible to perform. This difficulty shows the 
existence of the singularity, but reveals nothing of the 
character of it. 

A geometry in which we are more interested pos
sesses the metric 

ds2 = €( -dr2 + r2 d()2). (2) 

Again, 8 is periodic with period 4>. € = ± I, so that 
either direction may be the timelike one. If the r 
direction is timelike, all observers traveling on radial 
geodesics collide at the origin, and the geometry 
implodes. If it is the 8 direction which is timelike, an 
observer with world line r = a small constant tra
verses a closed timelike curve of small duration per 
orbit, while time is stationary for the observer at 
r = O. This behavior (and the general behavior of the 
geodesics) does not change even if the period of 8 is 
27T. Cones with different periods, nonetheless, have the 
same local geometry. Consequently, the geodesic 
equations are the same in all cases, and the only in
fluence of the period is to affect how much 8 must 
change to generate one orbit around the cone. Figure 
I assumes a period of 27T; this yields a geometry which 
possesses an isometric embedding of the constant r 
and constant 0 curves into a plane. The geodesics may 
be obtained very easily by noting that, in the neighbor
hood of any point but the origin, the geometry is flat. 
Because of this, Cartesian coordinates may be con
structed locally; the transformation 

x = r cosh (), 

y = r sinh (), 

suffices. The equation of a geodesic is of the form 

r sinh 0 = mr cosh () + b. (3) 

FIG. I. A 2-dimensional geometry (the "flat cone") with metric ds" = 
-dr" + r" dO" showing several null geodesics. 

Another form of the geodesic equation is 

(1 - m)e9 
- (1 + m)e-9 = blr. (4) 

The constants m and b are fixed once the initial point 
and initial slope of the geodesic are determined. There 
is a geodesic with fixed 0 (when b = 0, m = tanh ()o) 
but none with fixed r. The null geodesics satisfy 

(5) 

All geodesics reach the origin in finite affine length. 
All but radial geodesics spiral infinitely often as 
r -+ O. Consequently, it is not possible to extend any 
nonradial geodesic through the origin. 

If one examines the thickening of a geodesic (i.e., 
the region swept out by perturbing the initial condi
tions of a given geodesic), he finds an unexpected 
result. Consider the geodesic obtained by perturbing 
b to b(l + rJ) and m to m + (j. Retain () as the inde
pendent variable, and depote the perturbed radial co
ordinate by p. Then p«() -+ r«() as (j and rJ tend to O. 
One finds that 

e = 1 + 1J + !! 215 cosh () 
r b 

____ ~2~(j~c~os_h_O~(b~+~1J~) ____ _ 
= 1 + 1J + (1 _ m _ (j)e8 _ (1 + m + (j)e-9 

(6) 
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Unless m is within 0 of ± 1, one has, for () -)- + 00, 

and, for () -+ - 00, 

p 1+1/ 
--+1 +1/ - 0---'--
r l+m+d 

(7) 

If one investigates the null geodesics, one finds that 
zero denominators only occur as () diverges in the sense 
which causes r to diverge and not in the sense which 
causes r to approach O. Thus, the amount of radial 
thickening tends to a constant fraction of the radial 
distance to the origin (see Fig. 2). The implication of 
this is that one can find two geodesics with the same 
end point such that neither geodesic ever remains in 
the thickening of the other. All that is necessary is that 
one geodesic spirals in toward r = 0 as () increases, 
while the other does so for decreasing () (Figs. 1 and 
2). This type of result is never obtained in a regular 
geometry. However, thickenings of radial geodesics 
behave more reasonably. Perturbations of a radial 
geodesic yield (see Fig. 3) 

1/ 1 
P = -:; -6 6' (8) 

u e - e 

FIG. 2. A spacelike geodesic and a thickening of it in the flat 
cone. Another spacelike geodesic is shown, which shares an end 
point with the first geodesic but which does not remain in any 
thickening of it. 

FIG. 3. A thickening of a radial geodesic in the flat cone. 

Each geodesic eventually stays in each thickening of a 
radial geodesic, but the converse does not hold. 

An important application of these elementary re
marks is that there are geometries G which one can 
render incomplete by deleting a closed set C, complete 
by the technique proposed in Ref. I, and not get the 
geometry which is obtained by deleting from G only 
the interior of C. If one wishes a revision of this 
technique, which adds back the vertex and only this 
point from a cone with the vertex removed, one can 
modify the prescription as follows. As in Ref. I, we 
add an end point to each incomplete geodesic and 
determine eq uivalence classes of geodesics. We declare, 
as in Ref. 1, that two equivalent geodesics share an end 
point. 5 The modification consists in the definition of 
when two geodesics are equivalent. The following 
definition works in the case of a cone: Geodesics Yl and 
Y2 are equivalent if there is a Ya such that both Yl and Y2 
enter and remain in each thickening of Ya. There is 
more than ad hoc reasoning underlying this proposal. 
The idea of using the concept of thickening is valid if 
the thickening of a geodesic contains the geodesic in 
its interior even in the completed space. The discussion 
of this section shows that this is false on a cone. How
ever, the proposed relation merely assumes that each 
boundary point is reached by one geodesic whose 
thickening is a neighborhood even after completion. 
On the cone, each radial geodesic has the required 
property. Whether there will always be such a geodesic 
for each boundary point is by no means clear, how
ever. If there is none, the boundary consists of too 
many points. Indeed, the relation may not be an equiv
alence relation in this case, which would at least 
serve as a warning. 



                                                                                                                                    

2716 DAVID A. FEINBLUM 

Some higher-dimensional versions of this singularity 
may be treated quite easily with the aid of the results 
for the 2-dimensional case. Consider the metric 

ds2 = €( -dr2 + r2 d()2) + dz2 + dw2• (9) 

The substitutions x = r cosh e and y = r sinh e lead 
to the metric 

ds2 = €(dX2 - dy 2) + dz2 + dw2. (10) 

Choose the coordinates so that y = z = w = ° at the 
initial point in the geodesic. One finds, by converting 
the expressions for the geodesic in the (x, y, z, w) 
system to the (r, e, z, w) system, 

r sinh () = mr cosh () + b, 

(m-I + crl) tanh e = 1, (11) 

(m-1 + fw- I ) tanh e = l. 

The projections of the geodesics onto the (r, () plane 
follow the equations of the 2-dimensional case. Since 
tanh () --+- 1 very rapidly as e --+- ± 00, in the regions of 
interest the geodesic structure is nearly the same as in 
the 2-dimensional case. It is now possible to find two 
geodesics Yl and Y2 with the same end point which 
never intersect and such that Y i does not remain in 
each thickening of Yi' i,j = 1,2, iF j. However, 
Yi does enter each thickening of Yi infinitely often, as 
there is no focusing in the z and w directions similar 
to that found in the (r, e) plane. For example, if one 
induces the perturbation b --+- b + 15, m --+- m + 'fj, 
c --+- c + oc (for simplicity, the initial point is not 
perturbed in the z or w directions and the initial slope 
is not perturbed in the w direction), one finds 

§.=+~_ 1'/ 
z c cm(m + 1]) 

(12) 

where ~ is the perturbed coordinate value in the z 
direction. The perturbations in the rand e directions 
are the same as in the 2-dimensional case. The geo
desics for which e is constant do behave in a different 
fashion than in the 2-dimensional case, because z and 
w depend linearly on r. The tendency toward constancy 
of z and w as r gets small, exhibited by all other geo
desics, is totally absent, but nothing unexpected occurs 
with respect to thickenings of this latter class. If the 
end point is e = (0,0, z, w), for any given thickening 
of a constant-O geodesic, the "ball" 

{xJlgpv dxP dxvl t < ~2} (13) 

is entirely within the thickening for some ~ > o. 
One other conical singularity may be discussed very 

easily. Consider the metric 

ds2 = €(-dr2 + r2 d()2) + r2 sin2 () d1>2, (14) 

with ° ~ 0 ~ rr and a periodicity of 2rr in the 1> 
coordinate. If € = + 1, then the entire 2-sphere (r = 
const) degenerates to a point as r goes to zero. How
ever, for any initial point p and any vector v at that 
point, there is a plane P which contains the geodesic 
starting at p in the direction of v. This is immediately 
seen because of the symmetry of the sphere. The 
angular coordinates may be chosen so that e = irronP. 
This duplicates the 2-dimensional cone, except that the 
angular coordinate is now called 1>. 

If € = -lor if the metric has the form 

ds2 = dr2 + r2(d()2 - sin2 e d1>2), (15) 

a small neighborhood of e = 0 or 0 = rr is nearly iso
metric with the (r, (), z) subspace of the 4-dimensional 
case treated above. One exhibits the quasi-isometry by 
defining z = r, f = rO, and 0 = 1>. To the degree of 
approximation needed to set sin e = (), one has the 
desired exhibition. 

3. A "SPHERE" THAT IS A CYLINDER 

The topology of the NUT region of Taub-NUT 
space has been claimed to be sa X R for two separate 
reasons: (1) The NUT metric itself requires these 
identifications; (2) this is the topology of Taub space, 
and the NUT region is a smooth continuation of Taub 
space. In this section, it is shown that one cannot read 
the identification out of the line elem;nt and that, 
therefore, the first argument is not compelling. The 
second argument is considered in Sec. 5. We proceed 
from elementary situations and increase the complexity 
until an example is considered which includes Taub
NUT space itself. It is also shown that the presence 
or absence of a global singularity may depend crucially 
on the choices of identifications made. It is this prop
erty which is responsible for the use of the term 
"global" in describing these singularities. 

Spherical coordinates (r, 0, 1» contain a source of 
confusion. One declares that e is restricted to [0, rr] 
and that 1> is restricted to [0, 2rr). He then declares that 
the 1> coordinate is periodic. Not stated, but tacitly 
assumed, is the requirement that two points with zero 
distance between them are the same. In this manner, 
one realizes that (r, 0, 0) is the same point as (r, 0, 1». 
However, there is the chance to confuse a sphere with 
a cylinder, for a cylinder admits a coordinate system 
with the same periodicity conditions. 

Consider a collection of cylinders each with line 
element 

ds'l. = dO? + d¢'I., 0 ~ 0 ~ rr, O'S cp S 2rr, 

(16) 

and periodicity conditions (0,0) = (O,2rr). Embed 
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them into a 3-geometry (V', (), 4» such that each cylinder 
is specified by the relation V' = const. Perform this 
embedding in a manner such that the line element of 
the 3-geometry is 

ds2 = dV'2 - 2 cos () dV'd4> + d4>2 + d02. (17) 

The 3-geometry has at least a coordinate singularity at 
o = 0, rr since the distance between the circles 0 = 0, 
V' = V'o and 0 = 0, V' = V'1 vanishes. The line element 
may be rewritten as 

ds2 = (dV' - cos 0 d4»2 + (d02 + sin2 0 d4>2). (18) 

One might be tempted to view each V' = V'o surface as 
a 2-sphere, due to the form of the last parenthetical 
expression, but he is quickly disabused because the 
length of the circles V' = V'o, 0 = 0, rr does not vanish. 
However, the transformations ip = V' + 4>, ip = V' - 4> 
result in the line elements 

ds2 = (dip - 2 cos2 to d4»2 + (d02 + sin2 0 d4>2) 

= (dip + 2 sin2 to d4»2 + (d02 + sin2 0 d4>2). 

(19) 

In the ip and ip coordinate systems, there seems little 
reason not to interpret the geometry of the surface 
ip = ipo, 0 > irr or the surface ip = ipo, 0 < trr as a 
distorted hemisphere. If one makes the transforma
tion 1p. = V' + 4>f(O), wheref'(O) = f'(rr) = /,,(0) = 
/"(rr) = 0,f(0) = 1, andf(rr) = -1, he finds 1p. -- ip 
as 0 -- 0 and 1p. -- ip as () -- rr. Certainly, terms in
volving dV'· dO are generated, but they vanish at 0 = 
0, rr and are not a cause for concern. In the (1p., 0, e/» 
system, one would certainly take the surface 1p. = 
V': to be (topologically) a sphere. 

There is no paradox. If one insists on the original 
equivalence relation, which, to be careful, must be 
written (V', 0,0) = (1p, 0, 2rr), he finds that in the 
other systems one must set (ip, 0,0) = (ip + 2rr, 0, 
2rr), (ip, 0,0) = (ip - 2rr, 0, 2rr), and (1p., 0, 0) = 
(1p. + 2rrf, 0, 2rr). With these relations, there is a 
(global) isometry between the four metrics-cum
coordinate system on the space. The reason for the 
vanishing of the length of the curve ip = ipo, 0 = 0, 
o :::;; e/> :::;; 2rr, is that the vectors a If' and a.p are anti
parallel when 0 = O. If ip is held fixed, then d1p = de/> 
and the curve is one single point, as one might expect 
(see Fig. 4). 

We do not intend to imply that one cannot use the 
natural identification in the ip, ip, or 1p. coordinate 
systems, but they do lead to different spaces. For ex
ample, in the ip system, the surface ip = ipo is a well
behaved surface, and a simply connected neighbor
hood of (j = 0 exists in this space, while in the 1p space 
there is none. 

I 
8=0 

, 
T 
T 

I 
T 

FIG, 4. The vectors (a) (06, O.p, olp), (b) (06, Of>, o~,),and (c) 
(06, O.p, Olji), as a function of 0 for the geometry with metric 

dsz = (dIP - cos 0 d</»Z + d02 + sinz 0 d</>z. 

In each case the basis vectors are the orthonormal set which, in the 
first coordinate system, is given by 

e, = 06, ez = G.p, es = (sin 0)-'( Olp + cos 0 0.p). 

The symbol 06 represents the vector with (0, </>.1p) components 
(I, 0, 0) and similarly for the other vectors. 

Now apply these remarks to the Taub metric.6 

There are coordinate systems in which this metric is 
denoted by the line elements7 

ds2 = - U-I dt 2 + (2/)2U(dip + 2 sin2 to de/»2 

and 

+ W(d()2 + sin2 () d4>2) 

(20) 

ds2 = - U-I dt2 + (2/)2U(dip - 2 cos2 to d4»2 

+ W(d02 + sin2 0 d4>2). 

In these expressions, / is a constant and U and Ware 
nonvanishing smooth functions of t (on an interval 
tl < t < t2)' On each slice t = to, the manifold result
ing from the natural identification on the </> coordinate 
is homeomorphic (indeed, uniformly isomorphic8) 

with the manifolds previously discussed in the case that 
(2/)2U = W = 1. If one further imposes a periodicity 
on ip (or ip), one obtains a solid torus. Restricting 0 to 
o :::;; irr (respectively, 0 ~ irr) changes nothing. If one 
pieces the solid tori together, as required by the co
ordinate transformation ip = ip + 2</>, the resulting 
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object has been shown9 to be a 3-sphere. The geometry 
on the sphere is nonsingular at the poles, e.g., at the 
north pole, the geometry of a constant 1p surface is 
given by the line element 

ds2 = de2 + e2 dcp2 

and identification (e, cp) = (e, cp + 277). Replacing () 
by r, one sees that the geometry is smooth. 

There is yet another coordinate system obtained by 
setting 1p = 1jJ + cp, which gives line element 

ds2 = - U-l dt 2 + (21)2U(d1p - cos () dcp)2 

+ W(d()2 + sin2 () dcp2). (21) 

The natural identification yields nonsingular 2-cylin
ders for the constant-t and constant-1p surfaces, or 
tori if the () coordinate is also required to be periodic. 
However, one obtains a coordinate singularity in 1p 
which becomes a real singularity if a periodicity is 
imposed on the 1p coordinate. Thus, one sees that there 
may be more than one way to connect a locally speci
fied geometry into a well-defined manifold and that 
the apparent naturalness of a given choice may depend 
crucially on the coordinate system used. The conse
quences of recognizing this possibility of discovering 
several choices of manifolds for one line element may 
be most important with the line element here considered 
at large values of t. In this region10 U(t) is negative and 
1p becomes timelike, while t becomes spacelike. Also 
cp is spacelike in some places and timelike in others. 
These observations also hold when the 1jJ or 1jJ coordi
nate replaces 1p. The metric in this region was first 
considered by Newman, Tamborino, and Unti l1

; it 
has been called the NUT metric. With the identifica
tions which have, to this point, been imposed on the 
NUT metric, one obtains an extension of the Taub 
space. Consequently, one may call the global object 
Taub-NUT space. It has been shown12 that there are 
several unsatisfactory-and often unexpected-fea
tures possessed by this space from the standpoint of 
considering it a cosmological model. As it can be 
shown that these features may largely be traced to the 
spherical topology on the constant-t 3-surfaces in the 
NUT (U < 0) region, it is comforting to realize that 
one may connect the manifold in a different manner. 
Just as in the Taub (U > 0) region, the (1p, (), cp) co
ordinate system is no longer suggestive of the 3-sphere; 
however, the changed sign of U makes it less clear 
what conditions should be imposed. In the next section, 
the odd results obtained from a 3-sphere with ( -, +, 
+) metric are examined; then, the question of how 
compelling the need is to consider the Taub and the 
NUT regions part of the same manifold is considered. 

4. CAUSALITY SINGULARITIES 

It is well known that, in the neighborhood of any 
3-slice S through a 4-manifold M, one can create a 
patch in which the slice is spacelike and the time 
coordinate is orthogonal to the slice-indeed,13 one may 
require that goo = -1. One might suspect that, by 
relaxing the last condition, it would be possible to 
construct a global time orthogonal coordinate system. 
Whenever this can be done,. there is a very nice causal 
structure for the manifold. However, if M is compact, 
no such happy result occurs. Indeed, either the causal 
properties of M are very bad or there are problems 
with the spacelike directions which are, perhaps, 
worse. The following result, similar to ones given by 
Misner10 and Avez,14 demonstrates this assertion. 

Theorem 1: Let M be an isochronous n-manifold of 
signature15 n - 2 and S an (n - I)-manifold which 
divides M into two disjoint pieces. Let r be a simple 
closed timelike curve which intersects S. Then S is not 
everywhere spacelike in M. 

Proo!, Let the disjoint pieces of M - S be P and Q. 
Let v be the tangent to r in the forward time direction 
at some point x E r (') S. Say v points from Pinto 
Q. Assume S is everywhere spacelike. Construct a 
continuous field n of unit normal vectors on S such 
that n(x) • v > O. Then D is everywhere timelike and 
points forward. Propagate a continuous field of tangent 
vectors t on r such that t(x) = v. Everywhere t is 
timelike and forward pointing. r must intersect S 
at some point y ¥- x because, if T is a parameter on r, 
(a) T(X) = 0 and T increases in the direction of v at x 
and (b) for small positive a, rca) E Q while r( -a) E 

P. But, t(y) • D(Y) < 0 since r goes from Q to P with 
increasing T. This is a contradiction; therefore, S is 
not everywhere spacelike.1 

Now, assume that one attempts to place a continu
ous nonvanishing timelike vector field on the mani
fold. If all attempts fail, 'as they do on such manifolds 
as the 2-sphere, there is a causality singularity. Two 
types of this singularity were discussed in connection 
with the 2-dimensional cone (depending on which 
coordinate is timelike). Suppose, to the contrary, that 
there is a continuous nonvanishing timelike vector 
field. Then, it has been shown12 that there is at least 
one closed timelike curve. The emphasis here has been 
on the timelike direction, i.e., we have first thought of 
placing a well-behaved timelike vector field on the 
manifold and only then is thought given to the space
like directions. If this attitude is maintained, one 
obtains the following result. 



                                                                                                                                    

GLOBAL SINGULARITIES AND THE TAUB-NUT METRIC 2719 

Theorem 2: Let M be a compact isochronous diff
erentiable n-manifold which admits a global continu
ous nonvanishing vector field v. For each metric g for 
M such that v is a timelike Killing field, there is a 
closed timelike curve through each point of M. Any 
(n - I)-manifold which sep~rates M into two disjoint 
pieces is not everywhere spacelike. 

Proof" Let cP be the flowl6 generated by v. The flow 
cP is a map from M X R -+ M such that cPscPt(x) = 
cPs+t(x) and cPo (x) = x. Consider an arbitrarily small 
neighborhood D of x, and define cPt(D) as {cPt(x): 
xED}. Choose t such that cPt(D) (\ D = <P. Then, 
consider the sets cPnt(D) for all nonnegative n. If all 
of them could be disjoint, the volume of M would be 
infinite (since cP preserves volumes) and M would not 
be compact. This contradicts a hypothesis. Therefore, 
for some m, kcPmt(D) (\ cPkt(D) :;!;. <1>. But, this 
implies that cPo(D) (\ cP(k-m)tCD) :;!;. <1>. Therefore, the 
integral curve r through x (= Nt(x):t > 0 for all I}) 
passes through each neighborhood of x. For suffi
ciently small D, it is possible to deform r so that it 
remains smooth and timelike. The final assertion 
follows from the application of Theorem I.' 

It should be remarked that one can first obtain 
spacelike (n - I)-slices and then seek a well-behaved 
timelike vector field. If this is done, the difficulties are 
transferred to the timelike directions. The difficulties 
indicated by Theorem 2 are characteristic of the 
topology of the manifold as a whole. A corollary to 
Theorem 2 with application to the NUT metric is that 
the placing of a global timelike vector field on the 
3-sphere precludes the possibility of a spacelike 2-
slice. These remarks seem rather paradoxical; conse
quently, the special case of the 3-sphere is examined in 
detail. 

One has at his disposal theorems demonstrating the 
existence of a global vector field on the 3-sphere
indeed, of the existence of three such orthonormal 
fields!7 and, consequently, of the existence of a global 
field of triads and a global quatratic form!R of signa
ture + I. The prototype 3-sphere is the set 

x 2 + y2 + u2 + ['2 = 1 

in 4-dimensional Euclidean space. Since!!) the position 
vector of a general point on the sphere has components 
(x, J', U, 1'), one may obtain three vectors tangent to 
the sphere by seeking the normals to the position 
vector. With a little care to get three orthonormal 
vectors, one obtains 

V l = (y, -x, t', -u), 
V2 = (1', II, - y, -x), 

Va = (U, -v, -x,y). 

(22) 

Normalization obtains automatically since the orig
inal sphere is of unit radius. If an integral curve of 
field Vl is denoted by yet) = [x(t)· .. v(t)] with 
VI(t) = yet), one finds that 

x = y, y = -x and it = v, v = -u 

with solution vector 

(lX sin (t + (J), lX cos (t + (J), y sin (I + 0), 

y cos (I + 0». (23) 

Also, lX2 + y2 = 1, which suggests setting lX = sin cP 
and y = cos cPo One can choose the point for which 
t = ° so that (J = 0, Then, using the trigonometric 
identities for the sine and cosine of a sum, one may 
write the position vector of a point on y as 

yet) = i sin 1 + j cos f, 
with 

i = (sin cP, 0, cos cP cos 0, -cos cP sin 0) 
and 

j = (0, sin cP, cos cP sin 0, cos cP cos 0). (24) 

Since j and j are easily verified to be orthonormal con
stant vectors, one finds that y is a great circle of the 
sphere. An orthogonal mapping of the 4-space onto 
itself can be constructed which sends the members of 
VI in a 1-to-1 fashion onto the members of V2 or Va' 
Consequently, the integral curves of these fields are 
great circles also. At each point on the sphere, the 
elements of the three fields form an orthonormal 
triad which generates a quadratic differential form. 
Any of the vector fields, say VI' may be chosen to be 
timelike and the other two spacelike. However, there 
is one bad feature of these integral curves which we 
now investigate. Any two 2-planes through the origin 
in 4-space intersect either at the origin only or on a 
straight line containing the origin. Consequently, any 
two integral curves cross in two points or none. One 
could, alternatively, take the 2-surface generated by 
the integral curves of V2 and Va passing through some 
yet) (for each fixed f and one y) and thus obtain well
behaved spacelike surfaces. But only half of y may be 
so used, for that is sufficient to fill the 3-sphere with 
2-surfaces (that are, in fact, 2-spheres), and one finds 
that there are required to be two points on y at which 
the forward time direction changes discontinuously. 
Any global field of vectors may be written as V = 
aV l + bV2 + eVa with a, b, and e continuous scalar 
fields. Consequently, any partition (or "fibration") 
of the 3-sphere into simple closed curves-Le., topo
logical circles-shares the properties just obtained. 
No complete "open curve"-i.e., continuous image 
of the real line-can exist in a compact space without 
getting "infinitely close" to itself. 20 Consequently, 
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basing the concept of time like direction on such curves 
causes even more badly behaved results than do circles. 
Finally, the use of self-intersecting curves is precluded 
by the lack of a unique direction to assign as timelike 
at each point of self-intersection. 

5. THE U = 0 SURFACE IN TAUB SPACE 

In Taub space the 3-sphere topology of the constant 
t surfaces causes no embarrassment. In NUT space, 
however, the corresponding surfaces contain a time
like direction with awkward consequences as described 
in the previous section. This suggests that one might 
wish to perform different identifications in NUT 
space than in Taub space. It is hard to see how one 
might justify such an action unless the combined 
Taub-NUT space were to exhibit singular behavior at 
the junction. This does happen if the term "singular" 
is used in the sense of this article. The Taub-space 
metric may be presented in any of the forms (20) or 
(21) with 

u = «( - (1)(12 - t)W-l, 

w = 12 + /2, 

12 > tl and I a positive constant. It has been shown21 

that there is an infinite spiraling of geodesics as one 
approaches the surface t = tl or t2 • This is suggestive 
of a conical singularity. The suggestion is made even 
stronger if one investigates it in more detail. Consider 
t ~ t 2, and define 

A2 = t~ + 12
, 

B2 = t2 - t1 , (25) 

P = (2A/B)(t2 - t)!. 

Then the line element is 

ds2 = dp2 - /2B4A-4p2 dc/>2 + A2(d()2 + sin2 () dc/>2), 

(26) 

with only the lowest-order term in each coefficient. To 
this approximation, there is no difference among the 
coordinates "1', ip, 'lj'i,and1p* of Sec. 3. After scaling "I' by 
the factor 1-2B-4A4 and making an obvious coordinate 
transformation, one can see that (26) is equivalent 
to (9). 

Alternatively, one can use the Geroch technique, 
modified as proposed in Sec. 2. However, the regions 
t = f2 and f = fl were originally analyzed by a general 
technique developed by the present author. Since the 
coordinates (20) or (2l) are time orthogonal in Taub 
space, the prescription reduces to the following rule: 
Reverse the sign of goo and complete the resulting 
(positive-definite) space. The procedure claims that 
the boundary points so obtained by this prescription 
are the correct ones if the manifold can be cut into a 

finite number of pieces such that either (a) the com
pleted piece is compact and geodesically convex or 
(b) almost flat in a sense which can be made precise. 
In the case of Taub space, the region 0 < "I' < !ex, 
o < () < !7T satisfies the requirements, where ex is the 
period of the coordinate. Similarly, a few other patches, 
obtained in an obvious fashion, suffice to cover the 
remainder of Taub space. When U = 0, there is no 
term in the line element involving dp. 

All three methods of analyzing t = 12 or 11 agree that 
there is a 2-surface at each of f = 11 ,12 , Consequently, 
the periodicity of all the spatial coordinates !hows that 
there is a type of conical singularity, in particular, 
that of the example of (9). 

The first two techniques used to analyze f = ' 1 , f2 

may be applied directly in the NUT region and, again, 
suggest a conical singularity if "I' is assumed periodic. 
The general technique requires time orthogonality on 
each of the patches (although it is not necessary that it 
be the same system for all patches). However, this has 
only been achieved approximately. It is hard to be 
sure that t = t1 , f2-viewed as a subset of the NUT 
region-is 2 dimensional, for each of the techniques 
used has some uncertainty. But, since they still agree, 
one has some confidence. If so, there are conical 
singularities at t = t1 , 12 in the NUT region also. 

If one deletes the periodicity requirement on "1', it is 
no longer clear that 1 = 11 , t2 is 2 dimensional. All that 
is sure is that 1 = t1 , 12 , -a S "I' S b is 2 dimensional 
for each finite a and b. However, there may be points 
which formally correspond to "I' = 00. This does 
happen in the special case for which the NUT metric 
reduces to the Schwarzschild one. 

Whether this happens in general is as yet an open 
question, but, if it does, one presumes that it will be 
possible to extend the NUT region into one with the 
Taub metric, although not with the same connections. 
This might lead to a truly nonsinguiar model, since 
t = 0 is not a singularity except for the Schwarzschild 
special case. 

ACKNOWLEDGMENTS 

The author would like to thank Professor W. Guil
lemin and Professor R. O'Neill for their valuable dis
cussions. He also wishes to thank Professor 1. Robin
son for a critical review of a portion of this article. 

• Supported by a State University Research Foundation grant-in
aid. 

1 See R. Geroch [J. Math. Phys. 9, 450 (1968)] for the most 
advanced techniques to date in this direction and for a review of 
earlier literature. 

S This topic is covered in various topology texts; see, e.g., John L. 
Kelly, General Topology (Van Nostrand, Princeton, N.J., 19S5), p. 
190. A brief discussion is given in Ref. 3. 



                                                                                                                                    

GLOBAL SINGULARITIES AND THE TAUB-NUT METRIC 2721 

8 D. Feinblum, "A New Technique for the Analysis of Singu
larities," in Relativity and Gravitation, C. Kuper and A. Peres, 
Eds. (Gordon and Breach, in press). 

, What is described here is a rough version of the techniques of 
Ref. 1. The most important omission is that only incomplete geo
desics are examined, and these only near the (to be added) end point. 
For general use, the proposed modification would have to be simi
larly amended, but it has a more serious deficiency, mentioned in the 
text, which may be harder to remove. It is not at all clear to the pres
ent author that completions based on geodesics can be given a 
completely satisfactory definition. 

6 C. W. Misner, J. Math. Phys. 4, 924 (1963). 
8 A. H. Taub, Ann. Math. 53, 472 (1951). 
7 Reference 4, Eq. 2. The coordinates used here are those of Ref. 

4, but the notation corresponds to Ref. 10. 
8 Reference 2, p. 180. 
I See Ref. I, Section V. 

10 C. W. Misner and A. H. Taub, Zh. Eksp. Teor. Fiz. 55, 233 
(1968) [Sov. Phys. JETP 28, 122 (1969»). Also, C. W. Misner, "Taub
NUT Space as a Counterexample to Almost Anything" in Lectures 
in Applied Mathematics, J. Ehlers, Ed. (American Mathematical 
Society, Providence, R.I., 1967), Vol 8. 

11 E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 
(1963). 

11 See Refs. 1 and 10. 
18 R. Geroch. J. Math. Phys. 8, 782 (1967); R. Bass and L. Witten, 

Rev. Mod. Phys. 29, 452 (1957); E. H. Kronheimer and R. Penrose, 
Proc. Cambridge Phil. Soc. 63, 481 (1967). 

U A. Avez, Compt. Rend. 254, 3984 (1962). 
16 That is, with one timelike coordinate. 
16 For a definition of a flow on a manifold, see R. Loomis and S. 

Sternberg, Advanced Calculus (Addison-Wesley, Reading, Mass. 
1968). The method of proof presented here was shown to the author 
by V. Guillemin (private communication). 

17 G. Whithead, Ann. Math. 43, 132 (1942), Theorem II and the 
immediately preceding discussion. 

18 N. Steenrod, The Topology of Fibre Bundles (Princeton U.P., 
Princeton, N.J. 1951). 

18 The arguments used here were very kindly supplied by R. 
O'Neill (private communication). 

10 Precisely, the real line does not have an isometric embedding in 
any compact space, although it may have a I-to-I isometric immer
sion. Immersions are discussed in any text on differentiable manifolds. 

U See Misner and Taub, Ref. 10. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 9 SEPTEMBER 1970 

Stark Effect in Hydrogen Atoms for Nonuniform Fields· 
J. D. BEKENSTEINU AND J. B. KRIEGER 

Department of Physics, Polytechnic Institute of Brooklyn, Brooklyn, New York 11201 

(Received 5 March 1970) 

The correction for the energy eigenvalues of the Schrodinger equation for a hydrogenic atom in a non
uniform field resulting from the inhomogeneity of the field is expressed in terms of expectation values 
involving the eigenfunctions of the system for a uniform field. Only the first-order terms in the inhomo
geneity of the field are retained. An examination of the symmetry of the eigenfunctions for the uniform 
field, followed by an application of Gauss' law, shows that the correction depends only on one com
ponent of the field gradient tensor, regardless of the symmetry of the field, except for states with magnetic 
quantum number m = ±1. For the latter states we find the degeneracy is removed provided that the 
field is not cylindrically symmetric. We evaluate the correction by applying Feynman's theorem to a pair 
of I-dimensional eigenvalue equations similar to those obtained in the separation of the uniform field 
problem in parabolic coordinates. All the necessary eigenvalues are calculated by the WKB method 
that has been previously employed in obtaining the eigenvalues for the uniform field problem. As the 
final result we present an expression for the zz component of the quadrupole tensor of the electron 
labeled according to parabolic quantum numbers. Finally, we discuss the use of this expression in the 
study of line broadc;ning caused by interatomic interactions (pressure broadening). 

I. INTRODUCTION 

Recently, a great amount of theoretical work has 
been done on the Stark effect in hydrogen.1- 3 In all 
these treatments, however, only the case of a uniform 
electric field has been treated. The effect of an inhomo
geneity in the applied field on the Stark spectrum can 
be shown, by an order of magnitude estimate, to be 
unobservable for laboratory fields. On the other hand, 
the effect of the inhomogeneity in the field caused by 
the interatomic interaction in the hydrogen gas cannot 
be neglected. 

To be more precise, the shift in energy caused by a 
gradient in the field is of the order of the product of 
the field gradient by a typical area of the atom 

(playing the role of the quadrupole moment). We are 
here using atomic units (a.u.), i.e., e = Ii = m = l. 
A typical laboratory field is 106 VJcm or 2 X 10-4 

a.u. (1 a.u. = 5.142 X 109 VJcm)4 and can change 
appreciably over a distance of 0.1 cm or 2 X 107 a. u. 
(1 a.u. = 0.53 X 10-8 cm). The typical gradient is 
then of the order of 10-11 a.u. while a typical area is 
n4 a.u., where n is the principal quantum number of 
the particular state of the atom. Even for n = 10 (a 
very excited state), the shift in energy will be only 
10-7 a.u. of energy or about 2.7 X 10-6 eV. By com
parison, the fine structure splitting of hydrogen is of 
the order of 10-4 eV so that the observation of the 
inhomogeneous-field Stark effect is a difficult matter. 
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I. INTRODUCTION 

Recently, a great amount of theoretical work has 
been done on the Stark effect in hydrogen.1- 3 In all 
these treatments, however, only the case of a uniform 
electric field has been treated. The effect of an inhomo
geneity in the applied field on the Stark spectrum can 
be shown, by an order of magnitude estimate, to be 
unobservable for laboratory fields. On the other hand, 
the effect of the inhomogeneity in the field caused by 
the interatomic interaction in the hydrogen gas cannot 
be neglected. 

To be more precise, the shift in energy caused by a 
gradient in the field is of the order of the product of 
the field gradient by a typical area of the atom 

(playing the role of the quadrupole moment). We are 
here using atomic units (a.u.), i.e., e = Ii = m = l. 
A typical laboratory field is 106 VJcm or 2 X 10-4 

a.u. (1 a.u. = 5.142 X 109 VJcm)4 and can change 
appreciably over a distance of 0.1 cm or 2 X 107 a. u. 
(1 a.u. = 0.53 X 10-8 cm). The typical gradient is 
then of the order of 10-11 a.u. while a typical area is 
n4 a.u., where n is the principal quantum number of 
the particular state of the atom. Even for n = 10 (a 
very excited state), the shift in energy will be only 
10-7 a.u. of energy or about 2.7 X 10-6 eV. By com
parison, the fine structure splitting of hydrogen is of 
the order of 10-4 eV so that the observation of the 
inhomogeneous-field Stark effect is a difficult matter. 
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On the other hand, interatomic fields can be much 
stronger than 10-4 a. u. and can vary considerably over 
distances of a few a.u., so that the field gradients are 
much larger than those associated with laboratory 
fields. It follows that the effect of interatomic inter
actions on the spectrum may be observable. It is thus 
physically meaningful to derive the first correction 
term for the effect of an inhomogeneous field on the 
spectrum. 

In this work we first construct the Schrodinger 
equation for the nonrelativistic problem of a hydrogen 
atom in an electric field including the first-order terms 
of the inhomogeneity of the field. Using nondegener
ate perturbation theory, we express the correction for 
the effect of the inhomogeneity in terms of expectation 
values of the inhomogeneity in the external potential 
taken with respect to eigenfunctions of the system for 
the uniform field problem. An examination of the 
symmetry of these eigenfunctions, together with the 
use of Gauss's law for the external field, shows that 
the correction can be expressed completely in terms of 
the zz component of the quadrupole tensor of the elec
tron and the zz component of the field gradient 
tensor, regardless of the symmetry of the field, except 
for states with magnetic quantum number m = ± I. 

We rewrite the quadrupole moment in terms of 
simple integrals in parabolic coordinates. Instead of 
evaluating these directly by using explicit expressions 
for the eigenfunctions, we choose to evaluate them 
by repeatedly applying Feynman's theorem5 to a pair 
of equations which are slight generalizations of those 
obtained from the separation of the uniform field 
problem in parabolic coordinates. We evaluate the 
eigenvalues of the equations by the WKB method that 
we used previously in obtaining the Stark-effect 
eigenvalues for uniform fields. 3 (Reference 3 will 
henceforth be referred to as 1.) In this manner, we 
obtain a formula for the zz component of the quadru
pole tensor for states labeled with parabolic quantum 
numbers. 

Finally, using the above formula, we discuss the 
calculation of the broadening of Stark spectrum lines 
caused by the interaction of hydrogen atoms with 
their neighbors in the gas and give numerical estimates 
for this effect (pressure broadening). 

II. CORRECTIONS FOR THE FIELD INHOMO
GENEITY 

Let rfo be the electrostatic potential describing the 
field in which a hydrogenic atom of nuclear charge 
Ze, nuclear mass M, and electron mass m is immersed. 
We choose the arbitrary constant of rfo in such a way 
that rfo vanishes at the center of mass of the atom. If 

r' is the position vector in the center-of-mass system, 
we can expand rfo(r') as follows: 

rfo(r') = Vrfo(O). r' + t ~ 02rfo(0) x;x; + .. " (1) 
i.i ox;ox; 

where x; is a Cartesian component of r'. We choose 
the z' axis of our coordinate system in the direction of 
Vrj>(O). Then, 

..1.( ') (', 1 '" oBi , , 'f r = -oZ - 2 k - X·X· + ... 
i,i ax~ 1 J , 

(2) 

where & = -Vrfo(O) = (0,0, B). 
We now introduce r, the vector from the nucleus to 

the electron, so that if the subscript e denotes the 
electron and the subscript n the nucleus, 

, M d' m re = --- r an rn = - r 
m+M m+M 

give the positions of the nucleus and the electron with 
respect to the center of mass. The potential energy for 
the problem is (with e = + leI) 

which can be rewritten as 

Ze2 

V = -eFz - ie ~ ViiXiX i - - , (3) 
i,i r 

with 

F == -B(1 + m (Z - 1»), (4) 
m+M 

V. == _ OBi(1 _ 2mM + (Z + 1)m
2
). (5) 

,j ox; (m + M)2 

Helie z is the third component of r. The above defi
nition of F agrees with that used in 1. 

We write the kinetic energy in center-of-mass 
coordinates as -(/j2/2fl)V2 with fl = mM/(m + M), 
thus neglecting relativistic corrections. Again, ne
glecting spin effects, we have the eigenvalue equation 

- -'- V21p - - 1p - eFz + te LViiXixi 1p = E1p. /j2 Ze2 ( ) 
2fl r i.i 

(6) 

For a given quantum state, E is a function of F 
and Vi}' For small Vi} we have, using nondegenerate 
perturbation theory, 

E(F, Vi}) = E(F, 0) 

+ L (1p(F, 0)1 - !exix j 11p(F, 0» Vii' (7) 
i,; 
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Equation (7) is valid provided that the matrix ele
ments of the perturbation c~nnecting originally de
generate states are all zero. It is well known (see I, for 
example) that the only degeneracies of the uniform 
field problem are those with respect to the sign of the 
magnetic quantum number m (eigenfunctions with 
±m are degenerate). In Sec. III we show that for 
m2 ~ 1 all matrix' elements of the perturbation linking 
these degenerate states are zero. The case m2 = 1 is 
treated in Sec. IV. 

III. SIMPLIFICATION OF CORRECTION TERMS 
(m2 :F 1) 

In I we separated Eq. (6) with Vii = 0 in parabolic 
coordinates (S, 1], cp) defined, in terms of spherical 
polar coordinates (r, 0, cp), by 

, = r(1 + cos 0), 1] = r(1 - cos 0), cp = cp, 

r=H'+1]) (8) 

or, in terms of Cartesian coordinates, by 

x = (S1])l cos cp, y = (S1])l sin cp, Z = H' - 1]). 

(9) 

By choosing the eigenfunction of the form 

(10) 

we obtain as in I the equations satisfied by / and g, 
i.e., 

1i
2 

d"l (eF Ze
2 + (J 

- 2ft d,2 - "8' + 4, 
m

2 
- 1 1i

2
) E 

-~ 2ft f=-;,[' 

_ h
2 

d"l _ (_ eF 1] + Ze
2 

- f3 
2ft d1]2 8 41] 

(11) 

_ »12 _ 1 1i
2

) g = ~ g. 
4,,/ 2ft 4 

The probability density tp*tp does not depend on cp 
and is thus cylindrically symmetric about the z axis. 
It is clear from Eqs. (9) and (10) that matrix elements 
of xy, xz, yz, X2, y2, and Z2 connecting originally 
degenerate states will vanish when the integration over 
f{J is performed for states with m2 ~ 1. Thus, non
degenerate perturbation theory is valid in this case. 
Furthermore, from Eqs. (9) and (10) we see that ex
pectation values of xz, yz, and xy vanish when the 
cp integration is performed and, hence, only (X2), 
(y2), and (Z2) are of interest. Finally, we note that, 

since tp is factorable as given in Eq. (10), we have 

(x2
) = ('1])(cos2 cp) = ~'('1]) = ('1])(sin2 (p) 

= (f)· (12) 

It follows from Eqs. (6), (7), and (12) that 

E(F, Vij) = E(F, 0) - te[(z2)V zz + (x2)(Vyy + V",,)], 

which is further simplified by noting the Gauss' law, 
i.e., V • t = 0 for the external field, t gives, according 
to Eq. (5), 

(13) 

so that the correction for the energy to first order in 
the gradient is 

tlE = -te(z2 - x2)V'zz = -ie(3z2 - r 2)V'zz, (14) 

where we have used 

<x2) = t<X2 + y2) = t<r2 - Z2). 

Eq uation (13) is identical to that for the classical 
interaction energy of a quadrupole moment with a 
cylindrically symmetric field.s It must be noted, how
ever, that nowhere in our derivation did we assume 
the external field to be cylindrically symmetric. The 
simplification leading to Eq. (14) results from the 
symmetry of the eigenfunctions, not from the sym
metry of the field. 

We now proceed to express (Z2 - X2) in terms of 
simple integrals. Noting from Eq. (11) that both / and 
g may be chosen real, we define 

J = 50
00

/
2
, d" J' = 1

00 

g21] d1], 

K = 50
00

/
2,2 d" K' = 1

00 

gV d1], (15) 

roo /2 (00 g2 
L = Jo T d" ~ = Jo -;; d1], 

where f and g are separately normalized, i.e .• 

i oo 
f 2m d, = i oo 

g2(1]) d1] = 1. 

We also note that the volume element in parabolic 
coordinates is 

d3r = H' + 'YJ) d, d1] dcp. 

Thus from Eq. (12) we have 

<x2) = t('1]) = iA2 (2IT dcp roo r
oo
(, + 1])Pg2 d, d1], 

Jo 21T Jo Jo 
which from Eq. (15) becomes 

<x2
) = t('1]) = lA2(J + J'). (16) 

Similarly, 
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Again, from the definitions, 

(~2> = !A2(KL' + J), 

('YJ2) = !A2(K'L + J'), 
so that 

(Z2 - .\:21 = liiA2(KL' + K'L - 3J - 3J'). 

The normalization integral is 

I1p*1p d3r = iA\L: + L) = 1. 

By using this, our final result is 

2 2 "'1 (K1.: + K'L - 3J - 3J') 
(z - x 1 = 4 L + 1.: . (17) 

I V. EIGENVALUES FOR THE CASE m2 = 1 

The treatment of the preceding section is invalid 
for the case m2 = I because for this case the perturba
tion in Eq. (6) is not diagonal with respect to the 
eigenfunctions given by Eq. (10). We thus take the 
following linear combinations of the eigenfunctions in 
Eq. (10) for m2 = 1; 

_ ~f(~) g('YJ){cos!:P (18) 
1p± - .J 1T .J' .J'YJ sin rp . 

We also rotate our coordinate system about the z axis 
(direction of the field) so that the quadrupole tensor 
of the field becomes diagonal in the (x, y) plane, i.e., 
V'",u = O. 

It is then easily verified that( + IZ21 -), (+ Ixzl -), 
(+ /yzl -), (+ Ix21 -), and (+ /y21 -) all vanish 
once the integration over rp is performed [see Eq. (9)]. 
Hence the perturbation is diagonal with respect to the 
degenerate states given by Eq. (18), and thus non
degenerate perturbation theory is appropriate. 

It also follows that (xz)± = (yz)± = 0; since V'.,y = 
0, we have, from Eq. (7), 

D.E = -le{<z2)V'zz + <x2)V'",x + <f)V'yy) 

= -H(Z2)V'zz + t(x2 + y2>(V'",,,, + V'yy) 

+ t<X2 - y2)(V'",., - V'yy)]. 

Using Gauss' law (13), we have 

D.E = -te[(z2 - HX2 + y2»V':z 

+ t(x2 - y2)(V'",,,, - V' YII)] 
or 

D.E = -!e[(3z2 - r 2)V'zz + (x2 - y2)(V'",,,, - V'yy)]. 

(19) 

The first term in Eq. (19) is identical to expression 
(14) for the case m2 ¥: 1. The second term breaks the 
degeneracy between the plus and minus states. That 

this is so is seen from the following calculations; 

( 2 2) (r )ib 
(cos

2 cp - sin
2 

e/» 2 A. dA. 
X - Y + = o,,'YJ cos 't' 't' 

o 1T 

= (''YJ)i
b 

cos 2cp (1 + cos 2e/» dcp = !(~'YJ). 
o 21T 

On the other hand, 

(x 2 _ l>- = (~'YJ) {2Ir (cos
2 

cp - sin
2 

cp) sin2 cp de/> 
Jo 1T 

= (~'YJ) {bCOS 2cp (1 - cos 2cp) = -!(~1J). 
Jo 21T 

This last result is equal and opposite that for the plus 
state. Hence 

(20) 

where Q = (3z2 - r 2 ) is the zz component of the 
quadrupole moment tensor for the given state and 
p = t(~'YJ)· 

Both Q and P are averages of quantities independent 
of rp and because the term in the eigenfunctions con
taining rp [both those given by Eq. (10) and Eq. (18)] is 
normalized, their values are the same no matter which 
type of eigenfunction is used to compute them. Thus, 
by comparing Eq. (14) with Eq. (17), we have 

Q = 1 (K1.: + K'L - 3J - 3J') (21) 

2 L + I: 
and, from Eq. (16) and the normalization integral, 

J +J' 
P = . (22) 

2(L + I:) 

V. EVALUATION OF INTEGRALS 

The terms in Eqs. (21) and (22) could be evaluated 
by using explicit expressions for fW and g('YJ) and 
performing the required integrations. This is very 
difficult to do for a general state. Instead, we shall 
evaluate these terms by making use of Feynman's 
theorem which states that, if H(A) is an Hermitian 
operator which is a continuous function of the param
eter A and if V'(A) is one of its eigenfunctions with 
eigenvalue E(A), then 

d~~A) = (V'(A)I O~~A) IV'(A». 

Thus we consider the following generalization of the 
first of Eqs. (11); 

/i2 d"l ( 2 eF Ze
2 + f3 

---- eG~ +-~+--
2# d,2 8 4, 

_ m
2 

- 1 /1
2 )/= E+ f, (23) 

4~2 2# 4 
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subject to the condition 

f"/2m d, = 1. 

Equation (23) is an eigenvalue equation for / with 
eigenvalue iE+ which goes over into the first Eq. (11) 
as G -- O. Applying Feynman's theorem to it, we 
have 

J = lim _ ~ oE+ 
0 .... 0 e of ' 
. 1 oE+ 

K=hm---
0 .... 0 4e oG ' 

(24) 

L = lim _ oE+. 
0 .... 0 o{3 

where the contour integrals are to encircle the region 
on the positive real, axis for which R2 > 0, which is 
nearest to the origin (see I). For the 'YJ equation the 
same rule applies except for the replacements 

The quantization rule given by Eq. (27) may be 
evaluated by expanding the integrals in powers of F 
and G, but, because the limit G -- 0 is to be taken at 
the end, we do not need terms in G of order higher than 
the first. In addition, for simplicity, we shall keep only 
terms in the first order in F. It is possible to prove that 
the quantization rule will give the eigenvalues cor
rectly to these orders.s After evaluating the inte
grals resulting from the expansion, we obtain 

In an analogous fashion, we generalize the second of 
Eqs. (11) to ; (Ze

2 ± (3) 

and obtain 

J ' l' 2oE_ = Im--, 
0 .... 0 e of 

K' = lim _ 1. oE_ (26) 
0 .... 0 4e oG ' 

T' l' oE_ 
L= Im-. 

0 .... 0 o{3 
In taking the derivative, {3 must be treated as an inde
pendent variable. We thus only need to solve for the 
eigenvalues of Eqs. (23) and (25) to first order in G. 
In I we obtained the eigenvalues for the more restricted 
problem given by Eqs. (11). We presented there a 
generalization of Dunham's7 WKB quantization rule 
for Eqs. (11) which we can immediately adapt for our 
problem. We thus have 

1 R d _ ~ 1 [dWR
2
)/d,]2 d, 

'j , 64,u 'j R5 ,4 
_ ~ 1 {49[d(,2R2)/dn4 

8192,u2 'j Rll 

_ 16nd(,2R2)/d']('d/d,)\,2R2)}d' 
R7 ,s 

with 

+ O(/iG
) = (nl :2~/i27T , (27) 

n1 = 0,1, ... 

± e~(!27T2!(ze2 ± (3)2 + (m2 _ 1)-(s7T /i
2 2!) 

~ ,u 

- eG(W7T2!(Ze2 ± (3)3 
E! 

+ H3m2 - 7)7T :2 2!(Ze2 ± (3)E±) 

= (nl + i Iml + i) /i27T (-2E±)!, (28) 
n2 (2,u)! 

with the upper (lower) symbols referring to the '('YJ) 
equation. 

In Eq. (28) we substitute E± = Eo + E1eF + E2eG, 
separate different orders in F and G, and obtain Eo, 
E1 , and E2 • The result for the, equation is 

(Ze2 + (3)2,u 
E=--'-----''-'--~ 

+ 2n2/i 2 

1 /i 2 

- - (3n,2 - m2 + l)eF 
4 (Ze2 + (3),u 

2 /i
4 

2 2 n,2(10n,2 - 6m2 + 14)eG, (29) 
(Ze + (3),u 

with n' = 2nl + Iml + 1. For the 'YJ equation, replace 
E_ for E+, -Ffor F, -{3 for {3, and n' by nil == 2n2 + 
Iml + 1. If oc± == (Ze2 ± (3),u/1i2, we obtain, by 
combining Eqs. (24), (26), and (29), 

J = (l/2oc+)(3n,2 - m2 + 1), 

J' = (1/2oc_)(3n"2 - m2 + 1), 

L = oc+/n'2, 
E = oc_/n,,2, 

K = (1/2oc!)n,2(5n,2 - 3m2 + 7), 

K' = (1/2oc~)n"2(5n"2 - 3m2 + 7). 
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In letting G - 0 in Eqs. (24) and (26), Eqs. (23) and 
(25) go over into Eqs. (11) and E± - E(F, 0). There
fore, in (l± we must substitute the value of {J resulting 
from the simultaneous solution of Eqs. (11). We 
obtained {J in I; here we keep only its zeroth-order 
value because we seek P and Q to only this order in F. 
Thus {J = Ze2(nl - n2)/n. 

Substituting the above results in Eqs. (20), (21), 
and (22), multiplying numerator and denominator of 
the resulting expressions by n'n", and simplifying with 
the use of the identities 

we obtain for the general m case 

with 

Q == (3z2 _ r2) 

= ia~(5nn,a + 5nn"a + Sn 2 
- 1SnVn") + O(F), 

P == t(~t]) = !a~nVn" + O(F), 

€(m) = 1, m = 1, 

= 0, m2 ¢ 1, 

= -1, m = -1, 

and ao = /i2/Ze2tt , the Bohr radius for the atom with 
nuclear charge Ze. It may be seen that for the ground 
state (n = n' = n" = I) b..E = 0 if the O(F) terms are 
neglected. This was expected since the ground state is 
nondegenerate (spin degeneracy aside) and spherically 
symmetric in any coordinate system. 

We also see from Eq. (30) that the splitting for 
m2 = 1 is !ea~n2n' n" (V xx - V yy). This splitting (if 
measurable) serves as a measurement of the departure 
of the field from cylindrical symmetry. We recall that 
the x and y directions are not arbitrary but have been 
chosen so that VXy = O. Hence V",x - Vyy is uniquely 
determined by the structure of the field. For a cylin
drically symmetric field, Vx", - Vyy = 0; hence, if it is 
nonzero, its magnitude, as determined from the split
ting of the m2 = 1 states, measures the asymmetry of 
the field. 

It may be noted that nowhere have we used explicit 
expressions for the eigenfunctions of the problem. 
The above calculations illustrate the power of Feyn
man's theorem for calculating expectation values 
when accompanied by some independent method for 
calculating the necessary eigenvalues. 

VI. LINE BROADENING 

In this section we shall give an estimate of the line 
broadening of the Stark spectrum which is caused by 

interatomic interactions. We consider here only the 
case of a gas made up mostly of hydrogen atoms in 
their ground state. This is a possible situation since 
the binding energy of the H2 molecule is smaller than 
the energy difference between the ground and first 
excited states of the hydrogen atom. Thus over a 
certain range of temperature the situation considered 
will occur. 

Aside from the natural broadening, there is a con
tribution to the intrinsic broadening of lines caused by 
collisions of the excited atoms with other atoms in the 
gas. This effect, called collision or pressure broadening, 
has been studied in detail. 9 We expect that collisions 
causing broadening occur if an excited atom in a 
quantum state characterized by the principal quantum 
number n and another unexcited atom approach to 
within a distance of n2ao (characteristic size of the 
excited atom). If the closest distance of approach is 
much larger than this, the radiating atom will not be 
disrupted and no intrinsic line broadening will occur. 
However, as we shall see, an apparent broadening of 
the line will still appear in such a case. 

If the gas is exposed to a uniform electric field 8, an 
electric dipole moment is induced in each atom which 
then becomes the source of a perturbing field. The 
atoms are moving with respect to each other, but,be
cause their speed is in all cases small compared to the 
speed of the electron in the excited atom, the adiabatic 
approximation is valid. Accordingly, the excited atom 
will remain in the same quantum state, but its energy 
will shift back and forth as the perturbing atoms fly 
by. 

A detecting apparatus, a photographic plate for 
example, will not resolve the oscillation of a spectral 
line and so will show a line broadening. But this 
broadening is only apparent; the lines are not truly 
broadened by the perturbation. 

We now proceed to calculate the effect quanti
tatively. The energy shift of an H atom in the ground 
state because of a uniform field E (in the z direction) 
is (see I, for example) 

Thus its dipole moment along the field is 

(31) 

If this atom is at position ro, the potential due to it at 
r will be 
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The z component of the field and the zz component of 
the gradient caused by it are 

with 

p 3p(z -- ZO)2 
&: = -- 3 + 5 ' If -- fol If -- fol 

0&. 9p(z -- zo) 15p(z -- ZO)3 
-= 
OZ 

o&x = o&u 
ax oy 

For a fixed If -- fol, we have 

p 2p 
--"---3 < &z < 3 (32) 
Ir -- fol Ir -- fol 

6p o&z 6p (33) 
4<-;-< 4 If -- fol uZ If -- ro! 

We can take the mean deviation of &z and o&./oz from 
their averages to be half of the above ranges. 

To obtain an upper bound for the apparent broad
ening, we use Eqs. (32) and (33) in the expression for 
the energy shift in an inhomogeneous field to first 
order in the field and first order in the field gradient 
[see I and Eq. (30)J: 

3 Ji2 1 
/).E = -- - - n(nl -- n2)F -- - eQVu . 

2 ef1- 4 

The apparent broadening results from replacing F 
above by tp/lr -- rol3, V zz by 6pllr -- rol4, and esti
mating Ir -- fol as p-! where p is the number of atoms 
per unit volume. Thus the broadening is 

oE ~ 8llea~n Inl -- n21 &p 
4 + Hea~(5nn'5 + 5nn,,3 + 8n2 -- 18nVn")&p", 

(34) 

where we have used Eqs. (30), (31), and the definition 
ao = Ji2/e2f1- to simplify the results. Since the kind of 
broadening that we are considering depends on the 
polarization of the atoms in the gas, we find that it 
vanishes when the applied field & vanishes. 

For comparison we estimate the collision broaden
ing. The mean free path of the excited atom is, from 
kinetic theory, A. = (21 pa)-l with (1 representing the 
collision cross section, which we take to be 114a~ 

(characteristic area of the excited atom). The mean 
speed o( the excited atom is 

with M being the mass of the H atom. Then the mean 
free time between collisions is T = Aji;. Thus the 
collision broadening of the energy is oE = lilT or 

oE = 4Jin4a~p(kT/7TM)t. (35) 

To compare Eqs. (34) and (35), we go over to 
atomic units for which e = Ii = ao = f1- = 1. Then p 
is in units of (Bohr radii)-3, & in units of 5.142 X 

109 V/cm, and energy in units of27.2 eV. Thus {;« 1, 
M = 1836, kT:S;; 1 (kT = 1 eV for 12,OOOOK), and 
p «1 in all possible cases. By choosing specific 
values for kT and 11, it is easy to show that oE given by 
Eq. (35) is usually much larger than that given by Eq. 
(34). For example, for T = 12,000oK and 11 = 5, 
111 = 0, n 2 = 4, and m = 0 (the state from which the 
line 7T 18 originates, which exists only for {; < 106 

V/cm),IO we find that for the highest possible field the 
collision broadening is 5.95p while the apparent 
broadening is 0.04p + 2.38p!. Since p has to be very 
small compared to I (the total Stark shift of this state 
is less than 0.02 a.u., and the broadening must be 
much smaller than this), we see that the apparent 
broadening is small compared to the collision broaden
ing. The same applies for other states. 

For highly excited states, the bound electron may 
be moving so slowly that the adiabatic approximation 
is no longer valid, i.e., the Stark field may be changing 
appreciably during one atomic period. For such states 
the Stark effect will tend to average out and give a 
smaller shift and less broadening than calculated here. 
Thus, our final conclusion is that only actual collisions 
cause observable line broadening in the gas considered 
here. 
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We represent the spin coefficients and the Riemann tensor in the form of linear combinations of the 
in~nitesiJ?al gene~ators 0: the g~oup SL(2, C). This. re~resenta~ion is similar to the way Yang and Mills 
wrIte their dynamical variables m terms of the Pauh spm matrices. The spin coefficients take the role of 
the Yang-Mills-like potentials, whereas the Riemann tensor takes the role of the fields. 

1. INTRODUCTION 

The gravitational field dynamical variables of 
general relativity can be divided into three sets: (1) 
the Riemann tensor, decomposed into its irreducible 
components (the Weyl tensor, the trace-free parts of 
the Ricci tensor, and the Ricci scalar); (2) the spin 
coefficients; and (3) a tetrad system of vectors (from 
which one obtains the metric tensor). They are con
nected by three sets of first-order partial differential 
equations most conveniently given by Newman and 
Penrose.1 

In this paper, we give a simple representation for 
the spin coefficients and for the components of the 
Riemann tensor in the form of linear combinations 
of the infinitesimal generators of the group SL(2, C). 
This representation is very similar to the way Yang 
and Mills write their dynamical variables in terms of 
the Pauli spin matrices.2 The spin coefficients take the 
role of the Yang-Mills-like potentials, whereas the 
Riemann tensor components take the role of the fields. 

There is an essential difference, however, between 
our work and that of Yang and Mills. The group 
underlying the symmetry in our case is SL(2, C), the 
group of all 2 x 2 complex matrices with determinant 
unity, whereas in the Yang-Mills case it is SU(2). 

The group SL(2, C) seems to fit in with general 
relativity in a remarkable and natural way, just as 
2-component spinors do. This is not an unexpected 
result, since spinors describe the finite-dimensional 
representation of SL(2, C).3.4 

With our representation of the field functions of 
gravitation, the Newman-Penrose field equations 
also have a simple and attractive representation. This 
latter result, however, is discussed elsewhere. 

In Sec. 2, we give a very brief review of spinor 
calculus and its applications in general relativity. For 
details, see Ref. 1. 

In Sec. 3, we obtain a set of four 2 X 2 complex 
matrices that have the form of the Yang-Mills 
potential and show how they represent the spin 

coefficients of general relativity. In Sec. 4, we define, 
following Yang and Mills, a set of six matrices to 
describe the gravitational field. It is then shown, in 
Sec. 5, that these six matrices describe the various 
components of the Riemann tensor. 

In the Appendix, we give a brief discussion on the 
group SL(2, C) and derive its infinitesimal generators. 

2. SPIN FRAME 

We review some standard techniques used in 
general relativity, thus establishing our notation. For 
details, see Ref. 1. 

The correspondence between tensors and spinors 
is obtained by means of mixed quantities which are 
four 2 x 2 Hermitian matrices (11' AB" Greek letters 
are used for tensor indices running over 0, I, 2, 3 and 
Roman capitals for spinor indices taking the values 
0, I. Prime indices refer to the complex conjugate. The 
four matrices (11' satisfy the relation 

where gl'v is the metric tensor and fA.G and fB'D' 

along with fAC and fB'D' are the skew-symmetric Levi
Civita symbols given by 

f = fAB = ( 0 1) . 
AB -1 ° (2.2) 

Raising or lowering a spinor index is done by means 
of the above symbol, with the following conventions: 

A' A'B' lJ' 1'J = f 1'JB" 1'JA' = 1'J fll'A.'· (2.3) 

The spinor equivalent of a tensor is a quantity 
which has an unprimed and a primed spinor index for 
each tensor index. The spinor representing the tensor 
Tap

y ' for example, is 

T AB'CD' _ ,... AB',... CD'a Y l'aP 
EF' - Va vp EF" y' (2.4) 

The tensor representing the spinor SAB'CD' is then 

S a a CD'SAlJ' 
p = a AB,(1P CD" (2.5) 

2728 
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Greek indices are raised and lowered, as usual, by 
the metric tensor g«/J and g«/J ' whose spinor expressions 
are given by 

gAB'OD' = EAOEB'D', gAB'CD' = EAOEB'D" (2.6) 

When taking the complex conjugate of a spinor, 
unprimed indices become primed, and primed indices 
become unprimed. The complex conjugate of SAB', for 
example, is SA'B, and, therefore, the condition for the 
vector S« to be real is that its spinor be Hermitian: 

(2.7) 

The covariant derivative V p. of a spin or ~A is 

Vp.~A = ap.~A - rBAp.~B' (2.8) 

where r B Ap. is the spinor affine connection. The choice 
of r B Ap. is fixed by the requirement that the covariant 
derivatives of (J"AB' , EAB, and EA'B' shall all vanish: 

Va(J" AB' = 0, 

V«EAB = 0, (2.9) 

V«EA'B' = O. 

At each point of space-time, two spinors ~a A, where 
a = 0, 1, are introduced to define a spin frame. These 
two spinors are supposed to satisfy the normalization 
condition 

~aBEBA'oA = ~aA~oA = Eab • (2.10) 

An arbitrary spinor SAB' can then be written in their 
terms: 

(2.11) 
where 

Sab' = SAB'~/~b,B' (2.12) 

are called the dyad components of SAB" By the same 
token, the quantity V p.~A, obtained by taking the 
covariant derivative of a spinor ;A, can be written as 

(2.13) 

where the BO
,., with b = 0, 1, are some vectors. In 

particular, Eq. (2.13) applies for the spinors 'aA • This 
gives 

(2.14) 

where again, Bab
,., with a, b = 0, 1, are some vectors. 

Using matrix notation, we see that Eq. (2,14) has the 
form 

(2.15) 

Here, B,. and, are 2 X 2 complex matrices whose 
elements are Babp. and 'aA , respectively. 

Quantities with lower-case indices behave the same 
way algebraically as the same quantities with capital 
spinor indices. But when covariant differentiation is 

applied, no term involving an affine connection 
appears for the lower-case indices. 

The quantities (Jp. AB' are not vectors. The expression 

" _ r A" f B' 
(J ab' - 'oa (J AB''ob' , (2.16) 

however, does define a null tetrad of vectors when 
ab' take the values 00', 0 1', 10', and II'. They satisfy 
the orthogonality relation 

(2.17) 

3. POTENTIALS AND SPIN COEFFICIENTS 

In Sec. 2, we obtained the formula 

(3.1) 
where 

(3.2) 

are four 2 x 2 complex matrices whose elements are 
Bab p. and , is the complex matrix whose elements 

are 'a A. 

Moreover, by Eq. (2.10), 

det , = 1. (3.3) 

Accordingly, '(x) is an element of the group SL(2, C). 
It is convenient to introduce another set of four 

matrices Eit' connected to B" by a similarity trans
formation 

,E" = B,,'. 
The new set of matrices then satisfy 

V,,~ = ~E", 

E,. = ,-IV,,'. 

(3.4) 

(3.5) 

(3.6) 

The matrix elements of E" and B,. are related as 
follows. If Bab fl are the elements of B", then B AB will _ ~ fl 
be those of Bfl' This fact can easily be seen by writing 
the matrix elements of both sides of Eq. (3.4). The 
left-hand side gives 

aEp.).F = ,.DBD
F,., 

whereas the right-hand side gives 

(3.7) 

(Bp.,).F = B."',,'/' (3.8) 

Using Eqs. (2.11) and (2.12), we see that both of these 
expressions are equal to B.Fp.. 

Now the matrices Bfl and E" are traceless. This is a 
result of the fact that ~ is unimodular. Hence, both 
B" and B" can be written as linear combinations of the 
infinitesimal matrices of the group SL(2, C) similar 
to the way the Yang-Mills matrix potential is written 
in terms of the Pauli spin matrices. Denoting the 
infinitesimal generators by 

(3.9) 
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where (see Appendix) 

A+ = (~ ~), .1.0 = (~ _~), .1._ = (~ ~), 
(3.10) 

we have 

(3.11) 

Here, bp ' A is a scalar product in the complex 3-
dimensional SL(2, C) space: 

(3.12) 

[Boldface quantities denote complex 3-component 
vectors in SL(2, C) space.] A similar equation holds 
for Bp. 

From the matrices Bp , one can define another set of 
four matrices 

(3.13) 

Again, we can write these latter matrices as linear 
combinations of A: 

The four vectors 

in the complex SL(2, C) space are denoted by 

boo, = (-K, E, 7T), bol ' = (-0',13, p), 

blO' = (- p, 0(, A), bu ' = (-7', y, '1'). 

Bab' then has the form 

Boo' = -KA+ + do + 7TA_, 

Bol ' = -0'.1.+ + 13.1.0 + pA_, 

BiO' = - PA+ + 0(.1.0 + AA_, 

Bu ' = -7'.1.+ + yAo + '1'.1._, 

or, in matrix form, 

BOO' = (: -K) (13 -a) , Bol ' = , 
-€ It -fJ 

BiO' = e -p), 
-0( (

y -7') Bu ' = , 
'I' -y 

when the representation (3.10) is used for A. 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The twelve complex functions E, K, 7T, etc., were 
first introduced by Newman and Penrosel and are 
known in general relativity as spin coefficients. From 
the point of view of Yang-Mills field theory, these 
same quantities are potentials, the field of which is 
introduced in the next section. 

4. THE Fp.v FIELD 

In analogy to the procedure of obtaining the Yang
Mills field, we define a set of six traceless matrices5 

where 
(4.1) 

[Bp., Bv] = BpBv - B.Bp. 

The field Fp.v appears naturally if one applies the 
commutator (V'v V' p. - V' p. V' v) on ,: 

(V'. V' p - V' p. V'.g = Fp..'. (4.2) 

By a similarity transformation, we define another 
set of six traceless matrices Ep.. 

,Ep.. = Fp.L (4.3) 
which satisfy 

and whose explicit expression is given by 

Ep.. = V' .Bp. - V' p.B. - [Bp., B.]. (4.5) 

By using the quantities aP. .AB' and aP.ab' , one obtains, 
from the matrices Fp.. , 

(4.6) 
and 

(4.7) 

Analogous expressions from Epv can be obtained. 
Similar to the potential matrices, the matrix 

elements of Fp.. and Ep.. will be Fabp.. and F.ABpv> 
respectively. 

Fp.v defines a field with 18 complex functions. This 
is equivalent to the 20 (real) components of the Rie
mann tensor plus the 16 (real) components of the 
tetrad aP. ab' •6 Again, one can write Fp.v as linear 
combinations of A, 

(4.8) 

where the right-hand side of (4.8) is a scalar product 
in the complex SL(2, C) space of the vector 

fll• = (f+llv,J°llnf-lIv) (4.9) 
andA. 

In the next section, we decompose the matrices 
Fab'Cd' into their irreducible parts. 

5. SYMMETRY OF Fab'Cd' 

To find the SL(2, C) structure of Fab'Cd" we proceed 
as follows. 

Let ~p be an arbitrary spinor. Then 

(vvVp. - vp.v.);L' = (v.'Vp. - Vp.vv);U'gP 
= ;g(v;V'p. - 'i1,.v.),/. (5.1) 
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Now, using Eq. (4.4), we obtain 

Hence, we have 

('iI,V}l - V}lV')~Q = F PQ}l'~P' 

or, equivalently, 

(5.2) 

(5.3) 

By decomposing the commutator of differentiation 
on the left-hand side of Eq. (5.4), we obtain7 

!E"C'D.(VAF,VBF' + VBF,VAF')~Q 
+ lE"AB(VEc,VED , + VED,VEd~Q 

= F PQBD'AC'~P, (5.5) 

But the left-hand side of Eq. (5.5) is equal to1 

E"c'D,[,FABQP - A(E"PAE"BQ + €PB€AQ)]~P 
+ E"AB<PQl'C'D'~P, (5.6) 

Here, 0/ ABCD is a tot tlly symmetric spinor which 
represents the Weyl spinor, and <PQPC'D' represents 
the trace-free part of the Ricci spinor having the 
symmetry 

<PQPC'D' = <PPQC'D' = <PQPD'c' = ii>C'D'QP' (5.7) 

and 

(5.8) 

where R is the Ricci scalar. 
Accordingly, we obtain 

F PQBD'AC' = E"C'D'[o/ AJ3QP - A(€PAE"J3Q + E"PJ3€AQ)] 

+ €AJ3<PQPC'D" (5.9) 

The same relation holds for lower-case indices: 

FpQbd'ac' = E"c'd,['FvQab - A(EpaJbQ + EvbJau)J 

+ Eab<Ppuc'd" (5.10) 

Using a standard notation 

and 

1.1>000'0' = 11>00' <P01O'1' = <P11 , <P000'1' = <POI' 

11>011'1' = <P12 , <P01O'0' = 11>10' <PUO'l' = 1.1>21 , 

<Pool'l' = <P02 ' <P111'1' = <P22 , <PUO'O' = <P20 , 

(5.11) 

(5.12) 

we finally obtain 

(5.13) 

Each of these matrices can be written as a linear 
combination of the SL(2, C) infinitesimal generators 
A+, Ao, and A_ . 

If we write 

Fab'Cd' = fab'Cd' • A, (5.14) 

where 

fab'cd' = (J+ab'cd"jOab'cd"j-ab'cd')' (5.15) 

then we have 

f01'oO' = (-0/0,0/1,0/2 + 2A), 

f11'10' = (-0/2 - 2A, 0/3' 0/4), 

f1O'OO' = (-<Poo, <P1O , <P20), 

f11'Ol' = ( -<1>02' <P12 , <1>22), 
(5.16) 

fU'oo' = (-0/1 - <POl> 0/2 + <P11 - A'0/3 + <P 21 ), 
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APPENDIX: INFINITESIMAL GENERATORS 
OF SL(2, C) 

The group SL(2, C) is the group of all 2 x 2 
complex matrices with determinant unity. It is the 
covering group of the restricted Lorentz group 
describing homogeneous Lorentz transformations 
which are orthochroneous and proper. SU(2) is, of 
course, a subgroup of SL(2, C). 
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The group SL(2, C) has been extensively discussed 
and represented in the classic book of Naimark. 3 

Here, we only derive its infinitesimal generators using 
complex analysis. These generators play the same role 
that the Pauli matrices have with respect to SU(2). 
To find the generators of SL(2, C), we proceed as 
follows. 

Let A be a 2 X 2 complex matrix with determinant 
+ 1. Then A can be expressed in terms of three inde
pendent complex parameters which we denote by 
0+, 00 , and 0-. It is then possible to show that every 
matrix 

). >= (All A12) (AI) 
A21 A22 

of SL(2, C) satisfying the condition A22 ~ 0 can be 
represented uniquely in the form 

A == A+(O+)Ao(OO)A_(O-). (A2) 

The three matrices appearing on the right-hand side 
of Eq. (A2) are given by 

A+(t) = (~ ~), (A3) 

.1o(t) = (~t e~t)' (A4) 

A_(t) = G ~), (A5) 

where t is a complex variable. They provide three 
I-parameter subgroups of SL(2, C) and satisfy 

A+(t1 + t2) = A+(t1)A+(t2), 

Ao(t1 + t2) == AO(t1)Ao(t2), (A6) 

A_(t1 + t2) = A_(tl)A_(t2)' 

The infinitesimal generators of SL(2, C) are 
obtained from A+(t), Ao(t), and ,L(t) by 

A± = [dA±(t)/dt]t=o, 
(A7) 

Ao = [dAo(t)/dtlt=o' 

Hence, for the generators of SL(2, C),8 we have 

A _ (0 1) A _ (1 0) A _ (0 0) 
+ - 0 0' 0 - 0 -1' -- 1 O· 

(AS) 

Conversely, the matrices A+(/), Ao(/), and A_(t) can 
be expressed in terms of the infinitesimal generators 
A+, Ao, and A_ by the formulas 

A±(t) = exp (tA±), 

Ao(t) = exp (tAo), 

as may be directly verified. Thus, for example, 

t2 t3 

exp (tA ) = 1 + fA + - A2 + - .13 + ... 
o 0 2! 0 3! 0 

(A9) 

= (1 + f + . ")1 + (t + t
3 

+ . 00) A 
2! 3! 0 

= cosh t 1 + sinh f Ao 

(A10) 

We finally remark that the infinitesimal generators 
A+, Ao, and A_ satisfy the commutation relations 

[Ao, A±l = ±2A±, 

[A+, ,Ll = Ao. (All) 

1 E. T. Newman and R. Penrose, 1. Math. Phys. 3, 566 (1962). 
2 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954). 
3 M. A. Naimark, Linear Representations of the Lorentz Group 

(Pergamon, New York, 1964). 
• For a generalization of spinors to infinite-dimensional repre

sentations of SL(2, C), see M. Carmeli, 1. Math. Phys. 11, 1917 
(1970). 

6 Yang and Mills define their field by using partial derivatives 
instead of the covariant derivatives in Eq. (4.1). The two expressions, 
however, are equal since VVBfl - V flBV = GVBfl- GIlBv • 

a I am indebted to Professor L. Witten for a discussion on this 
point. 

? R. Penrose, Ann. Phys. (N.Y.) 10, 171 (1960). 
8 Our infinitesimal generators are related to those of Gel'Cand, 

Graev, and Vilenkin by 
A±=a±, Ao =2ao. 

See I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin Illtegral 
Geometry and Represelltation Theory (Academic, New York, 1966). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 9 SEPTEMBER 1970 

Radiative Transfer in a Rayleigh-Scattering Atmosphere 
with True Absorption* 

T. W. SCHNATZ AND C. E. SIEWERT 
Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27607 

(Received 4 March 1970) 

Th~ sin~lar-~igenfuncti?n-expansi.on technique is used to solve the equation of transfer for partially 
pola!lzed hght m a Ra~lelgh-scattenng.atmosphere with true absorption. The normal modes for the 
considered nonconservatlve vector equation of transfer are established' two discrete eigenvectors and two 
linearly indepen~ent continuum solutions are thus derived. Further, th~ necessary full-range completeness 
and ~rthogonaht~ theorems are pro~ed, so that all expansion coefficients can be determined explicitly, 
and, .m ~rder to Jllustra.te the techOiqu~, an exact analytical solution for the infinite-medium Green's 
function IS developed. Fmally, a numerIcal tabulation of the required discrete eigenvalue as a function 
of the single-scatter albedo, is given. ' 

I. INTRODUCTION 

In one of his classical papers on radiative transfer, 1 

Chandrasekhar formulated explicitly the equations 
of transfer for the two components IlT, p,) and 1r( T, p.) 
of a polarized radiation field in a free-electron atmos
phere; he also developed an approximate solution 
for the law of darkening appropriate to the considered 
Milne problem. This latter result was subsequently 
i"mproved2 as Chandrasekhar was able to observe the 
infinite limit of a discrete-ordinates procedure in order 
to establish a rigorous solution for the desired surface 
quantities. 

More recently, as the study of neutron physics has 
developed, Wigner3 has discussed a theory of neutron 
transport which takes into consideration the quantum 
mechanical effects of neutron polarization. The 
influence of neutron polarization on the scattering of 
fast neutrons by unpolarized nuclei has also been 
reported recently by Bell and Goad,4 who used the 
PI approximation to the transport solution. 

Although most studies [for example, Refs. 5-8] 
of the scattering of polarized light have been based on 
Chandrasekhar's model,9 the extension to include 
the effects of true absorption has been discussed 
briefly by Sobolev10 and Simmons.u Further, Mulli
kin12 recently extended his earlier work13 on the 
conservative model and reported the results of a more 
general investigation, which accounted for true 
absorption by allowing the single-scatter albedo to be 
less than unity. 

Since the principal interest relevant to many 
astrophysical studies of polarized light is in the 
evaluation of surface quantities, Chandrasekhar's 
invariance principles9 have been widely used5- 8 ; 

however, the singular-eigenfunction-expansion tech
nique developed by Case14 has been used to advantage 

by Siewert and FraleyI5 to construct rigorous analyti
cal solutions, valid anywhere within the medium, to 
the Milne problem and other half-space problems. 
This latter method was also used by Mourad and 
Siewert16 to establish full-range completeness and 
orthogonality theorems basic to the normal modes of 
a more general vector equation of transfer, also 
formulated by Chandrasekhar. 9 For this case, the 
mathematical model used to describe the scattering 
of polarized light by molecules was also shown to be 
appropriate for the theory of resonance line scattering. 

Although Mourad and Siewert16 did not find 
closed-form expressions for the more interesting 
half-range applications, the computational merits of 
their results have recently been confirmed for the 
half-space Milne problemY The vector equation of 
transfer considered in Ref. 17 is inherently restricted 
to conservative media, but similar half-range methods 
should be available for the nonconservative model 
discussed here. 

We consider, then, the equation of transfer 

() il fl-:;;- I(T, fl) + I(T, fl) = ie K(fl, fl')I(T, fl') dfl', 
U7 -1 

where the Rayleigh-scattering matrix is given by 

K(fl, fl') = ~ /2(1 - fl2)(1 - fl'2) + fl,2fl2 fl21. 
4 fl,2 1 

(1) 

(2) 

Here, 7 is the optical variable, fl is the direction 
cosine (as measured from the positive 'T axis) of the 
propagating radiation, and C E [0, 1] is the single
scatter albedo. Further, the desired intensities 11(7, fl) 
and fr(T, fl) are the two components of the vector 
I(T, fl}. 

We prefer to make use of Sekera'sl8 factorization 

(3) 

2733 
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where the superscript "T" denotes the transpose opera
tion, in order to write Eq. (1) in the form 

fl - 1(7", fl) + 1(7", fl) = ~eQ(fl) QT(p')I( 7", fl') dfl', a II 
07" -1 

(4a) 
where 

Q(fl) D~ I ~2 2t(1;; fl2) ,. (4b) 

II. EIGENVALUE SPECTRUM AND 
EIGENVECTORS 

Since the development of the normal modes of 
Eq. (1) follows previously reported analysis of vector 
equations of transfer,15.16.19.20 we should like only to 
summarize our results here. 

Proposing solutions of the form 

(5) 

we note that the eigenvalues 1'] and associated eigen
vectors (P(1'], fl) are to be determined from the 
reduced equation 

(1'] - fl)4>(1'],fl) = ~e1JQ(fl) flQT(fll)(P(1J'fll) dfl'· (6) 

If we now introduce the normalization 

We note from Eq. (10) that A(z) is a function analytic 
in the complex plane cut from -1 to 1 and, as we 
discuss in Sec. VI, the argument principle21 can be 
used to show that A(z) has only two zeros, which 
appear as a pair z = ± 1Jo of real eigenvalues. Thus, 
there are two discrete eigenvectors (P ±(fl) which, 
after judiciously normalizing the vector M( 1J), we 
write in the tractable form 

(P ( ) _ .1 _1_/ A2(1'}o)(1 - fl2) + 21'}~(1 - c) I 
± fl - 2 Cr;O 2 • 

1Jo =f fl 21Jo(1 - c) 

(13) 

For the continuum 1J E (-1, 1), we express the 
solution to Eq. (6) in the form 

(P(1'},fl) = ~C1J(-P- + A(1J)b(1'} - fl»)Q(fl)M(r;), 
1'}-fl 

(14) 

where ,1.( 1J) is as yet unspecified; further, the symbol 
P is used to denote that all ensuing integrals over 1J or 
fl are to be evaluated in the Cauchy principal-value 
sense, and b(x) is the Dirac b function. Multiplying 
Eq. (14) by Q'l'(fl) and integrating over fl from -1 to 
1 yields a homogeneous equation for M(1'}). The 
compatibility condition thus yields a quadratic 
equation in A(1J). We find two independent solutions 

then clearly the discrete eigenvectors are given by 

(7) for ,1.( 1J) and thus establish two linearly independent 
continuum eigenvectors. Choosing a convenient 
normalization for M(r;), we write 

(P(1J, fl) = [3e1J/8(1J - fl)]Q(fl)M(1J), 
where 

( I - ~e1JJl QT(fl)Q(fl) -.!!L)M(1J) = 0; (9) 
-1 1J - fl 

here, I denotes the identity matrix. 
Thus, we obtain the discrete eigenvalue spectrum 

from the zeros of the dispersion function A(z) defined 
as 

A(z) D~ 8 det (I + iezJl QT(fl)Q(fl) -.!!L), (10) 
-1 fl - z 

where the factor 8 has been included in order to 
obtain the more convenient form 

Here, 

0( = 1 or 2, (l2a) 
and 

II d 
Ao(z) = 1 + tcz _fl_ . 

-lfl - Z 
(l2b) 

tC1'](l - r;2)(1 - fl2)P/(1J - fl) 

= + [(1 - 1'}2)Ai1'}) + 21'}2(1 - c)]b(1'} - fl) , 

- 21J2(1 - c)b(1'} - fl) 

(15a) 

4>2(1'], fl) = ,!C1'}(1 - 1'}2)PJ(r; - fl) + '~I(1'})t5(1'} - fl) I. 
t C1'}(1 - 1'}2)P/(1'} - fl) + A2('YJ)b(1'} - fl) 

(15b) 

Ai1J) = (-l)~ + 3(1 -1'}2)Ao(1J) - (-1)~31J2(1 - e), 

(l6a) 

Ao(1J) = I - e1'} tanh-1 (1'}). (16b) 

Having determined the eigenvectors, we can 
express the general solution of Eq. (1) as a linear sum 
of the independent solutions: 

I(T,,u) = A+e-r1qocl>+(fl) + A_er1q°cl>_(fl) 

+ l: [A1(1'])4>1(1J, fl) + A2(1'})4>2(1'}. fl)]e-r1q d1'}. 

(17) 
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where A±, A1(1'}), and A 2(1'}) are the arbitrary coeffi
cients to be determined from the boundary conditions 
of a suitably defined physical problem. 

We note that for the special case c = 1, the disper
sion relation given by Eq. (11) and the established 
eigenvectors reduce to forms equivalent to those 
obtained by Siewert and Fraley.15 

III. FULL-RANGE COMPLETENESS OF THE 
EIGENVECTORS 

Theorem 1: The eigenvectors .z,±(Il), .z,l(1'}, Il), and 
.z,2(1'}, Il) are complete on the full range, Il E (-1,1), 
in the sense that an arbitrary 2-component vector 'I'(Il) 
satisfying the Holder condition for Il E (-1, 1) can 
be expanded in the form 

'I'(Il) = A+.z, +(Il) + A_.z, -(Il) 

+ flA1(1'}).z,1(?), Il) d1'} 

+ flA2(1'}).z,l?), Il) d1'}, Il E (-1,1). (18) 

In order to prove the theorem, we use the methods 
of Muskhelishvili22 to convert Eq. (18) to the equiv
alent Riemann-Hilbert problem 

1l(1 -l)'I"(Il) = A+(Il)N+(Il) - A-(Il)N-(Il), 

Il E (-1,1), (19) 
where 

and 

It can be seen from Eqs. (12) and Eq. (16) that the 
functions A/z), rJ. = 1 and 2, are also analytic in the 
complex plane cut from -1 to 1 and that the boundary 
values A;=(Il) obey 

rJ. = 1 or 2, (24a) 

and 

Defining a vector P(z) with components Pl(Z) and 
P2(z) as 

P(z) = A(z)N(z) - -. Il(I -1l2)'I"Gu) _Il_ , 1 II d 
2~1 -1 Il - z 

(25) 

we note that P(z) is analytic in the complex plane cut 
from -1 to 1. It follows from Eq. (19) that P(z) is 
continuous across the cut and thus is an entire func
tion. If we consider the behavior of the functions 
Aa(z), rJ. = 0, 1, and 2, as z tends to infinity, we 
observe that 

Ao(z) r-..; (1 - c) - c/3z2 - c/5z4, z --+ 00, (26a) 

z --+ 00, (26b) 

and 

A2(z) "-' 2(2 - c) - 6z2(1 - c), z --+ 00. (26c) 

N(z) = -. 1'}(l - ?)2)A(1'}) -?)- ; 1 il d 
2~1 -1 1'} - z 

The above results may be employed to deduce the 
(21) behavior of A(z) for large z: 

here, A(?) is a vector with components A 1(1'}) and 
A 2(?). We note that N(z) is analytic in the complex 
plane cut from -1 to 1. Also, it vanishes at least as 
fast as l/z when z increases without bound. Further, 
the boundary values of N(z) as z approaches the cut 
from above (+) and below (-) can be shown to 
satisfy the following relations deducible from the 
Plemelj formulas22 : 

~j[N+(Il) + N-Gu)] = (11'}(1 - ?)2)A(?) ~ d1'} 
J-l ?) -Il 

(22a) 
and 

(22b) 

In establishing Eq. (19), we introduced the matrix 

A(z) D~F I (1 - z2)A1(z) + 2z2(1 - c) A1(z) I (23) 
- -2z2(1 - c) A

2
(z) . 

A I %(5 - 4c) 2(1 - c) I 
(z)"-' _2Z2(1 _ c) -6z2(1 _ c)' z--+ 00, 

(27) 

and thus, from Eqs. (25) and (21), we conclude that, 
as z tends to infinity, P1(z) vanishes while P2(Z) has a 
first-order pole. Liouville's theorem23 then requires 
that P2(z) be a first-order polynomial, whereas P1(z) 
must be identically zero. Thus, we find 

(28) 

where a and b are arbitrary constants. 
Equation (25) can now be solved for N(z) to yield 

N(z) = A-l(Z)(~. L1

1l(1 _1l2)'I"(1l)~ + P(Z») , 
2m -1 Il - z 

(29) 



                                                                                                                                    

2736 T. W. SCHNATZ AND C. E. SIEWERT 

where the inverse of A(z) is given by 

A-l ( ) 1 
z = (1 _ z2)A(z) 

1 

A2(Z) 
x 2z2(l _ c) 

-A1(z) 1 

(1 - z2)Al(Z) + 2z2(1 - c) . 

(30) 

Since A(z) has zeros at z = ±l7o, we note that 
N(z) is not a holomorphic function in the complex 
plane cut from -1 to 1 unless we impose on '1" (u) 
the two constraints 

1 

A2(l70) -Al(l7o) I 
217~(1 - c) (1 - l7~)Al(l7O) + 21}W - c) 

X (~il p(l - p2)'I"(u) ~ + P(±1}o») = O. 
2m -1 p =F 1}o 

(31) 

In addition, we observe that A(z) is singular at the 
branch points z = ± 1, so that we must carefully 
investigate the end-point22 behavior ofN(z). Observing 
the limits as z tends to ± 1 in Eq. (29), we obtain 

lim N(z) 

,...., {(I - Z2)[ -(2 - 3C)2 + 12(1 - c)AO(Z)]}-l 

X 1-(2 - 3c) -(2 - 3c) 1 
2(1 - c) 2(1 - c) 

X (~ (1,u(1 _ ,u2)'I"(p) ~ + P(± 1») 
2m )-1 ,u =f 1 . 

(32) 

The singularities at z = ± 1 introduced by the factor 
(1 - Z2)-1 in the above equation are termed special 
end-points by Muskhelishvili,22 and, in order for N(z) 
to have the proper end-point behavior, we impose the 
additional constraints 

l
IlT [~ (1,u(1 ± p)'I"(p) d,u -I 0 IJ = o. 
1 2m 1-1 ±a + b 

(33) 

Equation (33) can be solved immediately for a and b 
to yield 

(34a) 

and 

b = -.,u 'J!'(,u) d,u. 1 II lIlT 
2m -1 1 

(34b) 

Having determined P(z), we investigate more 
thoroughly the original constraints on 'J!'(,u) as given 

by Eq. (31). Rewriting Eq. (31) as two separate 
equations, we observe that 

1 

A2(1}o) IT 
-Al(l7o) 

X (I l

,u(l - p2)'I"(,u) ~ + 21TiP(±l7o») = 0 
-1 P =F?]o 

(35a) 
and 

I 

21}~(1 - c) IT 

(1 - 1}~)AtCl7o) + 217~(1 - c) 

X (II p(l - ,u2)'I"(p) ~ + 21Ti P(±1}o») = o. 
-1 P =F 1}o 

(35b) 

The above expressions can be rearranged to yield 

ffW!(,u)'I"(P) dp + ~ ff(,u ± 1}o) I ~ IT'I"(p) dp 

-21Ti~ 1 ~ r P(±1}o) = 0, (36) 

where 

~ = 3cl7~(l - c)/(l - ?]~). (37) 

The results given by Eqs. (34) for a and b can now be 
introduced into Eq. (36), thus reducing the con
straints on '1" (,u) to the explicit form 

ftW!(p)'I"(P) dp = O. (38) 

In general, this condition is not met; however, noting 
'I"(u) as given by Eq. (20), we can determine A+ and 
A_ such that Eq. (38) is satisfied. With A+ and A_ so 
established and a and b given by Eqs. (34), the result 
for N(z) expressed by Eq. (29) exhibits the proper 
analytic pr0l'erties; the completeness theorem is thus 
proved. 

Although the proof of Theorem 1 can be pursued 
to yield explicit expressions for all expansion coeffi
cients A±, Al(?]), and A2(1}), we prefer to use the 
alternative full-range orthogonality theorem developed 
in the next section to establish these results. 

IV. ORTHOGONALITY, NORMALIZATION 
INTEGRALS, AND ADJOINT FUNCTIONS 

Theorem 2: The eigenvectors W±(,u), W1(?J, ,u), and 
4t2(1}, ,u) are orthogonal on the full range, with respect 
to weight function,u, i.e., 

ffWf(?J',,u)Wl?J,,u) d,u = 0, 17"¢ ?J', 

i,j = +, -, 1, or 2. (39) 
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We begin the proof by premultiplying Eq. (6) by 
«)T( 11', f-t)f 11. Equation (6) with 11 replaced by r/ is then 
transposed and postmultiplied by «)(11, f-t)frj'. The 
resulting equations are integrated over f-t from -1 to 
I and subtracted to yield 

(~ - !) il f-t«)T(11', f-t)«)(11, f-t) df-t = O. 
11 11-1 

(40) 

Thus, the proof is established. However, some 
difficulty still remains, since the continuum eigen
vectors are degenerate. A vanishing scalar product 
between the continuum eigenvectors is not guaranteed 
by the theorem. In fact, if we define 

where 

_ 3. 3MT( ) M± - ±ge1')o 1')0 

X (iefl Q"(f-t)Q(f-t) df-t 2 - \ I)M(17o) (47a) 
-1 (f-t - 1')0) 1/n 

and 

(47b) 

We now proceed to determine explicit expressions 
for A±, Al ( 1), and A2( 11) in the full-range expansion 
given by Eq. (IS).lfwe multiply Eq. (IS) by f-tw,£t(f-t) 
and integrate over f-t from -1 to 1, we find 

e A±M± =i~If-t«)~t(f-t)'Jf(f-t) df-t, (4Sa) 
0(11 -11')11Mii(11) D~F Lt«)t(11', f-t)«)j(11, f-t) df-t, 

where we have utilized the results given by Eqs. (45) 
11 and 11' E (-1, I), i, j = 1 or 2, (41) and (46). Similarly, we take scalar products ofEq. (IS) 

we find upon evaluating the above integrals that with the adjoint vectors «)1(11, f-t) and «)~(1'), f-t) to find 

M 12(11) = M 21(11) = (1 - 112)At(11)A1(11) 

- 4112(1 - c)[1 - 3112(1 - c)], (42a) 

M ll(11) = (1 - 112)2At(11)A1(11) + 4112(1 - e) 

X [(1 -112)Ai11) + 21)2(1 - c)], (42b) 
and 

A Schmidt-type procedure can now be used to 
develop a set of adjoint eigenvectors such that, if we 
define the scalar product as 

(i I j) D~F f
l
f-t«);r\11, f-t)«) ;(11, f-t) df-t, 

i,j = +, -,1, and 2, (43) 

where the adjoint vectors are defined as 

«)1(f-t) = «)±(f-t), (44a) 

W1(11, f-t) = M 22(1)Wl(11, f-t) - M I2(11)W2(1), f-t), 

(44b) 
and 

W!(11, f-t) = Ml1(11)W2(11, f-t) - M 21(1)Wl (1), f-t), (44c) 

then the desired orthogonality property is established, 
viz., 

(45) 

With the definitions given by Eqs. (44), the necessary 
normalization integrals can be evaluated straight
forwardly. We find 

and 
<± I ±) = M± 

<1 11) = (21 2) = M(11)O(11 - 1)'), 

(46a) 

(46b) 

il "t 
Ai(1)M(1) = _/wl (1), f-t)'Jf(f-t) df-t, i = 1 or 2. 

(4Sb) 

We note that the above results are identical with those 
which follow from the completeness proof given in 
Sec. III. 

V. THE INFINITE-MEDIUM GREEN'S 
FUNCTION 

We now illustrate the utility of the above theory by 
constructing a solution for the infinite-medium Green's 
function. We seek a bounded solution to the equation 

f-t ~ I(T, f-t) + I(T, f-t) aT 

= ieQ(f-t) flQT(f-t')I(T, f-t') df-t' + SeT, f-t), (49) 

where SeT, f-t) is defined as 

SeT, f-t) = OCT) 1 SIO(f-t - f-tl) I, 
SrO(f-t - f-tr) 

f-t, f-tl' and f-trE(-I, 1). (50) 

Here, Sz and Sr represent the source strengths of each 
of the two polarization states. In the usual manner,24 
we neglect the source term in Eq. (49) and require 
the solutions of the resulting homogeneous equation 
to satisfy the "jump" boundary condition 

f-t[1(0, f-tz, f-tr; 0+, f-t) - 1(0, f-tl' f-tr; 0-, f-t)] 

= 1 szo{f-t - f-tz) I, (51) 
sro{f-t - f-tr) 
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where the argument list has been extended to include 
the location of the source as well as the parameters 
fll and fl., 

The solution is separated into two parts which are 
respectively bounded in the two half-spaces 'T ~ 0. 
Thus, we write 

1(0, fll' fl.; 'T, fl) 

= A+ ell +(fl)e-r
/

1JO 

+ f [Al(1])eIllI1, fl) + A2(1])eIl2(1], fl)]e- T
/1) d1], 

'T > 0, (52a) 

1(0, fll' fl.; 'T, fl) 
= - A_ eIl-(fl )er

/1JO 

- f/A1(1])eIl1(1], fl) + A2(1])eIl2(1], fl)]e-r
/

1J d1], 

'T < 0, (52b) 

where the negative signs appearing in Eq. (52b) were 
included for convenience. Applying the "jump" 
boundary condition given by Eq. (51), we obtain the 
full-range expansion 

! I Sl~(fl - fll) I 
fl S.~(fl - fl.) 

= A+ ell +(fl) + A_ell jfl) 

+ F:l(1])eIl1(1], fl) d1] + FIA2(1])eIl2(1], fl) d1], 

fl, fll' and fl. E (-1,1). (53) 

It is clear that all required expansion coefficients 
can now be obtained simply by taking scalar products 
of Eq. (53) with the appropriate adjoint vectors. Thus, 

(54a) 

and 

A;(1]) = _1_ II eIlr(1), fl) I S/J(fl - fll) I dfl, 
M(1]) -1 S.~(fl - fl.) 

i = 1 or 2. (54b) 

Since the integrals above are elementary, we write the 
expanded form only for the discrete coefficient: 

A 
_ 3C1Jo ( [A2(1]0)(1 - fl~) + 21];'(1 - c)] 

± _ Sl 

2M± 1)0 1= fll 

+ S. 2'1]~(l - C»). (55) 
1]0 1= fl. 

Having established all 'of the unknown expansion 
coefficients, we consider the construction of the 
Green's function to be completed. 

VI. DISCRETE EIGENVALUES 

One of the most important parameters in the above 
formalism is the discrete eigenvalue 1]0' As pointed out 
in Sec. II, 1]0 is a real number greater than unity and 
is the positive zero of the dispersion function A(z) 
given by Eq. (11). Sobolev10 has calculated 170 for 
several values of c. In Table I below, we present 
values for the discrete eigenvalue as a function of the 
single-scatter albedo c; for convenience, we include 
those values reported by Sobolev.lO The calculation 
was performed on the IBM 360 Model 75 digital 
computer, using Newton's iteration technique,25 and 
the results are believed to be accurate to within 
±5 X 10-7• 

According to the argument principle,21 the change 
in the argument as z traverses some closed contour of 
a function analytic inside that contour is 27T times 
the number of enclosed zeros. The dispersion function 
given by Eq. (11) is analytic in the entire plane cut 
from -1 to 1, and it can be shown that 

lim A(z) = 8(1 - c)(1 - ill c). (56) 
z'" 00 

We choose as our contour one part designated y 
which encompasses, but is arbitrarily close to, the cut, 
and a second part termed R at infinity. Noting Eq. (56), 
we see that the change in the argument of A(z) as z 
traverses R is zero. On y, we must consider the 
boundary values of A(z), namely, 

Af:(fl) = -1 + 9(1 - fl2)2[Ag(fl) - i7T2C2fl2] 

+ 3l(l - c)[4,{o(fl) - 3fl2(1 - c) + 2] 

± i7TCfl[9(1 - fl2)2,{O(fl) + 6fl2(1 - c)]. (57) 

Since A(-z) = A(z) and the complex conjugate of 
A+(ft) equals A-(fl) , it is sufficient to determine the 

c 

0.1 
0.2 
0.3 
0.4 
0.5 
0.581 
0.6 
0.7 
0.712 
0.798 
0.8 
0.861 
0.9 

TABLE I. Table of 'YJo. 

Sobolev10 

1.11 

1.25 
1.43 

1.67 

'YJO 

Present work 

1.000001 
1.000709 
1.007230 
1.025904 
1.062363 
1.110624 
1.125231 
1.232743 
1.250329 
1.427842 
1.433478 
1.665949 
1.924622 
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argument change of N(,u) along that part of y for 
which ,u E (0, 1); the total change will then be four 
times the calculated value. An investigation of both 
the imaginary and real parts of A-l (ft), ,u E (0, 1), 
reveals a change in the argument of 1T. Thus, the total 
change will be 41T and the number of enclosed zeros 
two. Further, since A *(z) = A(z*) and A(z) = 
A( -z), it follows that the zeros occur as a ± pair, 
which upon closer inspection can be shown to be real 
for c E (0, 1) and to coalesce at infinity for c = 1. 
Here the symbol * denotes complex conjugate. 
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An observer determining space-time around his world line by various measurements may encounter 
the problem of not being able to define a unique time order and a spatial orientation along world lines 
of other objects. The problem is discussed and resolved with the aid of geometrical considerations. 

1. INTRODUCTION 

Suppose that an observer is familiar with space
timel according to the general theory of relativity and 
knows his own world line in it. Suppose also that he 
knows the time order on his world line as well as the 
spatial orientation on it; that is, given any three 
ordered independent vectors orthogonal on his world 
line at a certain event, he knows whether or not they 
form a right-handed triad. If he now observes and 
determines the world line of a second observer far 

away in space-time, he (the first observer) can also 
compute the separation (proper time of the second 
observer) between any two events in the history of 
the second observer, using the well-known formula2 

ds 2 = c2 dT2 = gil," dxll dx'·. 
However, in spite of the first observer's complete 
knowledge of space-time, it does not seem that 
he can always define a time order and a spatial ori
entation on the world line of the second observer, 
if he wants to preserve a certain intuitional 
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argument change of N(,u) along that part of y for 
which ,u E (0, 1); the total change will then be four 
times the calculated value. An investigation of both 
the imaginary and real parts of A-l (ft), ,u E (0, 1), 
reveals a change in the argument of 1T. Thus, the total 
change will be 41T and the number of enclosed zeros 
two. Further, since A *(z) = A(z*) and A(z) = 
A( -z), it follows that the zeros occur as a ± pair, 
which upon closer inspection can be shown to be real 
for c E (0, 1) and to coalesce at infinity for c = 1. 
Here the symbol * denotes complex conjugate. 
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ds 2 = c2 dT2 = gil," dxll dx'·. 
However, in spite of the first observer's complete 
knowledge of space-time, it does not seem that 
he can always define a time order and a spatial ori
entation on the world line of the second observer, 
if he wants to preserve a certain intuitional 



                                                                                                                                    

2740 M. ENOSH 

t , Pe 

t t PI 

a 
I t I 

a 
PI 

Pe 

FIG. J. 

continuity (to be defined exactly in the following two 
paragraphs). 

This is easily seen in the following: 

Example (Fig. J): Space-time is flat and can be 
covered by a single system of coordinates (which are 
not admissible everywhere) 

- 00 < t < 00, -a < x < a, 
- 00 < y < 00, - 00 < z < 00, 

and we identify the two hypersurfaces x = ±a in the 
following way: (t,a,y,z) and (-t, -a,y,z) repre
sent the same event. The metric is 

ds2 = dt 2 - dx2 - dy2 - dz2. 

The world line of the first observer is x = Y = z = 0, 
and the world line of the second observer is x = a, 
y = z = O. 

In Fig. I we see a trial to fix a time order on the 
world line of the second observer, assuming that a time 
order is given on the first observer's world line. 
This time order is represented by the arrow which is 
drawn at the origin of the figure. The other drawn 
arrows should point to the future. However, this trial 
fails. We see a pair of events PI and P2 in the history 
of the second observer. According to the identifica
tion of the hypersurfaces x = ±a, this pair appears 
twice in the figure. On the right we see that P2 is after 
PI; however, on the left P2 is before Pl' 

Below we shall see that the above-mentioned 
problem is connected with limitations (due to physical 
reasons) on space-time, even before knowing any
thing about the field equations. The following 
discussion should be of essential importance for a 
physicist who believes that the theory ought to fix a 
time order and a spatial orientation on every timelike 
world line; it may be of informative significance for 
a physicist who does not. 

2. THE BASIC ASSUMPTION: PROPERLY 
ORIENTABLE SPACE-TIME 

In special relativity, an orientation in space and 
time is determined by a set of ordered tetrads, which 
is an equivalence class of the proper Lorentz group 
(Lp). Two ordered tetrads are "properly equivalent" 
if they are connected by proper Lorentz transforma
tion. The timelike member of every such tetrad points 
to the future, and the remaining ordered triad is 
right handed. 

We shall accept this assumption also in general 
relativity. We define (remembering that tetrad is a 
concept which is defined by using the metric com
ponents only) the following: 

Definition 1: "A properly oriented (PO) event" is 
an event with an equivalence class of Lp given at it. 

Every event may be provided with four different 
proper orientations. It is easy to prove the following 
lemma. 

Lemma 1: Let P(u) be a continuous curve [possibly 
with P(u1) = P(U2) for UI ~ l~], and let (o:)~"(u) (o:)~"(u) 
be two oriented tetrad fields continuous in U at P(u). 
Then (o:)~I'(u) and (o:)~I'(u) are properly equivalent for 
every U if and only if they are properly equivalent 
at some u = uo. Moreover, the Lorentz transforma
tions connecting (o:)~I'(u) and (a)~I'(u) for different values 
of u are properly equivalent, that is, they differ from 
each other by a proper Lorentz transformation, at 
most. 

Definition 2: "A properly oriented (PO) curve" 
P(u) is a continuous curve such that, for every u, a 
proper orientation is given atP(u) [but possiblyu1 ~ U2' 
P(u1) = P(u2), and the proper orientations given at 
Ul and U2 may be different], and there exists a con
tinuous tetrad field (o:)~"(u) belonging to the equiv
alence class of Lp at u. 

From Lemma I we have that the proper orientation 
of a PO curve P(u) is determined by the proper 
orientation at an arbitrary u = uo. For a closed curve, 
P(u l ) = P(u2), we have also that the proper orienta
tions at UI and U2 are always (for any proper orienta
tion of the curve) the same or always different. This 
enables us to define the following: 

Definition 3: "A properly orientable (POA) space
ti"me" is one in which every closed curve, P(ul ) = 

P(U2), possesses the property that for every proper 
orientation given on it, the proper orientations at Ul 

and U2 are equal. 
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Everyday experience and our knowledge of special 
relativity motivate us to assume the following: 

The basic assumption: In space-time which describes 
the physical world according to general relativity, 
the events are PO events, and the curves equipped 
with these proper orientations are PO curves. We 
shall call such space-times "properly oriented." 

In a PO space-time there exist natural time order 
and space orientation along every timelike curve. 

It is easily seen that every PO space-time is POA 
and, conversely, every POA space-time can be pro
vided with four different proper orientations which 
are uniquely determined by fixing a proper orienta
tion at an arbitrary event. Therefore, if we accept the 
basic assumption, we have to confine ourselves to 
POA space-times, and we have to check every 
proposed model of space-time according to this 
limitation. 

In the next paragraph we discuss a characteristic 
property of POA space-times. Some relevant classes 
of space-time are discussed in the last paragraph. 

3. TIME-ORIENTABLE SPACE-TIME 

In special relativity an orientation in time is deter
mined by the set of vectors pointing to the future. 
We define the following in general relativity: 

Definition 4: "A time-oriented (TO) event" is an 
event with an equivalence class of the vectors pointing 
to the future (see below). 

The future-pointing vectors and the past-pointing 
vectors are the two time-equivalence classes. The 
time-equivalence relation between timelike or null 
vectors is actually an equivalence relation, which is 
defined by terms of the metric components only. 
Every event may be provided by two different time 
orientations. The following lemma is easily seen to be 
correct: 

Lemma 2: P(u) is a continuous curve. ;!l(u) and 
'!leu) are two continuous vector fields having the 
properties3 

;!l(u);!l(U) ~ 0, ,!l(u)'!l(u) ~ O. 

Then ;!l(u) and 'Il(U) are time equivalent for every u 
if and only !lthey are time equivalent at some u = uo. 

This enables us to define the following: 

Definition 5,' "A time-orientable (TOA) space
time" is one in which, for every closed curve, P(u l ) = 
P(U2) , and for every continuous vector field ;It(U) 
defined on it, ;1l(Ul) and ;1'(u2) are time equivalent, 

provided that ~I'(u) ~ 0 and g,.v(P(u»~(u)~~(u) ~ 0 
for every u. 

(According to Lemma 2, it is sufficient to find along 
every closed curve only one vector field ;I'(u) having 
the above-mentioned properties for proving that 
space-time is TOA.) The determinant of every proper 
Lorentz transformation matrix is positive. This 
immediately leads to the following important theorem: 

Theorem 1: A space-time is POA if and only if it is 
TOA and its differential manifold is orientable. 

For the meaning of orientable differential manifold 
see, for example, Ref. 4 (p. 43). (The space-time of 
the example in the introduction is not TOA and 
possesses also unorientable manifold.) 

4. SPACE-TIME CLASSES OF PRACTICAL 
IMPORTANCE 

It is well known; that every simply connected 
differential manifold is necessarily orientable. 

Every space-time is locally properly orientable. 
Using this, we can prove (using the usual pure
mathematical methods): 

Theorem 2: A simply connected space-time is POA. 

Among the multiply connected space-times, we 
can find examples with the following properties: 

(1) TOA space-time with unorientable differential 
manifold, 

(2) non-TOA space-time with unorientable differ
ential manifold (in the Introduction), 

(3) non-TOA space-time with orientable differ
ential manifold. 

For checking space-times with orientable differential 
manifolds the following discussion will sometimes be 
of use (recalling Theorem 1). 

The tangent vector on a Cl curve is a continuous 
vector field along this curve. Therefore, in a TOA 
space-time, a curve x(u), 0 ~ 1I ~ 1, having the 
following properties does not exist: 

(1) x(u) is a closed curve, x(O) = x(1); 
(2) x(u) is piecewise Cl; 

(3) dx ~ 0; gllv dx
ll 

dx,t 2 0; 
du cit! clt/ 

(4) at an odd number of values of 1I, including 
u = 0, left and right derivatives exist and are not 
time equivalent. (Such a curve is drawn in Fig. 2.) 

The nonexistence of such curves is usually also a 
sufficient condition for space-time to be TOA, but 
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FIG. 2. 

it is not an applicable condition, because in a given 
space-time we can usually approximate all closed 
curves by curves of the above-mentioned type, except 
for the restriction (4). In the following theorem we 
confine ourselves to less general space-times and find 
more applicable sufficient condition for time orienta
bility of these space-times. (This still includes the 
example given in the Introduction.) 

Theorem 3: Suppose that a space-time has the 
following properties: 

(a) There exists a timelike line r equipped with a 
time-order. 

(b) No event horizon with respect to r exists. 
(c) A continuity assumption: For every curve X(u), 

a continuous function X(u, v) exists such that X(u, 0) = 
X(u),O ::; v ::; 1 and X(u, 1) E r, and g,,(v) = X(u, v) 
is a curve which may be the history of information 
passed from X(u) to r. (Therefore, oX(u, I)lav points 
to the future according to the time order given on r.] 
Then space-time is TOA if and only if a piecewise Cl 
closed curve, x(O) = x(l), having the following 
properties does not exist: 

dx dx" dxv 

(1) 0 =F du' g - - > 0' !'v du du - , 

(2) left and right derivatives of x(u) are time 
equivalent (except at u = 0, u = 1); 

(3) dx(O)/du and dx(l)ldu are time inequivalent. 
(Such a curve is drawn in Fig. 3.) 

Remark: In particular, the condition is fulfilled if 
closed timelike or null curves do not exist at all. 

FIG. 3. 

Proof: The condition is obviously necessary. For 
proving that the condition is sufficient, it is sufficient 
to define a time orientation at every event so that a 
TO space-time is constructed. Using (a) and (b), we 
define a time orientation at each event in space-time. 
The definition is consistent because of the continuity 
of the tangent vector of the information line and 
because of Lemma 2 and the sufficient condition given 
in this direction of the proof. Space-time is now TO 
because of (c). The proof is completed. 

From Theorem 3 it follows that the space-time of 
the example in the Introduction must contain a 
closed time like curve. It is an easy exercise to find such 
curves. 

We shall end this article with two remarks: 

(1) A space-time in which a global time-coordinate 
exists is TOA, provided that every two hypersurfaces 
t = 11 and 1 = 12 (II ~ (2) have no events in common 
(no topological identifications are made). 

(2) It can be shown easily that, if Sf is a hypersurface 
in a flat odd-dimensional space X, possessing the 
properties 

(a) x E Sf ¢? -x E Sf (the xA are Euclidean co
ordinates of X), 

(b) Sf is connected, and 
(c) Sf is the envelope of a (bounded or unbounded) 

domain in X, 

and if S is constructed by a topological identification 
of x and -x in Sf, then S is an unorientable 
differential manifold. 

Therefore, our basic assumption and Theorem 1 
rule out some polar de Sitter universes mentioned in 
Ref. 4 (pp. 257, 263). 
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A eutkosky-type formula for the discontinuity around an arbitrary physical-region singularity is 
derived from precisely formulated S-matrix principles. 

1. INTRODUCTION 

We shall derive the following result: The dis
continuity of the S matrix S around any physical
region singularity surface is given by a Cutkosky-type 
formula obtained by replacing each vertex of the 
corresponding diagram D by the associated (physical
region) S matrix, replacing the set of lines I'/. joining 
each pair of vertices of D by a function S;1, and 
integrating over all the (topologically inequivalent) 
mass-shell values of the variables corresponding to the 
intermediate lines. The function S;1 is defined by 
S.S~-1 = I., where S. is the restriction of S to the 
space corresponding to the set of lines (J. and I, is the 
corresponding restriction of unity. 

This confirms earlier indications3 . 4 that the physical
region discontinuities are completely determined by 
general S-matrix principles.' They do not depend on 
the special properties (such as locality) exhibited by 
the terms of the perturbation theory. 

In Sec. 2 the results needed from earlier works are 
summarized. The discontinuity formula is derived in 
Sec. 3 by using an infinite-series (mass-shell) expansion 
for S. Some properties of S;1 are discussed in Sec. 4. 

A derivation not based on the infinite series for S is 
given in Sec. 5, for the case of "leading singularities." 
A leading singularity is one such that the set of 
particles corresponding to the set of lines oc joining 
any pair of vertices of D is a "leading set." A leading 
set of particles is a set that cannot make a transition 
to a set having a lower sum of rest masses. We hope to 
give later a derivation for the case of nonleading 
singularities that is not based on the infinite series 
for S. 

This rule gives the discontinuity for S itself. The 
result for the connected part is obtained by retaining 
only connected graphs. Then the disconnected contri
butions to the S's associated with the various vertices 
will vanish, in general, due to the constraints imposed 
by the extra conservation laws. But where these In the final section our work is compared with 
disconnected contributions do not vanish they must other works in the field. 
be included, in order to obtain the complete dis
continuity around the surface in question. The 
discontinuity formula described here holds at all 
points where the full discontinuity is the sum of 

2. BASIC TOOLS 

A. Cluster Decomposition 

contributions associated with the diagram D and The S matrix is the transition matrix from "in" to 
diagrams that can be reduced to D by contraction of "out." Linearity ensures that the transition matrix 
lines. Thus, it continues to hold at points where from "out" to "in" is S-1. We do not use unitarity 
Landau surfaces corresponding to diagrams that (S-1 = st). (All that -is used in S-matrix derivations 
contract to D intersect the Landau surface corre- of discontinuity equations are the cluster properties 
sponding to D. This makes the form particularly and if rules of Sand S-1: it is not important that S-1 
useful for substituting into other expressions, since be st.) 
one does not have to take special account of these The duster decompositions of Sand S-1 are 
particular points where related Landau surfaces touch. conveniently represented by a diagram notation3 : A 

The discontinuity formula stated above is similar box with a plus (minus) sign inside represents S(S-1); 
to the one obtained by Cutkosky.1 However, his a bubble (i.e., circle) with a plus (minus) sign inside 
formula was incomplete because important questions represents the connected part of S(S-l). The left side 
concerning the sheet structure were not answered. 2 of each box or bubble is the origin of a set of leftward
Also, his derivation depended on perturbation theory. directed lines, and the right side is the terminus of such 
The present results are derived within the mass-shell a set. Each line j is associated with a physical-particle 
S-matrix framework and give the discontinuity in variable, which is a set (Pi' fli' ti ) consisting of a 
terms of the actual physical-region scattering functions. particle-type index t j , a spin (magnetic) quantum 

2743 
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number flj, and a real positive-energy mass-shell 
4-vector Pi' 

The cluster decomposition of S(S-l) is represented 
by writing each plus (minus) box as a sum of columns 
of plus (minus) bubbles, the sum being over all topo
logically distinct ways that the lines originating and 
terminating on the box can be partitioned among 
bubbles of a column, with each bubble having at 
least one incoming and one outgoing line. 

The connected parts of Sand S-1 divided by the 
over-all conservation 6 function are the scattering 
functions Sc and S; , respectively. 

B. Bubble Diagram Functions 

The cluster decompositions of Sand S-l induce 
corresponding decompositions of quantities like SS-I, 
SS-IS, etc. The rule for computing such a product is 
to first draw all topologically distinct bubble diagrams 
B composed of the appropriate number of columns of 
the appropriately signed bubbles. The lines originating 
on the bubbles of one column terminate on those of the 
column standing to its left, if there is one. For each 
such B, one constructs a corresponding function FB 
by summing over alI physical values of the variables 
(Pi' fli' ti) for each internal line i, subject to the 
constraint that topologically equivalent contributions 
be counted only once. The function being calculated 
is precisely the sum of the functions FlJ defined in this 
way.3 (For fermions some signs must be considered.) 

Two contributions to pi are topologically equivalent 
if and only if the corresponding diagrams, with each 
line j identified by a corresponding variable (Pi' uj ' (j), 
can be continuously distorted into each other with the 
external end points of the external lines held fixed. 
Each bubble is identified as to its column, and the 
distortions must leave each bubble in its own column. 
(Alternatively, one must keep all the "trivial" bubbles 
having only one incoming and one outgoing line. 
These bubbles are often omitted because they do not 
affect the value of the integral, except in this matter 
of counting.) 

C. ~crocausality 

Macroscopic particle phenomena have a character
istic space-time structure. If effects of long-range 
interactions and massless particles are ignored, then 
particles move along straight space-time trajectories 
except when they come close to other particles. A 
quantitative description of the phenomena is provided 
by the Newton-Einstein laws of motion. These laws 
assign to each particle j a momentum-energy vector Pi 
that is directed along its space-time trajectory and 

that satisfies the mass-shell constraint P; = II1J. 
Momentum-energy is conserved and is exchanged 
between particles only when they are close to each 
other; one imagines momentum-energy to be trans
mitted by a short-range interaction. 

If one requires this space-time structure of macro
scopic phenomena to emerge from S-matrix theory, 
in appropriate classical, macroscopic limits, and 
demands also that classical estimates based on short
range interactions should become valid in these limits, 
at least to order of magnitude, then certain physical
region analyticity properties follow. These include the 
cluster decomposition property described above, and 
also the properties described in the following two 
sections. 

D. The Positive-a Rule 

The first important consequence of the macro
causality condition is that the physical-region singu
larities of the scattering functions S;- are confined to 
positive-oc Landau surfaces6 associated with connected 
diagrams.' 

Landau surfaces are associated with Landau dia
grams. A Landau diagram D is a diagram that repre
sents a classical multiple-scattering process with point 
interactions. It consists of a set of leftward directed 
line segments j that meet at vertices v. Each line j is 
associated with a real momentum-energy vector Pi 
that satisfies the mass-shell constraint 

P; - 111; = 0, P~ > 0, (2.1a) 

where II1 j is the mass of the particle associated with 
line j. Momentum-energy is conserved at each vertex 
v: 

2 Pj - 2 Pi = O. (2.1 b) 
intov outofv 

The vector ~i from the space-time origin of internal 
line i of D to its space-time terminus must be directed 
along its momentum-energy, i.e., for some scalar oc i , 

one has 
(2.1c) 

Finally, the sum of the space-time displacements ~i 
around any closed loop of internal lines of D must add 
to zero: 

L ±~i == L ±OCiPi = O. (2.1d) 
t t 

Here, the ± sign is plus if the loop I is directed along 
~i and minus otherwise. 

These equations express the constraints on the 
multiple-scattering diagram D imposed by classical 
relativistic particle mechanics. They are called the 
Landau equations. The Landau surface L(D) is the set 
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of external P == (Pt, ... ,Pn) that are compatible 
with the Landau equations associated with diagram D. 
The trivial solution with all rxj = 0 is not accepted. 

Physical particles carry positive energy forward in 
time. The IX; must therefore be positive: 

rxj ~ o. (2.2) 

The subset of L(D) that allows a solution of the 
Landau equations (2.1) subject to the positive-rx 
condition (2.2) is denoted by U(D), and is called a 
positive-rx Landau surface. The positive-rx rule says 
that the scattering functions S; (P) are analytic at all 
physical points not lying on the union of positive-rx 
surfaces 

L+ == U U(D). (2.3) 

The scattering functions S; are defined only on the 
mass shell .)(" which is defined by the mass-shell 
constraints (2.1 a) and the over-all momentum-energy 
conservation law. Thus the ordinary definition of 
analyticity does not apply. The appropriate definition 
is given in Refs. 5, 7, and 8. 

Certain general properties of the set L + are used in 
formulating the ie rule. These are now described. 

A given surface L+(D) generally coincides with the 
surfaces L+(D) of an infinite set of other diagrams D. 
These arise in a trivial way: If a set of internal lines of 
D all originate at the same vertex v' and all terminate 
at the same vertex v", then the Landau equation 
requires them all to be moving along together, 
relatively at rest. Thus, they can undergo trivial 
forward scatterings upon each other without affecting 
the kinematic relations. Any number of these trivial 
forward scatterings can occur. This leads to an 
infinite set of diagrams D such that L+(D) = L+(D). 

It is convenient to introduce diagrams that do not 
have these trivial forward scattering vertices. A basic 
diagram DfJ is a Landau diagram that has no part that 
(i) is connected to the rest of the diagram at only two 
vertices, (ii) contains more than two vertices, and (iii) 
contains no external lines. Every L+(D) is confined to 
the L+(Dp) of some corresponding basic diagram Dp. 
Thus one can write 

L+ == U L+(D) = U U(Dp). (2.3') 

Only a finite number of Dp have L+(Dp) that enter any 
bounded portion of the physical region.9 

The representation of L + is further simplified by 
introducing "basic surfaces," defined as follows: Let 
.)(,0 represent the part of the mass shell where two or 
more initial momentum-energy vectors Pi are parallel 
or two or more final Pi are parallel. Then for any 

Landau diagram D the set L~(D) is that part of 
V-CD) - .)(,0 such that the Landau equations for 
L+(D) have no solution with any IX j = O. 

It is clear that any point on L+(D) - .)(,0 that is not 
on Li;(D) must lie on the Li;(D') ofa contraction D' of 
D, constructed by contracting to points and removing 
from D the lines corresponding to rxj = O. Thus, L+ 
can be written as 

L+ = U Lt(DB ) + .)(,0' (2.3") 

The importance of this representation lies in the fact 
that Li;(DfJ) is a real codimension -1 analytic sub
manifold of the mass shell .)(,.8 That is, each point P 
of Li;(Dp) has a mass-shell neighborhood N(P) such 
that inside N(P) the set L-:;(Dp) coincides with the set 
j = 0, where j is a real analytic function of the local 
real analytic coordinates of the mass shell at P (see, 
e.g., Refs. 7 or 8), and gradj == Vfis nonzero in N(P). 

The representation (2.3") shows that L + - .)(,0 is 
the union of a set of codimension -I real analytic 
submanifolds of .)(" only a finite number of which 
enter any bounded portion of the physical region. 
Since .)(,0 has codimension 3, the set L+ has co
dimension 1. (The co dimension of S plus the dimension 
of S is the dimension of imbedding space, here 
3n - 4.) 

The positive-IX rule says, therefore, that SeeP) is 
analytic at almost all physical points and that the 
remaining set L+ has, apart from the small set .)(,0, 

a local representation as the zeros of a finite set of 
real analytic functionsji,each having nonzero gradient 
Vfi· 

E. The i€ Rule 

Macrocausality implies also that the scattering 
function Sc near any P of L + - .)(,0 can be represented 
as the limit from any direction in the intersection of 
the upper half-planes 1m fi > 0 of the (unique) 
analytic continuation into this intersection of the 
function SeeP) defined on L+ - .)(,0' The functions/; 
are the functions that define L+ near P, and their signs 
are fixed by the requirement that a formal increase of 
the masses associated with the internal lines of D by a 
common scale factor shifts Lt(D) in the plus j 
direction. This sign is known to be independent of the 
particular diagram D that defines L-:;(D): All locally 
coincident surfaces L;(D) can be defined by the same 
function! (Theorem 7 of Ref. 8). 

This ie rule for Sc is known as the plus iE rule. The 
function S; obeys the minus ie rule, which is the same 
rule except that the upper half-planes 1m/; > 0 are 
replaced by lower half-planes 1m/; < o . 

These rules have content only at those points P of 
L+ - .)(,0 for which the appropriate half-planes have a 
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nonempty intersection that contains P on its boundary. 
This property is obviously satisfied for any P that lies 
on only one Lri(Dp) [or only on several L;(Dp) that 
all locally coincide with one single one]. Such points 
comprise almost all of L + - ';\('0' since the rest have 
codimension 2. Thus the if rules have content at 
almost all points of V- - ';\('0' 

It is important that the if: rules have content also 
at a certain of the remaining points of L + - ';\('0' It is 
known (Theorem 13, Ref. 8) that the intersection of 
the upper half-planes corresponding to P (on L+ -
.;\(,0) is nonempty, and contains P on its boundary, 
whenever all the Dp with P E Lri(Dp) are contractions 
of some single D. 

There are, however, some points P of L+ - .;\(,0 

such that the intersections of the various upper half
planes associated with P are empty near P. The 
scattering function Sc cannot be represented near such 
a P as the limit of a single analytic function. To cope 
with such points, we shall introduce in the next 
section an independence property, which says, in 
effect, that singularities associated with unrelated 
diagrams are independent. This will allow the if: rule 
to be applied at all points of L + - ';\('0' 

Full technical details concerning the if: rules are 
given in Refs. 7 and 8. The intersection of the upper 
half-planes at P is defined, in effect, as the set of mass
shell variations b that satisfy 

1m <5 • Vf;(G) > 0, 

where G is a set of local real analytic coordinates at P 
and G = G(P). (See also Ref. 10.) 

The basic tool in the analysis of physical-region 
singularities is a theorem that extends the positive-a 
and if: rules to all bubble diagram functions. This 
theorem is described next. 

F. Fundamental Theoremll •12 

1. Assumptions of Theorem 

(a) Positive-a Rule. The physical-region singular
ities of the scattering functions Sc and S; are confined 
to the union L + of positive-~ Landau surfaces. 

(b) Independence Property. Each point P of L+ -
.;\(,0 has a real mass-shell neighborhood N(P) such that 
S; (P) in N(P) - U decomposes into a finite sum of 
terms, one for each basic diagram Dp for which 
U(Dp) contains P. The singularities of the term of S; 
associated with Dp are confined to 

where Dp is any contraction of Dp. Each term obeys a 

corresponding if: rule, as is described next. (The 
justification of the independence property is given in 
Sec.2G.) 

(c) The iE Rules. The individual terms of Sc and S; 
described in the independence property obey the plus 
and minus if: rules, respectively. The upper and 
lower half-planes for each term are specified by the 
singularity surfaces occurring in that term alone. 

(d) Technical Assumption. The singularities at .;\(,0 

are not too pathological. (This assumption is discussed 
in Sec. 2F3.) 

2. Conclusions of Theorem 

Let B be any connected bubble diagram. Let FB be 
the corresponding bubble diagram function. Define 

Ff(p) == FB(P)W(~ P - Ip). (2.5) 
III out 

Then the following properties hold: 
(a) Generalized Positive-a Rule. The physical

region singularities of Ff' are confined to the union of 
the Landau surfaces U(DB)' A DB is a Landau 
diagram constructed by inserting a connected basic 
Landau diagram Db for each bubble b of B, with the 
incoming and outgoing lines of Db identified in a 
I-to-l fashion with the incoming and outgoing lines 
of b, respectively. The surface U(DB) is the part of 
L(DB ) that is compatible with the Landau equations 
of L(DB)' subject to the constraint that each line i of 
DB that is an internal line of some Db must have an rl; 
that satisfies 

(2.6) 

where ab is the sign of b. The (original) lines of B 
itself, which are external lines of various Db' have no 
sign constraint. 

(b) Generalized Independence Property. Each point 
P of U U(DB) - .;\(,0 has a real mass-shell neighbor
hood N(P) such that Ff decomposes on N(P) -
U U(DB) into a finite sum of terms, one for each DB 
for which U(DB ) contains P. The singularities of 
the term associated with a given DB are confined to 

where the Dp are contractions of lines of DB that are 
internal lines of some Db' 

(c) Generalized if: Rule. The functions Ff(P) obey 
a rule that is completely analogous to the plus if: rule, 
except that the upper half-planes at P are now defined 
by using, instead off = f(P), the functions 

ap(P) == I a;(P) [p;(P) - p;(P)] . Pi(P), (2.8) 
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There is one such function for each solution at P of the 
Landau equations of U(DB)' The l1. i(P) and Pi(P) are 
the parameters of the internal lines of DB correspond
ing to the solution at P. The pJP) is any set of internal 
Pi satisfying the conservation law constraints of DB at 
P. [The function a p(P) will not depend on the partic
ular choice of the Pi(P), because of the Landau loop 
equation.] 

The ordinary if. rules connect the physical-region 
scattering functions in different sectors of .At, - L +. 
Similarly, the generalized if. rules connect the "physical
region" functions Ff in different sectors of .At, -

U U(DB)' The physical-region functions FB are 
defined as integrals over the physical-region scattering 
functions. These are the functions FB that occur in the 
decomposition of the functions SS-1, SS-IS, etc. 

H might be possible to continue Ff from some 
given sector of ..Mo - U U(DJj) by following, alterna
tive! y, different alternative paths around some 
U(DBY - ..Moo. The generalized if. rule asserts that it 
definitely is possible to continue through the inter
section of the upper planes defined by (2.8), provided 
the intersection of these upper half-planes is non
empty arbitrarily close to P. Moreover, the functicn 
arrived at on the other side of U(DB ) - ..Moo will then 
be precisely the physical-region function FeB. Also, an 
integral over the physical-region function F!; can be 
represented by an integral over a contour distorted 
infinitesimally away from P E U U(DB) and into the 
intersection of the upper half-planes at P. 

By F!I we shall, unless otherwise stated, always 
mean the physical region Ff, not some analytic 
continuation of it; the only continuations considered 
are the infinitesimal ones specified by the general if. 
rules, unless otherwise stated. 

The generalized if. rule has content at P of U(Du) -
..Moo only if the various upper half-planes at P have a 
non empty intersection at P [i.e., only if there is a 
(3n - 4)-dimensional variation 0 in ..Mo satisfying 
1m 0 • Va pCP) > 0 for all a pCP) associated with 
U(DB )]. If this intersection is empty at P, then no 
continuation past U(Du) is assured at P. 

There are some important points P of U(DB ) for 
which the intersection of the upper half-planes is 
obviously empty. In particular, every point of U(D(B» 
has this property. The diagram D(B) is the particular 
DB obtained by replacing each bubble b of B by a 
point vertex. Since no line of D(B) comes from inside 
any bubble, there are no constraints on the signs of 
the cx'i(P), Thus the reversal of all these signs will give 
another solution. This solution will have the signs of 
all the functions ap(P) reversed. Thus the positions of 
all upper half-planes will be reversed. Thus the 

intersection of the upper half-planes at P will be 
empty, and the if. rule will be without content there. 

This failure of the if. analyticity property at points 
of U(D(B» plays a crucial role in what follows. It is 
related to the breakdown of the definition of FlJ at 
these points. The function FB is defined as an integral 
that contains, in effect, a conservation-law 0 function 
for each bubble b of B and a mass-shell 0 function 
for each internal line i of B. A product of 0 func
tions under an integral sign is defined as follows: One 
transforms to a new set of variables that contains the 
argument gj of each b function as an independent 
variable, and then omits the integrations on these 
variables. This definition fails at P (i.e., the Jacobian 
becomes infinite) if the gradients V gj are linearly 
dependent at P. 

These linear dependence relations turn out to be 
precisely the Landau loop equations corresponding 
to D(B). Since the mass-shell and conservation-law 
constraints are also satisfied, the equations that define 
the points where FB is iII-defined are just the Landau 
equations for D(B), and the corresponding set of 
points P is the Landau surface L(D(B» == U(D(B)). 

The function FlJ generally does not continue into 
itself around points of L(D(B)). That is, FlJ, in differ
ent sectors of ..Mo - L(DeB)) near P of L(D(B»), are 
generally not parts of a single analytic function. In 
fact, the function FlJ is obviously identically zero at 
points of ..Mo where it is not possible to satisfy 
simultaneously the various mass-shell and conserva
tion law constraints associated with B. The boundary 
of this region lies in L(D(B». Furthermore, every 
point of L-(D(B)) lies on this boundary. Thus FB can 
never continue into itself around L -'-(D(B» , unless it is 
identically zero. 

The portion of..Mo where it is possible to satisfy all 
the mass-shell and conservation-law constraints of B 
is called the physical region of B. According to the 
above remarks, the function FB is nonzero only in the 
physical region of B. Moreover, U(D(B» lies on 
the boundary of this region. The sign conventions on 
the functions Ji are such that the physical region of 
B near P of L~(D(B» is either confined to L~(D(B» 
or lies on the positivej side of it. lO That is, FB is 
identically zero on the negative-! side of L~(D(B». 

The above-mentioned fact is important in the 
derivation of the discontinuity formula. It ensures 
that all the terms in the discontinuity formula vanish 
on the negativej side of the singularity surface 
L~(Dp) in question. The "principal term" of the 
discontinuity formula, which is the one such that each 
vertex v of DfJ corresponds to the connected part of 
the corresponding S, will have its physical region 



                                                                                                                                    

2748 J. COSTER AND H. P. STAPP 

bounded by L;(Dp). Generally speaking, the physical 
regions of the non principal terms will not extend to 
L;(Dp) because of the extra constraints imposed by 
the extra conservation laws. Thus the nonprincipal 
terms will generally not contribute to the discontinuity 
around L;(Dp). But if the physical region of some 
nonprincipai term does reach L;(Dp), then this term 
will contribute to the discontinuity around L;(Dp). 

3. The Technical Assumption 

The macrocausality condition does not rule out 
singularities at .A{,o. The proof of the theorem req uires, 
however, that the singularities at .A{,o be not too 
pathological. It is known from the boundedness 
property SC[!foI, "', !fo,,] ~ 1I!foili ... II !foil ,which follows 
from linearity and the probability interpretation, that 
the integrals defining FB do not diverge at .A{,o. An 
additional requirement is that the integrals defining 
the derivative of FB also be well defined at .A(,o' 

G. Maximal Analyticity 

This principle is that S±I(P) has only those singu
larities that are required by general principles. The full 
content of this principle, as it applies to physical
region points, is the independence property (b): 
Singularities violating this property are not required 
to be present; hence they are required to be absent. 

The point is this. The positive-IX rule and the i€ 
rules impose certain constraints on the alloll'ed 
singularities, but they do not require any singularity 
actually to be present in So or S;. On the other hand, 
the cluster properties of Sand S-l, by themselves, 
actually require the scattering functions to have 
singularities. 

These arise as follows. Suppose one expresses 
identities such as SS-l = I, S = SS-IS, or S = 
SS-ISS-IS, etc., in the form of bubble diagram 
equations 

2 FE = 2 FR
, 

HE$' RE$" 
(2.9) 

where $' and $" are classes of bubble diagrams. Then 
the assumption that the Sc and S; are all singularity 
free gives contradictions: Certain terms of (2.9) will 
have explicit singularities that cannot be cancelled by 
any other singularities. Thus the cluster properties of 
Sand S-l definitely require some of the scattering 
functions to have singularities. 

The above argument does not show precisely which 
singularities are required in Sc and S;. However, it 
can be extended to do just that. In particular, the 
various identities (2.9), which follow simply from the 
cluster properties of Sand S-l, supplemented by 

the conclusions of the fundamental theorem, permit 
the derivation of a formula for the discontinuity 
around each physical-region singularity allowed by the 
positive-IX rule. This formula shows that each 
allowed singularity is also required; i.e., it has a 
nonzero discontinuity. These required singularities are 
apparently compatible with the independence property. 
Thus we have an apparently self-consistent sin
gularity structure that has no singularities that violate 
the independence property. Thus no singularity that 
violates this property is required. Then maximal 
analyticity says none is allowed. Hence, the inde
pendence property must hold. 

We can now turn to the derivation of the dis
continuity formula. It will be convenient to assign to 
each internal line i of each Landau diagram D a sign 
(Ji that determines the sign of lXi in the corresponding 
Landau eq uations: 

A diagram that has all (Ji = + I is called a positive-IX 
diagram and is denoted by D+. Thus 

L(D+) == U(D). 

3. ITERATIVE SOLUTION 

A. Expansion of S 

Introducing R± == S±l - I, we obtain 

R+ + R- + R+R- = O. (3.1) 

The formal iterative solution for R+ gives 

00 

R+ = 2 ( -It(R-)n. (3.2) 
n~l 

Each factor R- is represented by a sum of columns of 
minus bubbles, the sum being over all topologically 
different ways of joining a column of bubbles to the 
external lines. However, at least one bubble of each 
column must be nontrivial. (Trivial bubbles are those 
with just one incoming line and just one outgoing 
line.) 

In the assessment of topological equivalence one 
considers the bubbles to be confined to particular 
columns. 3 This means that the three terms shown in 
Fig. I must all be counted. 

FIG. I. Three contributions to the expansion of a 4-Jine S. The 
vertical Jines show the separation into factors R-. Trivial bubbles 
have been omitted, since they do not alter the function. 
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The first two factors have coefficients (- 1)2 = I 
in (3.2), whereas the last has coefficient (-I). Thus 
there is a cancellation and only one term survives. 

This result is general: In the expansion (3.2) one 
needs to count only one of any set of topologically 
equivalent contributions, where in the assessment of 
topological equivalence one now disregards both 
trivial bubbles and the separation of bubbles into 
columns. The sign of the single surviving term is 
(-l)n, where n is the number of (nontrivial) minus 
bubbles of the term. 

The bubbles b of the original B are partially ordered 
by the ordering of the columns in which they lie. If 
the column identification of the bubbles is removed, 
then the bubbles are partially ordered only by the 
requirement that all lines be directed from right to 
left. For each such partially ordered B- there remains, 
after the cancellations, precisely one term pro Thus 
if the unit contribution is added back to give S = I + 
R+, one obtains13 

(3.2') 

The sum is over all topologically different partially 
ordered bubble-diagrams B- having only nontrivial 
minus bubbles, and n is the number of bubbles of 
B-.13 

The expansion (3.2') contains in an implicit form an 
expression for the discontinuities. As one moves 
across a positive-IX threshold, new terms appear in 
(3.2'). If mixed-IX singularities (i.e., singularities 
corresponding to solutions of Landau equations that 
require IX'S of both signs) can be ignored (see Sec. 6 
below) and if only one positive-IX surface is relevant, 
then the discontinuity is just the sum of these new 
terms. This is because any term in (3.2') that is present 
below the threshold will, by virtue of the fundamental 
theorem, continue around any singularity at threshold 
via the minus i€ rule. This leaves the'new terms as the 
discontinuity. The problem of calculating the dis
continuity is then to identify the infinite number of 
terms that appear in (3.2') as one crosses the threshold 
and to combine them into a useful form. The following 
sections are, in effect, devoted to that end. 

B. A Fundamental Identity 

Let 0( be some set of incoming lines of S. A minus 
bubble in the expansion (3.2') of S will be called an 
0( bubble if and only if all the incoming lines of that 
bubble belong to the set 0(. We define sa. to be the 
subset of the expansion (3.2') consisting of all terms 
having no 0( bubble. Thus for each term of Sa. each 
line in the set 0( either ends at a minus bubble that has 
some incoming line not belonging to IX, or it touches no 

FIG. 2. Diagram
matic representation 
of Sa.. The shaded 
strips represent arbi
trary sets of external 
lines, 

~a ytyf3 

minus bubble at all and is therefore an "unscattered" 
line (i.e., it is both incoming and outgoing). 

It is convenient to represent sa by the diagram 
shown in Fig. 2. 

The diagram on the right of Fig. 2 is to be regarded 
as a representation of a partial sum of terms of the 
expansion (3.2'). The missing section indicates the 
absence of all terms having an 0( bubble. 

With this notation a fundamen!.1l identity is 

@". (3.3) 

This equation expresses the fact that, if one attaches to 
SP the set obtained from the expansion of the small 
plus box and sums over p, then one obtains the full 
expansion (3.2') of S. In particular, all the terms with 
IX bubbles are reinstated, and each one only once. 

To prove (3.3), the concept of a cut is useful. The 
lines of the D(B-) corresponding to any B- are drawn 
running from right to left. Aflow line is a continuous 
path in D that runs from the extreme right to the 
extreme left. It consists of an ordered sequence of line 
segments L j of D all of which point in the direction of 
the path. A cut is a set of lines that contains at most 
one line L j of any flow line. The set of flow lines defined 
by a cut is the set of all flow lines that contain a line 
contained in the cut. Equivalent cuts are cuts that 
define identical sets of flow lines. A line 11 lies left of 12 
if and only if 11 lies left of 12 on some flow line. A cut 
C1 lies left of a cut Cz if and only if C1 is equivalent to 
Cz, at least one line of C1 lies left of some line of C2 , 

and no line of Cz lies left of any line of C1 • A leftmost 
cut is a cut such that no cut lies left of it. 13 •14 

In (3.3) the cut P is the leftmost cut equivalent to IX. 
That no cut lies left of it follows from the definition 
of SP. For each fixed p the terms of (3.2') give, 
independently, all terms of SP on the left of fJ and all 
terms of the small plus box Spa on the right. 

Multiplication of (3.3) by a small minus box on the 
right gives 

-W" (3.3') 
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The fact that the combination on the right is equivalent 
to a sum of bubble diagram functions FB correspond
ing to B's having no IX bubbles was shown earlier in 
Ref. IS. There only finite operations were used and the 
sum was over a finite number of terms. (Both plus 
and minus bubbles occurred in the B's representing 
the terms of that finite expression.) 

The validity of (3.3') can be seen directly from the 
expansion (3.2'). If this expansion is substituted into 
both terms of the right side of 

W=fJ>~. (34) 

where the slashed box is R-, one finds an exact 
cancellation of all terms having an IX bubble: Each 
bubble diagram B- that has precisely one IX bubble 
appears precisely twice on the right, and these two 
terms have opposite signs. Each term having precisely 
two IX bubbles appears four times, twice with a plus 
sign and twice with a minus sign. Each term having 
precisely n > 0 IX bubbles appears 2n times, half with 
plus and half with minus signs. However, each term 
with no IX bubbles appears only once, in the first 
term. This confirms (3.3') and gives an independent 
confirmation of (3.3). 

C. Leading Normal Threshold Formula 

Using the identity just obtained, one easily derives 
the normal threshold formula obtained earlier15 

without using infinite series. 
I n the expansion (3.2') of 

s + , "8 8 

r f3 
(3.5) 

some terms will have a cut C such that all the flow 
lines through this cut begin in b and end in y and such 
that the removal of the lines of this cut separates S 
into two disjoint parts, one containing" and b, the 
other containing y and p. Let the sum of terms having 
no such (empty or nonempty) cut C be called Rn. 

A term having such a cut C may have several. All 
these must be equivalent, since each defines precisely 
the set of all flow lines that begin at b and end at y. 
Let the leftmost of these cuts be labeled IX. Then the 
separation of the terms of the expansion of (3.5) 
into terms having, or not having, a cut C gives 

E88 E~+ 8 + - + 
Y {3-Y + {3 

(3.6) 

Each term in the expansion of the left side either has 
no cut C and hence belongs to R n , or has a left-most 
cut IX and appears precisely once in the first term on 
the right of (3.6). 

Insertion of (3.3') into (3.6) gives 

+ = - + R "88 ~8 "ga Y fi Y ~~ Y , ~. 
(3.6') 

This formula is essentially the same as that derived 
(laboriously) in Ref. 15, by means of finite methods_ 
There the plus boxes were the actual S matrices 
(rather than their infinite-series expansion) and Rn 
was a certain finite sum of bubble diagram functions 
FB having just the property that defines Rn; i.e., no B 
corresponding to a term of the sum Rn has a DB 
having point vertices for all minus bubbles that 
supports a cut C of the kind described. 

The important property of Rn is that it contains no 
B having a DB that contracts to any positive-oc normal 
threshold diagram D! of the form indicated in Fig. 3. 
(DB is defined in Sec. 2F.) 

The first term on the right of (3.6') vanishes below 
the leading normal threshold associated with dia
grams of the form D!. The second term on the right 
has, by construction, no positive-IX singularity 
corresponding to any diagram that contracts to any 
diagram of the form D~ . If mixed-IX singularities (i.e., 
singularities associated with solutions of Landau 
equations that involve OC i of both signs) can be 
ignored (see Sec. 6) and if the only diagrams D+ 
giving surfaces L(D+) through a point P are those that 
contract to a diagram of the form D~, then the only 
singularities of Rn at P are those associated with 
diagrams that contract to D-;;. The function Rn must 
then, by virtue of the fundamental theorem, continue 
into itself via a minus i€ rule around the threshold. 
It is consequently the continuation of S from the 
region just below threshold to the region underneath 
the cut starting at threshold. The first term on the 

::
:/ZU/ZZZ FIG. 3. The posi-

tive-oc normal thresh-D;; == ... ~/ old diagram Di;. The 
:I' + sign indicates that 

'ZZT the (Ii of all,lines of 
the set of hnes be

tween the two vertices are plus one. The arrow indicates that all lines 
have the direction indicated. D;; is defined by the same diagram with 
minus in place of plus. The boxes around the vertices indicate that 
it is not necessary that the vertices within them be single points; a 
point within a box can represent several disconnected point vertices. 
The "leading" normal threshold associated with a diagram of the 
form Di; is the one corresponding to the lowest sum of rest masses 
of the exchanged particles. 
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right of (3.6') is thus just the discontinuity around the 
normal threshold. 

D. A Generalized Identity 

The function sa is the set of terms of (3.2') such that 
no cut lies left of the cut IX. 

Let the mass Ma of a set of lines IX be the sum of 
rest masses of the lines IX. Let IX' denote a cut that lies 
left of IX and also satisfies Ma, ;;:: Ma. Let sa' be the 
subset of (3.2') that has no IX'. 

Let P a be the projection function that is zero or 
one according to whether the set of lines f3 on which it 
acts satisfies Mp < Ma or Mp ;;:: Ma. Let Sa = PaSPa. 
That is, Sa. is S if both incoming and outgoing lines 
have mass;;:: Ma., but it is zero otherwise. Then near 
the IX threshold one obtains the following generaliza
tion of (3.3): For any S with a (sub) set of incoming 
lines IX, 

Sa.'Sa = S, (3.7) 

where, in complete analogy to (3.3), Sa. acts between 
the sets IX and IX'. [The proof is essentially the same 
as for (3.3); the nearness to threshold ensures that the 
leftmost cut IX' is uniq ue. 13] 

From (3.7) one obtains, as the generalization of 
(3.3'), 

sa.' = SS-1 a. , (3.8) 

where S;/ is the inverse of Sa.: 

(3.9) 

(This definition of S;-1 is slightly more general than 
the one given in the Introduction; it covers also the 
special case when two different sets of communicating 
particles have the same sum of rest masses.) 

E. General Normal Threshold Formula 

Consider the expansion (3.2') of S of (3.5). Let IX 
be a cut of the type described below (3.5) with the 
additional condition that Ma. be equal to or greater 
than some fixed sum of rest masses. 

The arguments leading to (3.6) are now repeated, 
but now with Ra. containing the terms having no cut IX. 
One then obtains, for the discontinuity around the IX 
normal threshold, the formula 

Ta =~. (3.10) 

This result is the same as that obtained by finite 
methods in Ref. 15, except that there Ma was required 
to be less than the lowest communicating 4-particle 
threshold. This limitation is here removed. 

F. General Physical-Region Discontinuity Formula 

Essentially the same argument gives the general 
discontinuity formula described in the introduc
tion. 

Consider some basic positive-IX diagram D;. Let IX 
label the sets of lines connecting the various pairs of 
vertices of D;. Let the mass of a set of lines be the 
sum of the rest masses of these lines, and let Ma. be 
the mass of IX. 

A bubble diagram B is said to contain D; if and only 
if D(B) contains D;. [D(B) is the diagram obtained 
by shrinking the bubbles of B to points.] A D contains 
D; if and only if it has a set of mutually disjoint cuts 
Ca , one corresponding to each of the sets oc of D;. 
The cut Ca. corresponding to the set IX must be a cut 
that consists of positively signed lines having mass Ma.. 
Moreover, the cutting of all the lines of all these sets 
Ca. must divide D into a set of N mutually disjoint 
parts, one corresponding to each of the N vertices of 
D;. The part of D corresponding to the nth vertex of 
D; must contain the appropriate end points (leading 
or trailing) of the appropriate lines of the appropriate 
sets, as prescribed by €a.n' (€a.n is the common sign 
of the €in of D; for i in IX.) The connectedness of the 
part n of D is irrelevant; as in Fig. 3, it can be either 
connected or disconnected. 

A ~ excludes. D; if and only if no DB contains D; . 
(DB IS defined In Sec. 2F. Notice that "contain" and 
"exclude" are opposites provided that all the bubbles 
of B are minus bubbles.) 

The important properties of these two classes are 
these: First, any sum T of FB's over B's that contain 
D; must vanish outside the physical region of D;, 
and hence on the negativej side of L(D;) (see Sec. 
2F). Second, any sum R of FR'S over B's that exclude 
D; must, by virtue of the fundamental theorem, have 
a minus-i€ continuation into itself past P of L(D+), 
provided P lies on no L(D+) except those such that 
D+ contains D; and provided R has no mixed-IX 
singularities at P. It follows that a separation of S in 
two terms T and R that contain and exclude D+ 
respectively, exhibits T as the discontinuity arou~d 
any such P of L(D;). 

Consider any B- that contains D+. Then D(B-), 
which is the diagram obtained b/ replacing each 
(minus) bubble of B- by a point vertex, must have 
some set of cuts Ca corresponding to the sets IX of D; . 
A cut strongly equivalent to Ca is a cut that is eq uivalent 
to Ca, and has the same mass. Any Ca may be replaced 
by any cut strongly equivalent to it without destroying 
its correspondence to IX of D; . 

The result just stated is proved in Appendix C. It is 
assumed there, and in what follows, that the point P 
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under consideration lies on L(D;) and lies on no 
L(D+) unless D+ contains D;. 

The Landau equations for D; at P require the 
momentum-energy vectors of all the lines in a given 
set ex of D; to have a common direction da . It also is 
assumed in Appendix C, and in what follows, that 
these directions da are all different, for the P under 
consideration. 

Consider now the structure f obtained by replacing 
each vertex of D; by the expansion (3.2') of the S 
corresponding to that vertex. Delete from the expan
sion of each S all terms corresponding to diagrams 
having some cut that is strongly equivalent to, and 
stands left of, the cut corresponding to any set ex of 
incoming lines of that S. 

This structure T contains every term B- in the 
expansion (3.2') of S that contains D;: For any such 
term there must be a set of cuts Ca that correspond to 
the various ex of D;. Consider the leftmost cuts C~ 
strongly equivalent to these. These C~ separate B
into parts that correspond to the vertices of D;. The 
part corresponding to the nth vertex will be some 
term in the expansion (3.2') of the S corresponding to 
that vertex, and it will be one of the terms that is 
retained in the construction of T. 

Thus any term in the expansion (3.2') of S that 
contains D; will be some term in the structure T, and 
any term in the structure T evidently contains D; 
and is a term of (3.2'). 

It remains to show that each term of (3.2') that 
contains D; is contained precisely once in T. If this is 
true, then the remainder R will exclude D;, and the 
desired separation of S will be achieved. 

Each term in (3.2') that contains D; will be con
tained precisely once in T, provided any B- that 
contains a set of leftmost cuts C~ corresponding to the 
O(! of D; contains precisely one such set: For every 
such set of cuts C~ in B- this term is contained pre
cisely once in T.l3 Thus, we must show that each B
that has a set of leftmost C~ corresponding to the ('j; 

of Dt has precisely one such set. 
Suppose for some B- there are two sets of leftmost 

cuts C~ that correspond to the IX of Dt. The function 
FB- will vanish in an infinitesimal neighborhood of P 
unless the constraints of B- allow the P; corresponding 
to the lines of each of these sets of C~'s to assume the 
(unique) values Pi(P) that solve the Landau equations 
of D; at P. _ 

Consider a reduced diagram D+ that contains only 
those lines of D(B-) that lie on one or the other of the 
two sets C~. Since the Landau equations at j5 must be 
satisfied for the lines coming from each of the sets C~ 
separately, they must be satisfied for the whole 

diagram Jj+: P must lie on L(Jj+) if B- is to contribute 
near P. 

The conditions on D; for there to be a Jj+ that 
contains D; in two essentially different ways, as 
above, are very stringent. For example, the leading 
vertex of D; that expands into more than a single 
vertex of Jj+ must have a set of outgoing lines that 
represent particles that can decay into the particles 
represented by another set of outgoing lines of that 
vertex (see Fig. 7, Appendix B). This places strong 
conditions on the momenta Pi associated with these 
lines, and hence stringent conditions on P We call 
"redundancy conditions" these conditions on P that 
must be satisfied if D; is to be contained in several 
essential different ways in some D+. 

Our conclusion then is this: Suppose the following 
conditions are satisfied: 

(i) P lies on L(Dt) and on no L(D+) unless D+ 
contains D; . 

(ii) The directions da of the Pi of the various sets of 
lines ex of Dfl , as defined by the Landau equations of 
D; at P, are all different. 

(iii) The redundancy conditions on D~ are not 
satisfied at P. 

(iv) The remainder R = S - T has no mixed-ex 
singularities at P (see Sec. 6). 

Then the discontinuity of S around L(Dt) at P is 
given by the rules described at the beginning of the 
paper, where the diagram D is just Dt. Notice that 
condition (i) ensures that P lies on the codimension-l 
surface Lo(Dt) (see Sec. 2D). 

The disconnected parts of S have, of course, 
conservation-law b-function factors. The discontinui
ties associated with these parts are calculated in the 
natural way, by taking the discontinuity corresponding 
to a path that encircles the singularity surface Lo(D;), 
while remaining in the manifold defined by the 
appropriate conservation-law b functions. 

We believe the discontinuity formula for S itself, 
rather than its connected part, will be the more useful 
in practice, because in any applications based on 
unitarity (or on other physical conditions) it is the 
full S, rather than its connected part, that is relevant. 
One lesson we have learned from our work is that 
general results for multiparticle processes are hard to 
derive from unitarity if one separates out the dis
connected parts before the final stage. 

The derivation given in this section is based on the 
infinite-series expansion for S. However, all infinite 
series are eliminated from the final result. This 
suggests that the results should be derivable directly 
from the equation SS-l = I that generated the 
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infinite series. This has been done in many special 
cases.3•U5 In Sec. 5 we derive the result for all 
"leading" singularities, without using infinite series. 

The expansion of (3.2') for S has an infinite number 
of terms, one for each diagram D+. An interesting 
finite expression is obtained by grouping together the 
contributions corresponding to different structures s. 
A structure s corresponds to the class of basic diagrams 
D~ that differ only by the masses associated with the 
various sets of lines ex. That is, the masses of the 
particles that pass between the two vertices specified 
by ex are not restricted; they are allowed to be anything. 

This grouping of terms gives 

S = !S •. (3.11) 

The expression for S. is obtained by replacing each 
vertex of the structure diagram by a minus bubble 
and each set of lines ex by the entire S matrix acting 
between the two corresponding minus bubbles. 

This expansion (3.11) for S is something like a 
Feynman expansion, but with the following important 
differences: 

(a) It is strictly mass shell and physical region. 
(b) Only a finite number of terms contribute at 

any finite energy. 
(c) Each propagator is the entire physical S matrix. 
(d) Each vertex is a minus bubble. 

This system of exact integral equations appears to 
be interesting, but their exploitation is not our 
present aim. 

4. PROPERTIES OF S;1 

The function S;1 is the inverse of Sa = PaSPa, 
where Pa is the projection on configurations of 
communicating particles having a sum of rest masses 
greater than or equal to the mass M" associated with 
the lines ex of some Landau diagram. The equation 
for 8';1 has a formally Fredholm structure. In the 
case that Ma lies below the lowest 4-particle threshold 
(for communicating particles) the equation for S;1 
has been converted to strict Fredholm form.3 This 
has not yet been done in the general case. 

The function S;1 can be expressed in terms of S 
and S-1 and their continuations. To obtain these 
expressions, first introduce the definitions 

Both Ra and K; are restricted to the space allowed by 
Pa == la. The function R; is the restriction to this 
space of the R; defined by 

R; + R + R;PaR = O. (4.4) 

[The projection of (4.4) on ex is just (4.3).] 
Define the quantity R~ by 

R~ + R- + R-QaR~ = 0, (4.5) 

where Q", + Pa = I and R-1 = S-1 - 1. The restriction 
of R~ to the space allowed by Qa is called R~: 

(4.6) 
It satisfies 

R~ + QaR-Qa + Q"R-R~ = O. (4.5') 

Below the (J. threshold the Qa are irrelevant and R~ 
can be identified with QaRQa' We showed in Ref. 3 
that R~ evaluated just above the (J. threshold coincides 
with the continuation of Q"RQa from the physical 
region lying just below the (J. threshold, the continua
tion being via the minus i€ rule. We also established a 
number of interesting relationships between R~ and 
R;, such as 

(4.7) 
and 

S;1 = PaS-1Pa - PaS-1QaS-1Pa - PaS-lRtS-lPa. 

(4.8) 

This latter equation [Eq. (CI2) of Ref. 3] allows S;1 
to be expressed in terms of S-1 and the continuation 
of QIZRQ" to underneath the (J. cut. 

In Ref 3. the results just described were derived 
only for energies lying below the lowest 4-particle 
threshold of the channel in question. However, they 
hold also in general, at least in our iterative frame
work. To see this, one can first consider R~ to be 
defined to be the sum of all terms of the expansion 
(3.2) that contain no direct-channel (J. cut. That is, R~ 
is the sum of all terms of expansion (3.2) that exclude 
the direct-channel normal-threshold structure diagram 
D~, where (J. specifies a certain sum of rest masses. 
In this case, our general expansion of S according to 
D~ gives [see (3.10)] 

(4.9) 

(4.1) Multiplication on the left by S-1 gives 
and 

(4.2) 1= S;:IS + S-lR~ + S-IQa' (4.10) 

These satisfy Recalling that 
(4.3) (4.11) 
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and noting that 

(4.12) 

we obtain, by left multiplication of (4.11) by Qa, the 
original definition of (4.5') of R;. 

Left and right multiplication of (4.11) by Po gives 
the defining equation for 5;1. Left multiplication of 
(4.1 I) by Po and right multiplication by 5- IP, gives 
(4.9). Equation (4.8) can be derived in the same way 
as in Ref. 3. [See (5.18) and Appendix C of Ref. 3.] 

The above argument shows that the quantity R; 
defined by (4.5') is equal to the sum of all terms (but 
Qa) of the expansion (3.2') of 5 that exclude D: and 
that it is, accordingly, the continuation of QaRQa 
to underneath the cut starting at the IX threshold. 

It is surprising that the R: defined by (4.5') is the 
continuation of QaRQa to underneath the IX cut. For 
many terms of the iterative solution to (4.5') do contain 
D:. However, a detailed examination shows that 
each such term of QaR-Qa + QaR-R: is cancelled 
by an identical term with opposite sign. 

This cancellation allows the results of Ref. 15 to be 
extended without essential change to the regions above 
the lowest 4-particle channel threshold, except that 
the justification of some steps by Fredholm theory is 
no longer supplied. We expect it could be supplied 
by the same sort of arguments that were given in Ref. 3 
for the 2- and 3-particle intermediate states. 

5. INDUCTIVE SOLUTION 

This section contains an alternative derivation of 
the discontinuity around "leading" singularities. This 
derivation does not rely on the infinite-series expansion 
for 5, but is based instead on the results of Ref. 15. 
The point f is as above. 

The principal results of Ref. 15 are these: (i) Over 
any bounded domain, 5 can be converted, by a finite 
number of applications of 55-1 = I, to the form 
T[D~] + R[D:], where T[D:] is the first term on the 
right of (3.6') and R[D:] is a certain finite sum of 
bubble diagram functions FB, each corresponding to a 
B that excludes the normal-threshold diagram D: of 
Fig. 3. (ii) The quantity L on the right of (3.3') can be 
similarly converted to a finite sum ~' of FB'S, each 
corresponding to a B that has no cut IX' ¥- IX that is 
equivalent to IX. 

The discontinuity around any leading singularity 
can be derived by repeated application of these two 
results. To do this, first select a leading vertex V of D; 
(i.e., all incoming lines of V are incoming lines of D;). 
Let D:(V) be the D: obtained by contracting all 
internal lines of D; but those that are outgoing lines 
of V. Then any B that excludes D:< V) will exclude also 

D;. Thus, the second term on the right of 

S = T[D;,(V)] + R[D~.(V)] (5.1) 

consists of terms that exclude Dt. 
The first term on the right of (5.1) has the form of 

the! first term on the right of (3.6'). The part ~ of this 
term that is the right-hand side of (3.3') can be 
converted by means of a property (ii) to a sum ~' of 
Fn,s, each corresponding to a B that has no a' ¥- a 
eqlllivalent to a. This gives the alternative form 

S = T' + R[D;'(V)]. (5.2) 

Let D' be any DT , that contains D;, with f on 
L(D'). 

Let Cv be the sum of the leftmost cuts C~ of D' that 
correspond to the sets IX that begin at V of D;. 
Property (ii), together with the requirement that the 
sets IX be leading sets, entails that any Cv in D' 
consist precisely of the set of lines r of T' that run 
out of the right-hand plus box and into ~', That is, 
property (ii) requires any Cv to lie to the right of~', 
and the condition that the various sets IX be leading 
sets rules out the possibility that Cv lies inside the 
plus box (i.e., the kinematic constraints at f do not 
allow the particles in different leading sets IX to come 
together again after leaving V; see Appendix C) 

Thus any Cv in D' must consist of precisely the 
lines r. Let {Pi(f)} be the {Pi} of the unique8 solution 
of the Landau equations of D; at f. Then, the only 
part of the integral over the lines of r that contributes 
to the singularity at f associated with D~ comes from 
the region near the points where the Pi of r assume 
the values p;(P): The other parts of the integral do not 
allow the Landau equations of D; to be satisfied at P, 

Let the lines of r be divided into sets r a' one for 
each of the sets C~ of Cv , such that, near the point 
Pi = Pi(P), the set ra contains the lines contained in 
C~. Then T == T[D:] can be separated into three 
terms: 

T = Ta + Tb + Te, (5.3) 

The term Ta consists of those terms of T such that 
some minus bubble of T connects lines from different 
sets ra' The remaining terms have no minus bubble 
connecting these sets, and the separation into sets r a 

of the set r induces a corresponding separation into 
sets r~ of the set of lines r' that emerge from the 
minus box and enter the left-hand plus box. Let this 
plus box be written as T[V;] + R[V;], where v; is 
the diagram obtained by removing V from D;. The 
two corresponding terms of T are called Tb and rc, 
respectively. Then Tb is the desired T[Dt]. 
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We proceed by induction on the number of vertices 
of D;. Thus, T[D;l is assumed to_ have the form 
described in the Introduction, and R[D;l is assumed to 
have no singularities corresponding to diagrams D+ 
that contain D;. The analogous property must then 
be derived for D; . 

In this section we shall accept an extended inde
pendence property that asserts that in any equation 
G = 0, derived from unitarity (or SS-l = I), the net 
singularity corresponding to any basic diagram D; is 
zero. That is, the various singularities corresponding 
to anyone D; cancel among themselves. This is what 
one would naturally expect; the singularities corre
sponding to different basic diagrams should generally 
have different analytic characters and would not be 
expected to cancel against each other, even if they 
could coincide. 

This assumption simplifies the present proof, but 
is not actually necessary, as is discussed in Sec. 6. 

The work of Ref. 15 that gives property (ii) can be 
extended to show that Tb == T[D;] can be converted 
to a form TIJ' that has the same property as TJ: Any 
cut Cv must lie in r. 

Consider, then, the identity 

(5.4) 

Multiplication on the right by the inverse of the right
hand plus box gives 

F'= F. (5.5) 

The equality of the two sides of this equation is a 
consequence of unitarity (or SS-l = I). 

The function F' has the property of~': Any cut Cv 
must lie in r. The function F has the opposite property : 
No cut Cv can lie in r. We conclude that F' has no net 
singularity correspondIng to Cv in r. But then T' -
Tb' = T - Tb can have no singularity corresponding 
to D;. This property holds true also for S - T [see 
(5.1)]. Thus, it must hold for their sum 

s - TO == Rb = R(D-;). 

This completes the induction proof. 

6. DISCUSSION OF ASSUMPTIONS 

The assumptions used in our derivation of the 
discontinuity formula are these: First, there are some 
general assumptions embodied in the cluster decom
position principle, the positive-IX rule (which says 
that the singularities of Sc and S;; are confined to 
positive-IX Landau sm;faces) and the i€ rule. These 
general assumptions are consequences of the macro
causality requirement, as was discussed in Sec. 2. 

Second, there are the independence property and the 
technical assumption, which are needed for the 
fundamental theorem. The independence property is 
the full content in this work of maximal analyticity. 
We plan to discuss the technical assumption elsewhere. 

A third set of assumptions are special conditions 
on the point P. In the first place, P is required to lie 
on L(D;), but on no L(D+) unless D+ contains D; . 
Second, the directions da of the momentum-energy 
vectors corresponding to different sets IX of internal 
lines of D; at P are required to be all different. And 
third, P is required to be such that at P no lJ+ con
tains D; in two essentially different ways. These 
conditions on P are to ensure that positive-IX singular
ities ~ssociated_ with diagrams other than D; do not 
contrIbute at P and that those associated with D; 
contribute precisely once. 

The discontinuities at points P where these con
ditions on P fail can be calculated by making use of 
the independence property. Suppose, for example, that 
P lies on L(D+) for some D+ that does not contain 
D; . The diagram D+ can be assumed to be basic. Then, 
P must lie also on L(D;), where the basic diagram 
lJ; is a contraction of D+. (One contracts out the lines 
of D+ that correspond to lXi = 0.) The independence 
property then ensures that the singularities at P 
associated with the D; and lJ; are independent (i.e., 
additive) unless there is some D; that contains both 
D; and lJ;, with P on L(D;). Since the Landau 
:.quations for L(D;) and L(D;) are both satisfied at 
P, this point must lie also on L(D;). If P lies on L(D+) 
for no other basic diagram D+, then one can classify 
all basic diagrams fj; such that P lies on L(fj+) 

. -+ p 
accordIng to whether Dp contains just D;, just lJ;, 
or both (and hence also D;). The terms corresponding 
to the last case would be counted in both T[D+] and 

-+ p 
T[Dp]. But they are also the terms included in T[D+]. 
Thus the disco~tinuity is T[D;] + T[D;] - T[D;{ 

In this case P lies on both L(D;) and L(D+), and the 
above discontinuity is the difference b/tween the 
function in the physical region of D; and its continua
tion around both L(D+) and L(lJ+) , where the " p p 
contInUatIOn moves first through the plus i€ region 
associated with n; and then through the correspond
ing minus i€ region. 

More general cases are treated similarly, by using 
the general principle of inclusion and exclusion (see 
Appendix D of Ref. 15). The same sort of considera
tions apply also to cases where one or both of the 
other two conditions on P fail: Again one uses the 
independence property together with the principle of 
inclusion and exclusion to isolate the relevant set of 
terms. 
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The final assumption is that R = S - T has no 
mixed-oc singularities at P. 

We now argue that the sum on the right of S = R + 
T should have no net mixed-oc singularities. Since the 
quantity S on the left has singularities only on positive
oc Landau surfaces, the only possible net mixed-oc 
singularities on the right are those that happen to lie 
exactly on top of positive-oc surfaces. 

It is conceivable that these particular mixed-oc would 
not cancel out, as all the others must, but it seems 
unlikely. In the first place, the physical arguments 
(macrocausality) that imply that the singularities of S 
are confined to positive-oc surfaces correlate these 
singularities to positive-oc diagrams. Thus, it would be 
unnatural for them to arise mathematically from 
other diagrams, which just happen to give the same 
Landau surfaces.I6 Tn the second place, the mixed-oc 
singularities that happen to lie on positive-oc surfaces 
are intimately related via hierarchy effects to the 
mixed-oc singularities that do not lie on positive-oc 
surfaces. It seems unlikely that the latter could all 
vanish identically without the former vanishing also. 

On the basis of these arguments, we shall accept the 
proposition that in any equation of the form S = X 
derived from SS-I = I the mixed-oc singularities of 
the bubble diagram functions that comprise the right
hand side exactly cancel out (in the physical region). 
This will be our basic assumption about mixed-oc 
nonsingularities. It may be possible to derive it by 
some inductive argument, but we do not attempt this 
here. 

On the basis of this assumption we can confirm the 
absence of the mixed-oc singularities in R = S - T by 
confirming it rather for T. 

The only lines of T that can be minus lines are the 
lines of the cuts Ca. By virtue of energy conservation, 
the momenta of all these lines are fixed at precisely 
the value defined by the Landau equations of D; at P. 
(The Landau equations define the unique way of 
achieving the boundary point of the physical region 
of D; . See Sec. 2F.) _ 

Any mixed-oc DT such that P lies on L(DT) is a 
member of a continuum of such D T . This continuum 
is generated by adding to the solution of the Landau 
equations corresponding to P on L(DT ) a real multiple 
of the solution corresponding to P on L(D;). If the 
real multiple is sufficiently large and positive, then the 
mixed-oc DT is converted to a D~, because all the lines 
corresponding to the Ca are eventually made positive. 
Thus, any point P on L(D;) that lies on the L(DT) of 
a mixed-oc DT must lie also on L(D~) for a continuum 
of D~ ':;r!= D; , where D; contains D; . 

This shows that T can have no mixed-oc singularities 

at simple points of L(D;), which are points that 
correspond to just one Dp. 

At the nonsimple points P of L(D;) that lie on 
L(D~) for the continuum of D~ .:;e D; the meaning 
of our assumption about mixed-oc singularities must be 
clarified, for we have to consider diagrams that can 
be continuously shifted from mixed-oc to positive-oc 
status. The correspondence between singularities and 
diagrams then becomes ambiguous. At these points of 
L(D;), where these flexible diagrams could give 
mixed-oc singularities to T, we interpret our assumption 
that all mixed-oc singularities of T + R cancel to mean 
that the only net mixed-oc singularities of R are those 
associated with the same flexible diagrams that give 
the possible mixed-oc singularities of T. 

With this interpretation we can show that the mixed
oc singularities of R that might occur at these special 
points would not, in any case, upset our proof. The 
point is that contributions to R associated with these 
flexible diagrams must have minus-i€ continuations 
past the surface L(D;). This is because the construc
tion of R ensures that these contributions can occur 
only if the minus lines of the (flexible) diagram come 
from inside minus bubbles. But then the proof of the 
fundamental theorem shows that the continuation 
past the surface L(D;) will follow the minus i€ rule, 
due to the presence of these necessarily minus lines. 
But then the proof of the discontinuity formula would 
go through even at these very special points at which 
the flexible diagrams give singularities. 

In Sec. 5 an extra assumption (extended independ
ence) was used to simplify the argument. To avoid the 
assumption, one need modify the proof only slightly. 
First, the function R[D;] is considered to be de
composed (using the ordinary independence property) 
according to basic positive-oc diagrams D; (this 
decomposition is unambiguous). Then the assumption 
of the induction argument is that all terms correspond
ing to diagrams D; that contain D; vanish from 
R[D;]. The analogous property must then be proved 
for R[D;]. 

The proof proceeds as before, but one now de
composes also the two sides of F' = F according to 
basic positive-oc diagrams. Only the terms that can 
contribute to the final D; need be considered (see 
below). But the singularity surfaces bounding the 
supports of these terms are not the same on the two 
sides of F' = F. Thus these terms must vanish. But 
then T - Tb has no terms corresponding to D;. Nor 
does S - T. Thus neither does their sum S - Tb = Rb. 

[The condition that P lies on no L(D+) for any D+ 
not containing D; implies that one need consider 
only terms that contribute to the final D; , for, if any 
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other diagrams could exactly compensate for the 
missing term in F', then this term also would give an 
unallowed D+.] 

The argument given above, in effect, justifies the 
extended independence property, in the context in 
which it was used. 

The present work generalized the results obtained 
earlier by ourselves3•13 and by the Cambridge group.4 
We now contrast our methods and results with theirs. 

Regarding final results, our discontinuity formula 
covers all physical-region singularities, whereas their 
general result covers only the case of simple diagrams. 
(In simple diagrams, each set ex consists of just one 
line.) They have obtained results also for certain 
special nonsimple diagrams, and are working toward 
the general result. 

Some theorems in the early part of their work are 
somewhat similar to our fundamental theorem. 
However, the treatment of technical details is con
siderably different in the two works. 

Our basic procedure is quite different from that of 
the Cambridge group. Their approach is in a way more 
general, since they first derive general formulas for 
discontinuities of integrals in terms of the discon
tinuities oftheir integrands. Then they use these results 
to show that for singularities associated with simple 
diagrams the Cutkosky discontinuity formula is 
consistent with unitarity. Finally, they show, by 
means of an inductive procedure, that no other 
solution is possible: If the Cutkosky formula is valid 
for all simple diagrams up to a certain order of 
complexity, then it must hold also for diagrams of the 
next order of complexity, provided singularities 
corresponding to nonsimple diagrams can be ignored. 

Their procedure, then, is first to make a detailed 
general analysis of discontinuity formulas and then to 
introduce these results into unitarity, which is used in 
only a limited way. 

Our procedure is the reverse. The manipulations 
involved in our approach are purely topological and 
involve multiple applications of unitarity (or, more 
accurately, the cluster properties of 8 and 8-1). These 
topological manipulations give equations 

8 = R[D;] + T[D;], 

where the topological characteristics of the terms on 
the right guarantee that R[Dt] is the continuation of 
8 around L(D;) via the minus if! rule and hence that 
T[Dt] is the discontinuity. Analyticity is used only 
at the last stage, and thus complications connected 
with distortions of contours are avoided. 

This procedure is more special, in that it refers to 
the particular problem at hand, but it yields a variety 

of strict identities15 that can be used in other contexts. 
These identities are consequences of the cluster 
properties alone and are purely topological in nature; 
analyticity is not involved. 

The assumptions needed in the two approaches are, 
with one important exception, essentially the same. In 
particular, the independence and boundedness proper
ties are needed in both methods,ll and the considera
tions involving the special conditions on j5 are 
essentially the same. 

The one important difference is that the Cambridge 
group does not assume that the singularities of 8 and 
8-1 are confined to positive-ex surfaces: Their aim is 
to derive this result. On the other hand, they do 
assume the if! rules, for positive-ex points, and also 
certain similar rules at mixed-ex points. Our viewpoint 
is that these strong if! requirements should not be 
imposed ad hoc, but must be justified. We justify the 
if! rules on the basis of macrocausality and get the 
positive-ex rule at the same time. Alternatively, one 
might justify the if! rules on the basis of self-con
sistency, but one should then also prove uniqueness. 

APPENDIX A: THE INDEPENDENCE PROPERTY 
AND THE FUNDAMENTAL THEOREM 

The fundamental theorem quoted in Sec. 2F has 
slightly weaker assumptions and slightly stronger 
conclusions than the theorems proved in Ref. 12. In 
this appendix we discuss these assumptions and show 
how the proof of Ref. 12 can be extended to give the 
theorem quoted in Sec. 2F. 

One technical detail should be mentioned first. 
What is proved in Ref. 7 is that 8c (or 8;) considered 
as a distribution can be represented as the limit of the 
analytic function. That is, this representation is shown 
to be valid when one is calculating the average of Sc 
(or S;) over a Schwartz test function. But what is 
needed to prove the structure theorems is something 
slightly different. One needs to evaluate products of 
different 80's and S-;'s with one another. 

In the proof of the structure theorems, each of 
these functions Sc and 8; was considered to be a limit 
of the analytic functions described above, and their 
products were defined, for certain fixed real values of 
the external (unintegrated) momenta, by performing 
the appropriate integration over internal momenta 
along a multidimensional contour that remains in the 
region of analyticity of all the relevant functions S. 
and S;. This contour is such that it can be shifted 
(staying in the analyticity domain) to a position 
arbitrarily close to the real physical region. By 
virtue of the (multidimensional) Cauchy theorem, 
such a shift does not alter the value of the integral. 
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For any fixed real value of the (external) variables K 
of PE(K), the integrations occurring in the definition 
of pE were assumed to be given by the above rule, 
provided the relevant domains of analyticity of the 
various functions Sc and S; overlap in such a way that 
the required contour through the intersection of the 
analyticity domains, infinitesimally removed from the 
real physical region, exists. The function FB(K) was 
shown to be analytic at such values of K, and the rule 
for continuing the thus defined function FB(K) 
around any singularity at real K was derived. 

This rule defining the integrals in FE(K) was used 
to evaluate the terms of SS-l, SS-lS, etc. If one 
considers the S matrix to be defined basically in terms 
of limits of analytic functions, then this definition of 
the meaning of the SS-l, SS-lS, etc., is the reasonable 
one. However, if one starts with Sand S-l considered 
to be operators in a Hilbert space, then this rule for 
defining their products must be justified. The required 
justification is given at the end of this appendix. 

It was asserted in Sec. 2F that the independence 
properties of Sc and S; lead to analogous properties 
of the bubble diagram functions pE. The point is that 
the proofs of the structure theorems show that the 
singularities of pB corresponding to any basic diagram 
D; arise from singularities of the bubbles b of B that 
are associated with the parts D;b of D; that lie in b, 
when D; is regarded as a D~ . These parts D;b must be 
basic diagrams if D; is. Now, by virtue of the inde
pendence property of Sc, the singularities of b associ
ated with different basic diagrams D;b are independent. 
If anyone specific D;b is inserted into each b of B, 
then one specific D~ is formed. This contracts to some 
unique basic D~p. It thus follows that the singularities 
of FE corresponding to different basic diagrams D; 
must arise from independent singularities of at least 
one b of B and must therefore be independent. 

The independence property can, alternatively, be 
derived from macrocausality at almost all points of 
the surface of singularities L+. However, there is then 
the problem of extending the property to those rare 
(Type II) points at which this argument breaks down. 

The independence property is not included among 
the assumptions mentioned by the Cambridge group.4 
This omission is connected with their somewhat 
relaxed way of specifying the precise conditions under 
which their basic theorems are valid. If one wishes to 
formulate their theorems precisely, in forms strong 
enough to do the job, then the independence property 
or something similar seems required. Following their 
philosophy, one might try to justify the independence 
property by an inductive procedure: The independence 
property for complex basic diagrams might be shown 

to follow from that of the simpler ones. However, an 
inductive procedure for proving independence would 
involve an artificial assumption that the singularities 
can be "ordered" and that one can proceed by stages, 
completely ignoring "higher-order" singularities at 
each stage. But since the discontinuity associated with 
any D; is, in effect, a sum of contributions corre
sponding to diagrams that are more complex than D; , 
a justification of independence based on "hierarchy" 
is subject to question. In the procedure we adopt, no 
ordering is invoked, and there is never any "temporary 
neglecting" of certain singularities. Also, the full 
content of maximal analyticity is explicitly stated. 

The second and third structure theorems (Theorems 
3.2 and 3.3) given in Ref. 12 are specifically restricted 
to simple points of the Landau surfaces L(DlJ). That 
is, it is assumed that the point P corresponds to a 
unique basic diagram. This assumption is needed 
because the arguments cover only the case where there 
is only one constraint (3.7) (of Ref. 12). Now suppose 
there are many such constraints. The question is 
whether there is a set of variations ollt of the Feynman 
loop parameters that keeps all the op; = ° and all the 
o(j > 0. (Such a set of variations would shift the 
contour simultaneously into the domain of analyticity 
of all the bubble functions, while maintaining all the 
mass-shell and conservation-law constraints.) 

To solve this problem,consider the following lemma: 

Lemma 1: For any set of real numbers 'YJba' the 
system of equations 

(Al) 
a 

has a solution oa if and only if the system of equations 

L IXb'YJba = 0, IXb > 0, (A2) 

has no solution. 

Proof" Suppose (AI) has a solution. Insertion of this 
solution into (A2) gives a contradiction. Thus (A2) 
can have no solution. Conversely, suppose (A2) has 
no solution. Then the space X spanned by positive 
linear combinations of the vectors fib with components 
'YJba is convex. Then there exists some vector 0 that has 
positive inner product with every vector of X. This 
vector solves (AI), and the lemma is proved. 

A slight generalization is the following. 

Lemma 1': For any sets of real numbers 'YJba and Aca , 

the system of equations 

a 

(A3a) 

(A3b) 
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has a solution ba if and only if the system of equations know that 

~ (J.b'Y)ba + ~ f3c Aca = 0, (J.b > 0, 
b 

has no solution. 

(A4) 

Proof" If (A3) has a solution, then (A4) can clearly 
have none. Conversely, if (A4) has no solution, then 
the space X of positive linear combinations of the fIb 

must be convex and must contain no vector in the 
linear space Y spanned by the ~c. Thus the orthogonal 
complement X-L of X must have dimension at least 
that of Y. Moreover, X-L cannot be contained in y-L, 
for then X would contain vectors in Y. Thus, if Y is 
nonnull, there must be a nonzero vector that lies 
in X-L but not in y-L. The sum of a multiple of this 
vector with the vector in X satisfying (A3a) (found in 
Lemma 1) solves (A3), and the lemma is proved. 

Lemma I' is precisely what is needed to extend the 
second and third structure theorems to nonsimple 
points. 

It was mentioned at the beginning of this appendix 
that the integrations occurring in the definitions of the 
bubble-diagram functions PiCK) were defined to be 
along contours displaced infinitesimally from the 
physical region into the simultaneous analyticity 
domain of all the occurring functions Sc and S;, 
provided the real K was such that such a contour 
exists. The proofs of the structure theorems show that 
such contours do exist for most real K, that the FII(K) 
is analytic at such points, and that Flf(K) continues 
analytically around the remaining real points K via 
paths defined by certain rules. 

It is reasonable to define the integrations in the way 
indicated. But jf one begins with the idea that Sand 
S-l are operators in a Hilbert space,then this rule must 
be justified. The problem is that macrocausality gives 
the analytic representation for Sc and S; considered 
as distributions, rather than as operators. It is not 
known whether this representation is valid for opera
tors. However, we now show that the functions FH 
considered as products of operators restricted to the 
space of Schwartz test functions can be defined by 
performing the integrations along the distorted 
contours described above. 

Let H p , Hq , and Hk be three Hilbert spaces of 
square-integrable functions of the multidimensional 
variables p, q, and k, respectively. Let A :Hq ->- Hp and 
B:H

J
) -->- Hk be two bounded operators. Let rp(q) , 

X(p), and 'If(k) be Schwartz test functions of compact 
support. Suppose for sufficiently small supports we 

(x, AlP) = lim felP dqX*(p)A,(p, q)rp(q) 
.~o 

and 

where A.(p, q) = A(p + iEp,q + ifq) and f = (fJ" fa) 
is a vector of fixed direction lying in a certain open 
convex cone (which can depend on the small supports 
of X and q), and similarly for BeCk, p). The function 
A (p + iE p' q + ifq) is supposed to be analytic when p 
and q are in the supports of X and rp, respectively, and 
IE is in the cone, and similarly for B. 

[The functions A and B have certain energy
momentum b functions as factors. The analyticity 
discussed above is for the factor that multiplies these b 
functions, as described in detail in Refs. 7 and 8. We 
shall not explicitly write down the b-function factors, 
but we will use the fact that the conservation laws 
entail that A qJ and B'If have compact supports if rp 
and 'If do. That is, the region of integration is a compact 
"cycle"-it has no boundaries. (See Ref. 12.)] 

Consider fixed rp and 'If of small compact supports. 
Let Xi be a finite set of Schwartz test functions such 
that L Xi = Ion the compact p space. Suppose the Xi 
can be chosen so that the corresponding domains of 
analyticity of A and B overlap, in the sense that there 
is a contour C defined by f(p) such that A(p + if(p), q) 
is in the domain of analyticity corresponding to Xi and 
(p whenever p and q are in the supports of Xi and rp, 
respectively, and similarly for B. We wish to show that 

(B1j!, AlP) = J dp dq dk1j!*(k)B(k, p + ie(p» 

x A(p + ie(p), q)rp(q). 

That is, we wish to show that the operator product 
Bt A, acting between the Schwartz test functions 1j! and 
rp, can be represented by an integral over the fixed 
contour C. The contour C is displaced by a finite 
amount from the real axis, but the assumption is that 
it can be shifted to arbitrarily close to the real region, 
staying always in the cones of analyticity. 

It is sufficient for our purposes to consider only a 
special class of functions Xi. These will be functions 
formed by taking products of functions in the individ
ual variables of p. Furthermore, the functions in each 
individual variable will be unity except at distance 
less than A > 0 from the ends of its supports. The 
function in the support and at distance less than A 
from the left end of the support will be given by the 
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function 

fix) = exp( -x-I){exp( -x-I) + exp [-(A - xr~]}-l 
= 1 - exp [-(A - x)-t]{exp (-x-I) 

+ exp[-(A-XrIn-l. 

The right end will be given by the analogous function. 
The virtue of these functions is first that they are 
easily combined to give functions that add to unity 
and second that they are analytic except at zero and A 
and approach their values at these points exponentially 
from any direction in the cut (along their support) 
plane. 

Consider now the integral on the right of 

(Xi' AlP) = lim IdPXi(P)A(P + iE1J , q)cp(q) . 
• ->0 

Because of the analyticity properties of Xi one can 
perform the limit E --+ 0 by, instead of shifting the 
entire contour down to the real axis, merely extending 
the contour in the surfaces Re z = x = 0 and x = A 
along the direction of E into E = O. This follows from a 
distortion of the multidimension contour. 

Macrocausality guarantees that the functions 
corresponding to A and B grow no faster than some 
inverse power of lEI as E --+ 0 inside the cone of 
analyticity. The exponential falloff of Xi at X = 0 then 
guarantees that the limit E --+ 0 can actually be taken; 
one can extend the contour right down to the physical 
region. At X = A the contour also can be extended to 
E = 0, for the same reason, provided one combines 
the parts coming from the two sides of x = A. [On 
one side one has the Xi of the form of/lex), while on 
the other side one has Xi = 1. The difference falls off 
exponentially as E --+ 0 on the surface Re z = A.] 

One observes now that the contributions from these 
strips at Re z = x = 0 and A are exactly cancelled by 
the contributions from the neighboring Xi' Thus, if 
one adds contributions from many different neigh
boring Xi' the contour of integration is free to move 
about in the domain of analyticity except for the parts 
corresponding to the outer boundary strips associated 
with X = 0 and X = A. 

That is, in our original form, the E were required to 
be constant over each domain Xi (and generally a 
different constant for different Xi)' but we have now 
converted this to a single continuous contour e that 
varies smoothly over the union of the supports. In our 
case, where the union of the Xi cover the entire 
compact cycle in p space, the contour e never descends 
to the real axis, but remains always in the domain of 
analyticity. 

The above results apply equally if all the Xi are 

replaced by XieiP". Thus, the Fourier transform 

F{u) = (e iP", Acp) 
is given by 

F{u) = LdP dqei"P A(p, q)cp(q). 

Similarly, one has 

G{ -u) = (B1p, e-iP") 

= r dk dp1p(k)B{k, p)e-iP". 
Jc' 

Because A and B are bounded operators, these 
Fourier transforms are well defined, and one can 
write (up to factors of 27T) 

(B1p, Acp) = I duG( -u)F{u). 

The integrand in the expressions for F and G are 
analytic in p. That is, the integration region in p space 
can be divided into small regions in which local 
coordinates can be introduced. And, in each region, 
the variables corresponding to conserved energy
momentum are introduced as coordinates and then 
eliminated by the b functions, leaving A and B 
analytic in the remaining (local) coordinates on the 
contour. 

The function G{ -u)F{u) is infinitely differentiable 
(because of the compact supports in p space), and it 
falls off rapidly (faster than any polynomial) in all 
directions. The rapid falloff is due in part to the 
infinite differentiability of cp(q) and 1p(k) (which are 
brought in by the elimination of b functions) and in 
part to the analyticity properties of A and B in the 
remaining (local) coordinates. The A and Bare 
analytic in some common cone C in the local co
ordinates, and they grow no faster than some inverse 
power of lEI on approach to the real physical region. 
Thus the argument of Chap. IVC.a of Ref. 7 shows 
that F(u) and G(u) fall off rapidly uniformly in the 
complement of the polar cone C+. The boundedness 
of F(u) and G( -u) follows from the boundedness of 
A and B. Because of the different sign of the arguments 
of F(u) and G( -u), the intersection of the comple
ments of the two effective polar cones C+ is empty. 
Thus, G( -u)F(u) falls off rapidly in all directions. 

This rapid falloff implies that 

(B1p, Acp) = lim IdU exp (-21ui l 'f}i)G{ -u)F{u), 
fli-O 

where the right-hand side is analytic in 'f};. Because of 
the compactness of the p-space region of integration, 
the order of the integrations can be inverted, for 
sufficiently large 'f}i. The u-integration then gives a 
sum of products of poles oftheform (Pi - p; ± i'f};)-l. 
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Taking the limit 'YJi -->- ° then gives, after some algebra, 
the desired form. The main point is that, as one lets 
the 'YJi -->- 0, certain poles cross the fixed contours e 
and/or e' and effectively reduce them to a single 
contour. 

The methods used above can be extended to show 
the various other properties entailed by the assertion 
that the analytic representation extends in the natural 
way from distributions to products of bounded 
operators considered as distributions. In particular, 
the result described above carries over to products of 
many operators and to the case where the q and k 
must also be shifted. In this latter case, one wants to 
show that, if (for sufficiently small supports of rp and 
'IjJ) there is a cone C of analyticity in (q, k) such that 
for each point in this cone one can find a contour over 
the internal variables that remains always in the 
domain of analyticity [and hence that the product of 
the functions B+ A = H is analytic in (q, k) = z], then 
(1p, Hr) can be represented as 

lim fH(Z + i'YJ)O(z) dz, 
~ ... o 

where 0 = 1prp and i'YJ is in the cone C. The proof 
goes precisely as before, with Hand 0 replacing B+'IjJ 
and Arp. The falloff of Q(u) is now due to the infinite 
differentiability of O(z). 

APPENDIX B: SUPPLEMENTARY NOTES 

On Eq. (3.2') I 
A proof of (3.2') by induction is easy. Suppose each 

term of (3.2') corresponding to a diagram B' having 
n nontrivial bubbles correctly gives the sum of the 
corresponding terms of (3.2). Let B be a diagram with 
n + 1 nontrivial bubbles. Select from among these 
a bubble b all incoming lines of which are also incom
ing lines of B. Let the removal of b from B give B'. 
Let 0( be the incoming lines of B' identified with the 
outgoing lines of b. Consider the various terms t' in 
(3.2) that sum to give the term of (3.2') corresponding 
to B'. From each such l' we construct 2m + 1 terms t 
of (3.2) that correspond to B, where m is the number 
of columns of t' lying to the right of the first nontrivial 
bubble b' of B' reached by the incoming lines 0( of B'. 
These 2m + 1 terms are constructed by placing b 
either in one of m columns that lie to the right of b', 
or in a new column (containing only b) that stands just 
to the left of any of these columns, or in a new 
column (containing only b) that stands just to the 
right of the first column of 1'. The m + 1 terms t 
involving a new column will all have one new minus 
sign, whereas the m terms not involving a new column 
will not have an extra minus sign. Aside from these 

signs all the terms are equal, and equal to the operator 
product of £b with the FB' corresponding to the 
particular term l' of (3.2). Thus, the sum of the 
2m + 1 terms t is just minus one times the operator 
product of £b with this FB'. Summing over all terms t' 
of (3.2) corresponding to this B', one obtains all the 
terms t of (3.2) corresponding to B. Since the same 
operator _Fh is applied to each term, one obtains by 
induction the term of (3.2') corresponding to B. 

An alternative proof of (3.2') that makes use of (3.1) 
is as follows: Suppose (3.2') has been shown to hold 
for terms corresponding to bubble diagrams having 
up to n - 1 nontrivial minus bubbles. Substitute 
(3.2') into the second term of the right-hand side of 
the equation R+ = - R- - R+ R-, and consider the 
contributions to the right-hand side corresponding to a 
bubble diagram Bn , where the subscript n indicates 
the number of nontrivial minus bubbles. The contri
butions to - R+ R- correspond to some Bn of the 
product form B; B; (so that the outgoing lines of B; 
are identical with the ingoing lines of B;), where B; 
consists of a column of k nontrivial minus bubbles 
and of un scattered lines and where j + k = n, 
with j and k no less than 1. Let i be the number of 
initial bubbles of Bn , where an initial bubble is a non
trivial bubble whose incoming lines are all external. 
All bubbles of B; are initial bubbles. 

Suppose at first that Bn does not consist of a single 
column of nontrivial minus bubbles and unscattered 
lines. Then all contributions to - R- - R+ R- having 
n nontrivial minus bubbles come from -R+R- only 
and must correspond to bubble diagrams Bn = Bd B;, 
where k = 1,2, ... , i with i < n. There are 2i - I 
different ways of constructing Bn ,all of which give 
contributions to - R+ R- having the value ± FB •. 
These add up to 

_ FBn[(-1)n-1C) + (_l)n-2G) 
+ ... + (-It-t)] = (-l?FBn. 

Suppose next that Bn does consist of a bubble 
diagram topologically equivalent to a column of n 
nontrivial minus bubbles and of un scattered lines so 
that i = n. Then the reasoning just given still applies, 
but now the last term in the above sum is missing 
because k < n = i; also -R- in -R- - R+R- now 
gives a contribution _FBn. Since 

_FBn = -( -W-iC)FBn 
when i = n, we get the same answer as before. Thus, 
expansion (3.2') is verified. 
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On Topological Equivalence 

As an example of the meaning of topological 
equivalence, consider the bubble diagram of Fig. 4. 
Certain contributions to FE will correspond to the 
case where all the internal lines correspond to the 
same type of particle. If one simply integrated without 

FIG. 4. A bubble 
diagram B. 

respecting the requirement of topological independ
ence, then one would get a contribution that would be 
too large by a factor of 2! 2! 2! 3! 3! . The two 3 !'s 
come from the triples of lines on the left of the two 
intermediate bubbles. Two of the 2 !'s come from the 
pairs oflines on the right of these bubbles. The other 2! 
comes from the topological equivalence of the upper 
and lower intermediate bubbles. 

Leftmost Cuts 

The definitions of equivalent cuts and of leftmost 
cuts are illustrated in Fig. 5. 

Uniqueness of Leftmost Cut 

The uniqueness, near the (:J.. threshold, of the left
most cut equivalent to a cut Ca plays an important 
role in the arguments. At some finite distance above 
threshold, this uniqueness may fail, as Fig. 6 shows. 

Leftmost Cuts C; in B-

For any set of leftmost cuts C~ in B- corresponding 
to the sets (:J.. of D;, there is a mapping r of D(B-) 
onto D;. Each such r defines a set of parts r--l V of 
D(B-) (and hence of B-) corresponding to the V of 
Dt- Each such r defines, in fact, precisely one way 
that B- is realized as a term of T. 

An example of a B- that contains a D; in two 
distinct ways is shown in Figs. 7 and 8. 

FIG. 5. The cuts C, = (L,. L 2 ) and C2 = (L 3 , L,. L.) are equiv
alent. C2 is a left-most cut. C. = (L6 • L 7 ) is not equivalent to C, 
or C2 • 

~I Ca 
, 
I 

b a 

b b 

C2 
FIG. 6. A diagram with two leftmost cuts equivalent to Ca. We 

take Ma < M •. Throughout this work it is assumed that the mass 
values of the stable particles have no accumulation points. It is then 
easy to see that the leftmost cut is unique in some finite neighborhood 
of the oc threshold. 

FIG. 7. A bubble 
diagram B that con
tains a certain D li in 
two essentially differ
ent ways. This Dp is 
shown in Fig. 8. 

FIG. 8. A Dp that is 
contained in two essentially 
different ways in the B of 
Fig. 7. 

APPENDIX C: STRONGLY 
EQUIVALENT CUTS 

In this appendix we show that any cut Ca corre
sponding to (:J.. of D; can be replaced by the leftmost 
cut C~ strongly equivalent to it without destroying its 
correspondence to (:J.. of Dr 

The condition that B- contain D; is equivalent 
to the condition that there is a continuous mapping 
r: D(B-) ~ D; that maps D(B-) onto Dt- The 
external lines of D(B-) must map onto the external 
lines of D; identified with them. The lines of the cuts 
Ca = r-l(:J.. are in 1-to-1 correspondence with the lines 
of (:J... The inverse image r-l V of vertex V of D; is the 
part of D(B-) that corresponds to V. 

The point P is assumed to satisfy the following 
conditions: 

(1) P lies on L(D~). 
(2) P lies on L(D+) only if D+ contains D; . 
(3) The solution of the Landau equation of D; at P 

defines momentum-energy vectors Pi such that no line 
of any set (:J.. of D; has its Pi parallel to that of any line 
of any other set (:J.. of D;. As before, (:J.. runs over pairs of 
vertices of D; and specifies the set of lines Li running 
between that pair of vertices. 

We make use of one important kinematic result: 
If D(B-) contains D;, then the equations of energy
momentum and mass constraint alone require that, if 
the external lines of D(B-) have the Pi defined by P, 
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then the unique values of the Pi of the lines of 
Ca = r-1ex, subject to the conservation-law and mass
shell constraints on these lines, are those defined by 
the Landau equations of D; at P. This result is closely 
connected to the fact that L(D;) lies on the boundary 
of the physical region of Dt and is proved in the 
same way.1O·3 

The arguments in the text are purely topological. 
In this appendix we make use also of the kinematic 
requirement just described. That is, we shall require 
that the contribution to the integral corresponding to 
B- actually satisfy the energy-momentum conservation 
laws required at P. By considering a sufficiently small 
neighborhood of P, the internal Pi can be confined to 
an arbitrarily small neighborhood of the values 
required at P. Thus, we can consider the Pi of the lines 
of the various sets Ca to be in a small neighborhood of 
the values defined by the Landau equations. 

At P the momentum-energy vectors of the various 
lines corresponding to any single Co: are all parallel, 
by virtue of the Landau equations. In some particular 
Lorentz frame they are all at rest. Consider any C~ 
strongly equivalent to Ca. Since C~ and Ca define the 
same set of flow lines their total energy momentum is 
the same. Since the tote j rest masses are also eq ual, 
the lines of C~ must also all correspond to particles at 
rest, in this particular frame. 

We now prove the following result: If C~ is strongly 
equivalent to Ca and lies left of it, then C~ lies in 
r-1 V, where V is the vertex of Dt upon which the set 
ex terminates: 

Let fJ label the various outgoing sets of lines of V 
and let Cp = rp. The momentum-energy vectors of 
the lines of CfJ are, by assumption, not parallel to 
those of Ca. Thus, no line of C~ can coincide with any 
line of any Cp • Thus, C~ must either lie completely 
within r-1 V, or there is a part of D(B-) that consists 
of a set of paths that begin with certain lines of the 
sets CfJ and end with certain lines of C~. Let this part 
of D(B-) be called Q. We wish to show that Q is 
necessarily empty, i.e., that C~ lies in r-lv. 

Consider rQ, the image of Q in Dt. The energy
momentum conservation requirements at P can be 
satisfied only if the lines of rQ carry the momentum-

energy prescribed by the Landau equations, as already 
noted. But, if the momentum-energy vectors are as 
prescribed by the Landau equations, then the vectors 
exiPi = !1Xi can be interpreted as space-time displace
ments: These displacements must fit together to give a 
classical multiple scattering process. But then the 
arguments of Ref. 9 immediately rule out the possi
bility that Q is nonempty; for the initial particles of 
rQ all start at the common vertex V, and they 
diverge from that point. It is then not possible that 
they transform by multiple scattering into a set of 
particles all relatively at rest, without allowing extra 
particles that come in from outside (i.e., that do not 
start at V). But interactions with extra incoming 
particles that do not start at V are incompatible with 
the condition that C~ be strongly equivalent to Ca. 

Thus rQ must be empty, and C~ must therefore lie 
completely in r-1 V. 

But, if C~ lies completely in r-1 V, then it can be used 
in place of Co: in making the correspondence of D(B-) 
to D;: The topological structure is not altered by 
replacing Ca by the leftmost cut C~ that is strongly 
equivalent to it. This is the result that we need. A 
slight alternation of the argument shows that Ca can 
be replaced by any cut strongly equivalent to it without 
disrupting the correspondence to ex of D;. 

• This work was done under the auspices of the U.S. Atomic 
Energy Commission. 
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The problem of propagation over a wedge-shaped overburden has been analyzed using a full-wave
solution approach. The relationship between this solution and an earlier one employing the compensation 
theorem is discussed in detail. The compensation theorem method makes use of the simplifyIng concept of 
of the surface impedance which is determined by a geometrical-optical approach. The applicability and 
limitations of the latter approach are carefully studied for both dissipative and nondissipative over
burdens. 

1. INTRODUCTION stratification). However, it is found from these compu-
In earlier studies of mixed-path propagation, l the tations that the value of the surface impedance depends 

earth's surface has been characterized by a sectionally upon the direction of propagation of the incident wave. 
constant surface impedance. Thus, an abrupt change These values being used for the surface impedance, the 
in the surface impedance along the path of propaga- compensation theorem was employed to derive an 
tion characterizes a land-sea boundary. This repre- integral equation for the electromagnetic fields. 6 Schlak 
sentation of the earth's surface has yielded considerable and Wait' later carried out a reciprocity test using these 
information on problems of mixed-path propagation, results. These tests indicate that the computed mutual 
and these results have been borne out in controlled, impedances between two dipoles (at the surface of the 
idealized laboratory experiments. 2 The analysis of earth) are dependent upon the direction of propaga
this problem using the compensation theorem3.4 tion. However, this discrepancy (attributed to the 
indicates rapid fluctuations of the electromagnetic approximations inherent in using the geometrical 
fields at the land-sea boundary, which are attributed optical approach) decreases with increasing distance 
to the idealized surface-impedance profile. To over- between the two dipoles. It was conjectured at the 
come this problem, such that the results would time by Schlak and Wait6 that the surface-impedance 
resemble physical situations more closely, it may seem calculations are more dependable when the propaga
reasonable to assume that the surface impedance tion is in the direction of increasing overburden depth. 
varies linearly along a finite transition region between However, the results of preliminary laboratory experi
the land-sea boundaries. However, attempts to in- ments at 4.75 GHz, conducted recently by King and 
vestigate the sloping-beach problem have indicated Hustig,5 indicate that the contrary would be true. 
that the tangential electric- to magnetic-field ratio In a recent full-wave solution of the problem of 
over a wedge-shaped subsurface region (overburden) propagation over a layered medium of arbitrarily 
does not vary linearly with distance along the path of varying depth, 8 the electromagnetic fields are expressed 
propagation (see Fig. 1). Subsequently, it was sug- in terms of a complete local set of basis functions con
gested5 that the variable surface impedance in the sisting of surface-wave and radiation terms. Since no 
transition region may be assumed to be equal characteristic-function expansion is available, this 
to the surface impedance of a parallel-stratified earth approach reduces the problem to the solution of 
of depth equal to the local depth hex). In a recent coupled first-order differential equations (for the 
study of the influence of the earth's subsurface on forward- and backward-wave amplitudes) similar to 
electromagnetic ground-wave propagation,6 a geomet- those encountered in nonuniform waveguide structures. 
rical-optical technique is first used to determine the A major advantage of this method is that it requires 
surface impedance over a wedge-shaped overburden. neither the assumption nor calculation of the surface 
This geometrical-optical approach, which has been impedance, nor is the solution restricted by the surface
used even when the overburden is a dissipative medium, impedance concept. Indeed, it is possible to use these 
was suggested intuitively since it converges to the exact results to compute the tangential electric- to magnetic
solution as the wedge angle approaches zero (parallel field ratio at the earth's surface. Thus, this analysis 

2764 
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FIG. I. Vertically polarized waves over 
a wedge-shaped overburden. 

y 
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unables one to examine critically the use of the surface
impedance concept when the tangential electric to 
magnetic field ratio is rapidly varying. This analysis 
also assists in resolving some of the questions arising 
from the geometrical-optical analysis6 and recent 
laboratory results of King and Hustig. 5 

In this paper, we derive the direct relationship 
between the geometrical-optical solution to the ideal
ized problem with the wedge-shaped overburden and 
the full-wave solution which is valid for overburdens 
of arbitrarily varying depth. On deriving this rela
tionship, we shall be able to justify the use of the 
geometrical-optical approach (even for the case in 
which the overburden is a dissipative medium) and to 
examine carefully the restrictions that must be made 
upon the use of this approach. The difficulties arising 
in the use of the geometrical-optical approach in the 
region near the apex of the wedge-shaped overburden 
are also examined. Finally, we determine the reason 
why the geometrical-optical solution is more in 
accord with the reciprocity theorem as the distance 
between transmitting and receiving dipoles increases. 

2. RELATIONSHIP BETWEEN THE FULL
WAVE SOLUTION AND THE GEOMETRICAL

OPTICAL SOLUTION 

A. Coupling Effects Neglected 

Using the full-wave analysis of the problem of 
propagation of vertically polarized radio waves over a 
layered surface of nonuniform thickness (see Fig. 1), 
we have shown that the z-directed magnetic field can 
be expressed in terms of a complete set of basis func
tions consisting of the surface wave and the radiation 
terms,S as 

H.(x, y) = ~/(x, {In)CP(Y, {J,,) + Ll(X, {J)cp(y, {J) d{J, 

(2.1) 

t:,= gg-iog/W 
h(x) = X ton 6 

where the finite discrete sum is over the surface waves 
satisfying the modal equation 

i€l Uo tan u1h + - - = 0, (2.2a) 
€o U1 

in which €o and €1 are the dielectric coefficients for 
free space and for the overburden, respectively. The 
region below the overburden is, for simplicity, 
assumed to be highly conducting. The wave parameters 
are 

UO.1 = (k~.l - {J2)!, kO.1 = w(,uO€O.l)!. (2.2b) 

The square roots are chosen such that, for the surface 
waves, Uo and U1 are in the first quadrant and {J is in the 
fourth quadrant. 

The permeability for free space and the overburden 
is ,uo. The path of integration r, for the radiation 
term, is 

k ~ {J ~ 0 and 0 < i{J < 00. (2.3a) 
Thus, 

0:::;; Uo < 00. (2.3b) 

In this paper, we are assuming an eiwt time depend
ence. The generalized currents lex, {J) are only 
functions of the coordinate x. However, the local basis 
functions cp(y, {J), which satisfy all the boundary con
ditions for a parallel-stratified medium of thickness 
equal to the local depth of the overburden hex) (see 
Fig. 2), are explicitly functions of y and implicitly 

'I 

6(x)= tan-I G'(XU 
FIG. 2. Nonuniform overburden of depth h(x). 
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functions of x except for regions where the overburden 
is of uniform depth: 

cP(y, {3) = [N({3)rl X cos ul(Y + h), -h < Y < 0, 

= [N({3)rl x [cos ulh cos UoY 

EOUl' h'] ° - - sm Ul sm UoY, Y > . 
ElUO 

(2.4) 

The normalization coefficient N({3) is chosen such that 

I: Z({3)cP(Y, {3)cP(Y, {3') dy = bp,p', (2.Sa) 

for the surface-wave term, and 

I: Z({3)cP(Y, {3)cP(Y, {3') dy = b({3, {3'), (2,Sb) 

for the radiation term. The wave impedance is 

Z({3) = Zl({3) = {3!WEl, -h < y < 0, 

y > 0, (2.6) 

where bp,p' and b({3' - {3') are the Kronecker and 
Dirac b functions, respectively. Thus, for the radiation 
term,S 

N
2
({3) = Zo({3>[ cos

2 
1Ilh + (~:J sin

2 
U1h]f( -;0) 

(2.7a) 
and, for the surface waves, 

N 2({3) 

= iZo({3) [cos2 1Ilh + (~)2(Sin2 u1h + u1h tan U1h)]. 
2uo ~ 

(2.7b) 

Note that for the surface waves the expression for 
cP(y, {3) reduces to 

cP(y, {3) = cos u1h exp (iuoy)/N({3), y> 0, (2.4') 

and the radiation term consists of a continuous 
spectrum of standing waves along the y direction. 9 

The generalized current l(x, {3) can be expressed in 
terms of coupled forward- and backward-wave ampli
tudes a(x, {3) and b(x, {3). Thus, in general, 

lex, {3) = a(x, {3) + b(x, {3). (2.8a) 

However, when the coupling between the waves that 
constitute the general solution (2.1) is negligible, they 
can be shown to reduce to 

and 
a(x, {3) ~ a(O, {3)e-iPX 

b(x, {3) ~ b(O, {3)e iPX, 
(2.8b) 

where a(O, {3) and b(O, {3) are the wave amplitudes at 
x = 0. 

The wave parameters Uo 1 and {3 are related to the • 
complex cosine and sine of the angles of propagation 
in the air and in the overburden 00 and 01 , respectively. 
Thus, 

UO,l = kO•l cos 00,1 and {3 = ko sin 00 = kl sin 0l' 

The second relationship constitutes Snell's law, and, 
for the surface waves, these complex angles of propa
gation have been shown to be related to the Brewster 
angle. lo 

In this section, we assume that coupling is neglig
ible. Thus, for a wave incident at an angle O~ in the 
region above the overburden, the magnetic field may 
be expressed in terms of the basis function expansion 
(2.1) as 

H!(x, y) 

~ exp [_i({3ix - u~y)] 

(
COS u1h - ioc

i 
sin uih) ['({3i i )] + . . . exp - I X + uoY 

cos u~h + ioc' sin u~h 

= exp (-i{3iX )cP(Y, {3i)2N({3i)/(COS u1h + ioci sin u1h), 

(2.9a) 

in which oci is the normalized wave impedance, 

i Eou1 rJl cos 0i 
oc = -i = lli' (2.9b) 

ElU O rJo cos Vo 

where the 1]0,1 are the intrinsic impedances for free 
space and for the overburden, respectively, and 

{3i = ko sin O~ = kl sin Of and U~.1 = kO,l cos O~,l' 
(2.9c) 

Note that, for the case hex) = const, cP(y, {3)e-;PX con
sists of the incident and the specularly reflected uniform 
plane waves 

exp [-iko(sinO~x - cosO~y)] 
and 

RT exp [-iko(sin O~x + cos O~y)], 

respectively. The composite reflection coefficient RT , 

at the surface y = 0, can be expressed in terms of the 
reflection and transmission coefficients at the plane 
interface between two semi-infinite media with permit
tivities El and EO' Thus, 

RT == (cos u~h - i(J.i sin uih)/(cos uth + i(J.i sin uth) 
= (Roo + e-i2ulh)/(1 - Rne-2iUlh), (2.10a) 

where Roo and Rll are the reflection coefficients for the 
waves incident from media EO and E1 , respectively; thus 

Roo = -Rll = (I - rx,i)/(l + rx,i). (2. lOb) 
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On expanding the denominator in (2.10a) in a binomial 
series, we get 

-i2ul
1
1t R T -i4u,'" RT = Roo + TOITIOe + TOl 11 IOe 

. I + TOl(R11)2TIOe-t6u, It + ... 
+ TOl(Rllr-lT10e-i2nu,in + ... , (2.1Oc) 

in which the transmission coefficients rIO and T01 are 

TIO = 1 + Roo and T01 = 1 + Rll • (2.l0d) 

The above expression for RT constitutes the direct 
and the multiply reflected waves in the overburden. 
This expression for RT is valid for both dissipative 
and nondissipative overburdens. 

For a wedge-shaped overburden, we let the z axis 
lie along the apex of the wedge (see Fig. 1). Thus, 

hex) = x tan b, (2.11) 

where b is the wedge angle. In this case, RT is also a 
function of x. Thus, the reflected component of (2.9a) 
is not a specularly reflected uniform plane wave. We 
can now show readily that, under certain conditions, 
this inhomogeneous reflected wave can be approxi
mated by a finite series which can be identified with the 
geometrical-optical series used by Schlak and Wait6 

to determine the surface impedance of the structure. 
Substituting the expressions for RT [(2.1Dc)] and 
h(x)[(2.11)] in the expression for the reflected com
ponent, we get 

RT exp [- iko(sin O~x + cos O~y)] 

~ Roo exp [-iko(sin O~x + cos O~y)] 

+ TOlTIO exp [-iko(sin O~x + cos O~y)] 

+ TOlRllTIOexP [-iko(sin O~x + cos O~y)] + ... 
+ T01(Rll)N-1Tol exp [-iko(sin O~x + cos O~y)], 

where 

2Nb < t1T - 0i < 2(N + 1)b. (2.12) 

In the above expression, we have assumed that the 
following approximations are valid: 

sin O~ = sin ot + cos Of 2 tan (j 

= [sin Of( cos 2b - sin 2(5) + cos Oi sin 2b]/cos2 0 

~ sin ot cos 2b + cos ot sin 2b 

= sin (01 + 2b). (2.13a) 

In (2.l3a), we assume that 101 « !1T and neglect terms 
of order b2 . Similarly, 

sin O~ ~ sin (O~ + 2nb). (2.13b) 

Obviously, as n increases, this approximation be
comes less valid. Thus, we must also require 

T01(Rll)nTol «1 as nO - !1T. 

This condition simply assures that the amplitude of the 
nth multiply reflected wave is negligibly small as the 
approximation implied in (2.13b) becomes invalid. 
In addition, we assume that 

cos (01 + 2b) = cos ot cos 2b - sin ot sin 2b ~ cos O{. 

(2.13c) 

For the above condition to be satisfied to within the 
same approximation as (2.13a), we must require, in 
addition, that 

IO~1 « !7T. (2.13d) 

The angles O~ (for y > 0) are related to O~ for the 
overburden through Snell's law: 

pn = ko sin 0; = ki sin Of. (2.13e) 

Summing up, we note that, for all the nonnegligible 
terms of the finite-series expansion (2.12), we require 
that 

10~ + 2nol « t7T· (2.14) 

The geometrical-optical-series expansion is illustrated 
in Fig. 3. In Figs. 3(a) and 3(b) the "incident" waves 
are assumed to be traveling in the direction of in
creasing and decreasing overburden depth hex), re
spectively. Thus, for case (a) b > 0, and for case (b) 
o < O. For simplicity, "1 is assumed real in these 
figures. Examining the finite geometrical-optical 
series, we observe that, for IRe (OD + 2bl- t7T, the 
expression consists of only the incident and the specu
larly reflected wave, a situation in which it is obvious 
that the geometrical-optical solution is invalid unless, 
of course, ITolTlOl- O. Note that, if the overburden 
is nondissipative, pn is real, and the multiply reflected 
waves both in and above the overburden are homo
geneous plane waves. However, for a dissipative 
overburden, the multiply reflected terms of the 
geometrical-optical series, both in and above the 
overburden, are inhomogeneous waves since pn is a 
complex number in the fourth quadrant. Thus, for these 
terms, the planes of constant phase do not coincide 
with the planes of constant amplitude. Note that 
condition (2.13d) on the complex angle 0i in the 
overburden is a restriction, not only upon the real 
angle of incidence O~ but also upon the complex value 
of the dielectric coefficient for the overburden "1' 

It is interesting to point out that, for the limiting 
case in which E1 - Eo, the reflection coefficient Rll 
approaches 0 and the local modal expansion reduces 
to the incident wave and a single reflected wave 
exp [-iko(sin O~x + cos Oty)][(2.12)]. The latter com
ponent, of course, is a wave specularly reflected by the 
tilted conducting plane y = x tan 0 (and not the plane 
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y 

-------.. ,x 

(a) 

y 

(b) 

FIG. 3. Geometrical-optical representation of the wave travelling in (a) the direction of increasing overburden depth, t5 > 0, (b) the direction 
of decreasing overburden depth, t5 < o. 

y = 0). This point emphasizes the advantages of using 
a local modal expansion [one that locally satisfies the 
boundary conditions of a parallel stratified over
burden of local depth hex)]. Use of a fixed modal ex
pansion for the electromagnetic field [one in which 
cp(y, {J) is strictly a function of the y coordinate only] 
would result in strong coupling between the com
ponent waves, since, in this case, cp(y, {J) describes an 
incident wave and a wave specularly reflected by the 
surface y = 0 rather than the plane y = x tan 15. This 
aspect of the problem has also been noted in an earlier 

paper.8 In the following section, we consider the 
problem of coupling between the terms of the local 
expansion and examine how the distances between the 
input and output reference planes and the finite con
ductivity of the overburden affect the validity of the 
geometrical-optical solutions. 

B. Consideration of Coupling Effects 

In the preceding section, we considered the case in 
which the forward- and backward-wave amplitudes 
a(x, {J) and b(x, {J) could be regarded as uncoupled 
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[(2.8b)]. However, for the general case (following the 
rigorous full-wave analysis8), the wave amplitudes are 
shown to satisfy the coupled first-order differential 
equations 

- ~ a(x, (3') = i(3' a(x, (3') + I SBA«(3', (3)a(x, (3) 
dx 

+ I SAA«(3', (3)b(x, (3), (2.15a) 

- ~ b(x, (3') = - i(3' b(x, (3') + I SAB«(3', (3)b(x, {J) 
dx 

+ I SBB«(3', (3)a(x, {J), (2.15b) 

where I indicates a summation of the finite number of 
surface waves and an integral over the contour as 
described by (2.1). The scattering coefficients SJJA and 
SAA are defined as 

SBA((J', (3) = ! EoZo«(3'~ dh/dx ,2 ui 2[1 + l(U;)2] , 
2 EIN({J )N«(3) U I - U I (3' U I 

(3 =F {J, 
= 0, {J' = {J, 

and 

SAA«(3', (3) 

1 EOZO«(3') dh/dx ui [ {J (U;)2] (3' =F {J, 
= 2 EIN({J')N«(3) (U? - uD 1 - p; ~ , 

1 (Zo«(3') dh/dx 1 d , ) 
= - 2 N 2«(3')EI/EO + Zo((J') dx Zo«(3 )r3p' .Pn' , 

{J' = (3, (2.16a) 

where i5P'.Pn, is the Kronecker (j function which vanishes 
unless the incident wave is a surface wave (charac
terized by the discrete parameter {J~), and 

SJJA«(3', (3) = SAB«(3', {J), SAA«(3', {J) = SBB({J', {J). 

(2.16b) 

Obviously, (2.8b) is the solution to (2.15) if the scatter
ing coefficients vanish. In order to solve (2.15) for the 
general case, we first determine the forward mode 
amplitude ai(x, {J) for the incident magnetic field 
H!(x, y)[(2.9a)]. Using (2.1) and the orthogonal 
properties of the basis functions cp(y, {J)[(2.5)] and 
noting that Ji(x, {J) -+ ai(x, {J), we find that 

t 2N«(3i)e-HP' x) 

a (x, (3) = . . . 
cos uth + icx'sin uih 

X {r3Pn ,P" surface wave, (2.17) 
lJ({J - {Ji), radiation term. 

We now seek an iterative solution of (2.15). Thus 
(neglecting reconversion) we substitute (2.17) for 
a(x, {J) in the right-hand side of (2.15a) and neglect 

b(x, (3) for the first-order iterative solution: 

- ~ [a(x, {J')] - i{J' a(x, {J') 
dx 

SBA({J', (3i)2N({Ji)Tio exp [- i«(31x + u:h)] 

1 - R:I exp (-i2uih) 
(2.18) 

The solution of the above inhomogeneous equation 
for the scattered waves ({J' =F {Ji) isll 

a(x, {J') 

= -2Tfo exp (-i(3'x)(X SBA«(3',(3i)N({J') 
Jo 1 - R~l exp (-i2u~h) 

X exp [i«(3' - (3i - uf tan r3)~] d~. (2.19) 

In the above, we have replaced x by the variable of 
integration , in the integrand. The coefficient N2«(3) 
can be expressed as follows: 

N 2«(3) = Zo({J)(l_ 2Rncos2ulh + Ril)!:(-UO), 
(TlO)2 2 {J 

radiation term, (2.20a) 

iZo«(3)[(Ui - u~) 2 h = -- cos UI 

2uo ui 

+ (~)2Ulh tan U1h} surface waves. 

(2.20b) 

For a nondissipative overburden, k~ is real and ul , 
for the radiation term, is also real. Thus, for IRil1 « 1, 
the coefficient N2({J)[(2.20a)] is a very slowly varying 
function of x for the entire region 0 < x < 00. The 
denominator in the integrand of (2.19) can be ex
panded as a rapidly converging binomial series, and 
(2.19) may be integrated term by term. Thus, replacing 
N2«(3) by its value for h = 0, 

N2({J) R; -Zo({J)7Tuo/2{J. 

It now follows that 

a(x, (3') 
00 

R; -2 exp (-i(3'X)SlJA«(3', (3i)N({3i) I (Ril)n 
n~O 

X J exp (i{{J' - [{Ji + (2n + l)u; tan i5]g) d,. 

(2.21) 

Using the unilateral Fourier-transform pair, we note 
that 

g({J') = - g({J)ei{tJ'-P)x d{J dx. (2.22) 1 fooJoo 
27T 0 -00 
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Thus, 

i'''exp [i(p' - ,8:m d, 
-+ {I - exp [i(,8' - ,8:)x]}/i(,8' - ,8:), for x finite, 

-+ 27Tb(,8' - ,8:), for x -+ 00, (2.23) 

where, under the conditions established for the 
geometrical-optical approximations, 

,8;' = ,8i + (2n + l)uf tan b 

R:i kl sin [ef + (2n + l)b]. (2.24) 

Thus, for the scattered field, the wave amplitude 
a(x, ,8') becomes a very directive function of ,8' as 
x -+ 00. Even for finite values of x, it is obvious that 
a(x, ,8') has maxima at,8' = ,8: [i.e., when the phase in 
the integrand (2.21) is zero]. The forward scattered 
radiation field H;(x, y) is 

H~(x, y) = J>(X, ,8')4>(y, ,8') d,8'. (2.25) 

Thus, taking into account the x dependence of the 
local basis function 4>(y, ,8'), it can be shown that the 
scattered field also radiates primarily in the directions 
e~ [(2.13e)], as predicted by the geometrical-optical 
approach, provided, of course, all the conditions 
stipulated above are satisfied. The above discussion, 
therefore, also explains why the discrepancies in the 
geometrical-optical approach decrease as the distance 
between the transmitting and receiving dipoles in
creases.7 In a similar manner, it is possible to obtain 
a first-order iterative solution for the backward-wave 
amplitude hex, ,8') starting with (2.15b). It should be 
pointed out that, using the geometrical-optical 
approach, we neglect these backward waves for the 
case in which the incident wave is traveling in the 
+x direction (see Fig. 1). Higher-order iterative solu
tions for both a(x, ,8') and hex, ,8') may be generated 
from the first-order solutions in a straightforward 
manner, and it can be shown that they exhibit the same 
directive properties as implied by (2.24). 

We now consider the coupling into the various sur
face waves. Note that, even for the case in which the 
overburden is nondissipative, the surface-wave pa
rameters Uo and Ul are complex. Thus, the coefficients 
N2(,8)[(2.20b)] are strongly dependent on the variable 
x. Moreover, for large values of x, N(,8) increases 
exponentially as exp (-iu1 tan b x) and, in view of 
(2.16), the coupling decreases exponentially as is 
expected. Thus, coupling into the surface waves is 
restricted to the region in the vicinity of the wedge 
apex, and the forward-wave amplitude a(x, (3) does not 
exhibit sharp maxima in the directions of the complex 
Brewster angles (surface-wave terms). It is for this 

reason that the geometrical-optical approach is 
restricted to regions distant from the wedge apex.6 

Turning now to the case in which the overburden is 
dissipative, kl (and therefore u1) is also complex for 
both the radiation and surface-wave terms. Thus, for 
the radiation term in this case, N2(,8) is a slowly vary
ing function of x only for the region in which 

12Rll cos 2u1h/(1 - R~l)1 « l. 

It is in this region that most of the coupling takes 
place. For large values of x, N(,8) increases expon
entially with distance x, as in the case of the surface 
waves. As should be expected, the coupling decreases 
(exponentially) as x increases (see Fig. 2). Hence, when 
the overburden is dissipative, the scattered-wave 
amplitude a(x, ,8') is not as directive a function as in 
the case of the nondissipative overburden. However, 
for the case of the dissipative overburden, the scat
tered fields H: are less significant,and the zero-order 
solution (2.17) may be sufficient for most practical 
cases. Hence, in this case too, the geometrical-optical 
approach may yet be used to obtain an appropriate 
value for the surface impedance. 

In the above analysis, we have restricted our 
attention to the case in which the incident wave is 
propagating in the +x direction. For the case in which 
the direction of propagation is reversed, we need only 
invoke the reciprocity relationships, since the full
wave analysis is consistent with reciprocity.s Ex
perimental evidence implies that the reflected-wave 
amplitude hex, ,8) may be neglected in cases of practical 
interestS when the incident field is propagating in the 
+x direction. Thus, the indirect approach, involving 
the use of the reciprocity relationships, is preferable 
to the direct approach when the incident wave is 
propagating in the negative x direction.12 

3. CONCLUDING REMARKS 

In this paper, we have derived the relationship 
between the full-wave solution and a geometrical
optical approach to the problem of propagation over 
a wedge-shaped overburden. We have examined the 
applicability of the latter approach for both dissipative 
and nondissipative overburdens and determined the 
limitations of this approach relative to the magnitude 
of the wedge angle b and the angle of incidence 0i in the 
overburden. We have also resolved certain questions 
arising from the directive property of the calculated 
surface impedance and its relationship to the reciproc
ity theorem. 7 The question of the excitation of the 
surface waves in the vicinity of the wedge apex (neg
lected by the geometrical-optical approach) has also 
been investigated. 
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Finally, we wish to recall that, when applicable, the 
geometrical-optical approach is a convenient method 
to determine the appropriate value of the surface 
impedance. However, the actual field variations still 
need to be computed. Through a judicious use of the 
compensation theorem, Wait1 derives an integral 
equation for the field which is solved by an iterative 
method. Thus, the latter solution depends upon the 
applicability of the surface impedance concept. For 
the surface impedance concept to be meaningful, it 
must be insensitive to variations of the angle of in
cidence ()~. Furthermore, the fluctuations in the rela
tive value of the surface impedance must be limited.6 

On the other hand, the full-wave solution (which is not 
restricted to wedge-shaped overburdens) does not 
depend upon the applicability of the surface-imped
ance concept.s 
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A general method for eliminating the angle variable from the equations of a perturbed periodic motion 
and for deriving an "adiabatic invariant" J has been given by Kruskal and, for a special class of 
Hamiltonian systems, McNamara and Whiteman have shown (to order E2) that J is related to a set of 
invariants I obtained from the expansion of Poisson-bracket relations. In this work, an order-by-order 
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to the same form as the relation between / and J derived by those authors. Finally, the relationship between 
Z1 and J is examined, and arguments are presented that in certain cases the two are equal to all orders. 

INTRODUCTION 

Let a perturbed periodic mechanical system be 
given, described by n canonical variables collectively 
represented by the vector y and by a Hamiltonian H 
dependent on a small parameter E, of the form 

00 

H = Yl + 2,EkH(k)(y) (1) 
k~l 

(here and in what follows, superscripts in parentheses 
denote order in E). The vector y may be viewed as the 
solution of the Hamilton-Jacobi equation for the 

unperturbed motion, yielding an action variable )'1' 

its conjugate angle variable Yn' and a set of other 
variables Yi which are constants of the unperturbed 
motion. 

A perturbation may now be employed to eliminate 
Yl and Yn from the equations of motion to any desired 
order in E. One such technique has been devised by 
KruskaP and will be described in more detail further 
on (this method is also applicable to noncanonical 
systems). By Kruskal's approach, a near-identity 
transformation from the variables y to new "nice" 
variables z is performed, so that, of the 11 first-order 
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the special case investigated by McNamara and Whiteman, the relation between I and Z1 may be brought 
to the same form as the relation between / and J derived by those authors. Finally, the relationship between 
Z1 and J is examined, and arguments are presented that in certain cases the two are equal to all orders. 

INTRODUCTION 

Let a perturbed periodic mechanical system be 
given, described by n canonical variables collectively 
represented by the vector y and by a Hamiltonian H 
dependent on a small parameter E, of the form 

00 

H = Yl + 2,EkH(k)(y) (1) 
k~l 

(here and in what follows, superscripts in parentheses 
denote order in E). The vector y may be viewed as the 
solution of the Hamilton-Jacobi equation for the 

unperturbed motion, yielding an action variable )'1' 

its conjugate angle variable Yn' and a set of other 
variables Yi which are constants of the unperturbed 
motion. 

A perturbation may now be employed to eliminate 
Yl and Yn from the equations of motion to any desired 
order in E. One such technique has been devised by 
KruskaP and will be described in more detail further 
on (this method is also applicable to noncanonical 
systems). By Kruskal's approach, a near-identity 
transformation from the variables y to new "nice" 
variables z is performed, so that, of the 11 first-order 
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differential equations describing the evolution of z, 
n - 1 may be separated and solved independently as 
an autonomous set. Furthermore, using these "nice 
variables," we may express an "adiabatic invariant" 
J, which is a constant of the perturbed motion, to any 
order of e. If J is used to eliminate Zl, one winds up 
as required with a mechanical system containing only 
n - 2 independent variables. 

An alternate method of deriving an invariant I for 
the system described by Eq. (1) is based on an expan
sion of the Poisson-bracket relation 

[1,R] = O. (2) 

This expansion has been described by Whittaker2 

and was further explored by McNamara and 
Whiteman3 (henceforth referred to as McNW). The 
latter authors were able to show-by a lengthy 
calculation and only to order e2-that the invariant 
thus obtained is, in a special case, related to 
Kruskal's J. 

In what foHows we shall show that, for a system 
given by Eq. (1), Kruskal's method may be modified 
to yield a family of invariants in a completely different 
way from that used in deriving J. It will then be shown 
that these invariants are solutions of Eq. (2), are 
related to the invariant of McNW, and also are 
connected with the adiabatic invariant J. 

Notation: In order to obtain concise expressions, 
the notation used here departs somewhat from that 
of KruskaI. In Kruskal's work, y and z have n - 1 
components and special symbols v and rP stand for 
what we here denote by Yn and Zn' In what follows, 
such vectors with n - I components, excluding the 
angle variable, will be denoted by a tilde, e.g., y and z. 
Furthermore, if the canonical variables in yare 
arranged in order 

y = (p, q), (3) 

with the action-angle variables in the extreme posi
tions, we shall define a conjugate vector 

y = (q, -p) (4) 

so that Yl = Yn and Yn = -Yl' 
The use of y enables one to write Poisson brackets 

concisely [the summation convention is henceforth 
used in all summations over nor (n - 1) components] 
as 

[a, bJ = oa ob 
oji; oY; , 

and Hamilton's equations become 

dYi oH -=--
dt oji; 

(5) 

(6) 

Finally, we shall assume (as in Kruskal's work) that 
the basic period in the dependence on Yn is unity and 
denote quantities averaged over Yn (which clearly 
depend on y only) by angular brackets 

(a) = fa dYn· 

1. KRUSKAL'S EXPANSION 

Kruskal's method does not require the system to 
be canonical but assumes the evolution ofy to be given 
by equations of the form 

dy = i ekg(k)(y), 
dt k=O 

(7) 

where the components of g(k) are periodic in Yn with 
period unity and where g(O) has only one nonzero 
component, namely the nth. Since we are interested in 
systems for which (7) reduces to (6) with H given by 
(1), we shall assume that this component is unity 

g(O) = (0,0, ... ,0, 1), (8) 

although what follows can be extended to more 
general cases. We now seek a near-identity transforma
tion to new variables 

(9) 

such that the evolution of z satisfies 

(10) 

with h(O) = g(O). Since Zn does not appear on the 
right-hand side, the first n - I equations of (10) form 
an autonomollS system which may be solved inde
pendently, the solution then being substituted in the 
remaining equation to provide the evolution of zn. 

Substitution of (9) in the lhs of (l0) gives 

dz dy k O~(k) dYi 
-=-+1e --
dt dt k=l OYi dt 

= ~/ g(k) + ! gin _~ __ 
( 

k-1 OY(k-i» 

k=O j={) oy; 

= !ek(g(k) + O~(k) + ~ilg(j). V~(k-J») 
k=O 0Yn 3=1 

(11) 

with the V operator defined in y space. We now con
vert the rhs of (10) to depend on y as well, using the 
Taylor expansion operators derived as follows. 
Defining the exponential of a differential operator 
by means of the power series for eX, one can formally 
express the Taylor expansion of h(k)(Z) as follows 
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(* stands for "operates on"): 

h(k)(Z) = h(k)(y + L €i~W) 
functions thus obtained by ~(k). If, however, we only 
demand that z should satisfy equations of the form 
(10), !L(k) may be arbitrarily chosen. In what follows 
we shall make use of this free choice in order to endow = exp (L €i~(i) • V) * h(k)(y) 

= L€iTw * h(k)(y), (12) the "nice variables" z with additional desired 
i~O 

where the T(i) are differential operators obtained by 
expanding the exponential. The first few of them are4 

T(O) = 1, 

T(1) = ~(1) • V, 

T(2) = ~(2) • V + g(1)~(1): VV, 
(13) 

T(3) = 1;(3). V + ~(1)~(2):VV + .g(1)~(1)I;(1):.VVV. 
Because T(O) equals unity, one can separate the h(k) 

term from the rest. The rhs of (10) then becomes 

(14) 

Both sides of (10) are now functions of y, and there
fore the equality holds independently for every order. 
One thus obtains a set of equations 

O"l'(k) 

-"- - h(k)(y) = ).,(k)(y), (15) 
°Yn 

where 
k-l k-l 

).,(k)(y) = LT(;) * h(k-i) - g(k) - Lg<il • VI;(k-i) (16) 
i~l j~l 

and 
k=1,2, .. ·. 

This may be used as a recursion relation. Suppose all 
quantities entering here are (like the g(k» either 
periodic in Yn or independent of it. Then ).,(k) will 
possess a "secular" part ().,(k» independent of Yn and 
a purely periodic part averaging zero, 

().,(k»per = ).,(k) - ().,(k». 

On the Ihs of (15), h(k) is wholly secular by defini
tion, while the other term there is purely periodic, 
since any secular part of ~(k) is removed by the 
differentiation. Thus, if ).,(k) is given, we can derive 
the kth-order quantities through 

from which 

h(k)(y) = _().,(k», 

O"l'(k) 
_,,_ = ).,(k) _ ().,(k», 

°Yn 

(lin 
I;(k) = Jo p .. (k) - ().,(k») dy~ + !L(k)(y), 

(17) 

(18) 

(19) 

with !L(k) an arbitrary secular vector. In Kruskal's 
work, !L(k) is chosen to vanish, so that at Yn = 0 the 
vector z is identical with y; we shall denote the 

properties. 

2. THE NEW INVARIANT 

So far we have treated the general case of Kruskal's 
expansion (apart from our choice of g~O» with no 
reference to the canonical character of y. Taking this 
now into account, one finds from (1) and (6) 

OH(k) 
g(k) = __ _ 
, oY

i 
Defining for convenience 

1;(0) == y 

and using (16) and (5) give 

k-l k 

(20) 

).,(k) = L (T(i) * h(k-il(y» + L [H(j), I;(k-j)]. (21) 
j~l i~l 

We now pose the following question: Is it possible, 
by proper choice of the !L(k) in (19), to make some 
component Zi of z a constant Zi of the motion? 

If Zi is conserved, this means that h!k) vanishes for 
all k, which in turn implies the vanishing of (A.\k». By 
the last equation, this reduces to 

k 

L ([H w, ~lk-j)]) = O. (22) 
i~l 

Suppose that at the stage when Eq. (22) is reached 
the !LU) have been derived up to and including the 
(k - 2) order. We can then fulfil (22) by choosing 
fl\'r.-l) to satisfy 

k 

[fllk- 1), (H(l)] = ([H(1), elk-I)]) + L ([H<il, slk-j)]), 
1=2 

(23) 

where the rhs is assumed to be known at that stage. 
The above equation is a linear first-order partial 
differential equation, and solutions in general do 
exist. Deriving them explicitly is another problem, 
however. For the special case when all H(k) with 
k > 1 vanish, McNamara and Whiteman (who arrive 
at a similar equation) obtained from first principles 
formulas which allow fl~k) to be derived (for i = 1, 
which is the relevant case, as will be seen) up to 
k = 3. A different approach to the problem will be 
outlined in Sec. 5. 

The iteration for Zi can thus be carried on
provided that it can be started. The first additive 
function encountered is fllll, used in ensuring the 
vanishing of (A.;2». There exists no adjustable variable 
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to ensure the vanishing of (A;O), so the iteration can 
be started if and only if this term vanishes of its own 
accord, which in turn implies that 

(24) 

If (as assumed) y" enters H only through angular 
terms, this will certainly hold for i = I, since the Yn 
derivative which is applied in that case removes the 
secular part of HO), leaving a purely periodic function. 
Thus an invariant Zl of the type discussed here may, 
in general, be derived. If HO) itself is purely periodic, 
other invariants may be generated for i ¥- I. 

3. THE POISSON-BRACKET METHOD 

McNamara and Whiteman,3 following Whittaker,2 
derive an invariant / (in their notation: J) in the 
following way. Let / have an expansion in E 

/ = ~Ek/(k)(y), 
k~O 

(25) 

and let H be expanded as in (I) (this is a slight 
generalization; in the work of Mc NW, all H(i) with 
i > I vanish5). Then 

k 

[I, H] = 0 = IEkI[IU), H(k-j)]. (26) 
k~O j~O 

By (5) 

So the equation for the kth order is 

in(k) k-l 

- = - ~ [lU), H(k-il], (28) 
0Yn j~O 

which defines Pk) recursively within an arbitrary 
function of y: 

(Yn k-l 
Ilk) = - Jo j~p{j), H(k-i)] dy~ + G(k)(y) 

= J<k) + G(k). (29) 

By (19) and (2 I), this is exactly the same as the 
equation for ~;k), provided that all h;k) vanish. 

Consider again Eq. (28): due to the Yn derivative, 
its Ihs will be purely periodic, but unless special steps 
are taken the rhs may well contain a secular part. We 
therefore must assume that, at the stage at which 
Ilk) is being derived, G(k-li has not yet been deter
mined. The rhs can then be made purely periodic by 
requiring that 

k-2 

[G(k-lI, (H(lI)] = _([i(k-l), H U)]) - I ([lUi, H(k-i)]), 
j~O 

(30) 

which has the same form as (23). 

The lowest order of (26) gives 

so that 

01(0) 
[/(0), H(O)] = 0 = -

oy" 

1(0) = 1(O)(y)' 

The iteration can be started only if /(0) makes the rhs 
of (28) purely periodic for k = I: 

(31 ) 

Obviously, any function of H(l) can be chosen as 
/(0); McNW chose 

(32) 

This, however, is not entirely satisfactory, since we 
expect 1(0) to tend to some natural invariant of the 
unperturbed system in the limit of vanishing E, 

independent of the choice of HO). A more suitable 
choice is 

1(0) = Yl, (33) 

which also satisfies (3 I), since (24) holds for i = J. 
With this choice, / equals the action variable YI in the 
unperturbed limit, a property shared by the invariant 
Zl previously derived and also (it may be shown) by 
KruskaJ's J. The alternative choice, made by McNW, 
will be explored in the next section. 

With PO) chosen as in (33), it also equals ~iO),and it 
is easy to show that the expansion equations of / 
match those of the invariant Zl stage by stage. One 
may then match 

I(k) = ~ik), 
G(k) = f.tik ) 

by making identical choices of the arbitrary functions 
of (HO» [and by virtue of (33) satisfying (31), func
tions of Yl as well] which can be added to G(k) and to 
flik

) at every stage. 

4. THE CHOICE [<0) = (H(l» 

McNamara and Whiteman chose PO) as in (32), in 
the special case where H(k) vanishes for k > I. In 
that case, their recursion continues with 

10 ) = - fit [(H(lI), H O )] dy~ + G(l) 

= j(l) + G(lI (34) 

and 
[Gm , (H(1»] = ([H(1), j<lI]). (35) 

Expanding the invariant Zl by Kruskal's method, for 
the same H, we obtain 

OH(l) 

Ail) =-
oy" 
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and, by (19), 

,~t) = H(t) - H(l)(y n = 0) + ,uP). 

From (23) and the preceding equation, noting that 
secular functions may be taken out of the averaging 
brackets, we obtain 

[,uit), (H(t)] = _[(HO », H(J)(Yn = 0)]. 

Let us select 

,uP) = _(H(J) ) + HlltYn = 0) 
so that 

'it) = H(!) - (H(t). 

The second-order equations then are, by (21), 

and 
[,ui2), (H(t)] = ([H(t), ei2)]). 

This demonstrates that, with matching choices of 
additive functions, 

/(1) = -'i2
), G(l) = -,ui2

). 

If additive functions of higher orders are matched 
as well, the subsequent parts of -~1 and of 1 are 
identical, except for an extra order of., in the former. 
That means that 

-.,(I - /(0» = Z1 - 'iO) - .,'io 

or 

Zl = H - d, (36) 

a relation resembling that obtained (to order .,2) by 
McNW, except that in their result J appears in place 

of Zl' 
5. RELATION TO J 

Kruskal defined the adiabatic invariant J by 

(37) 

where the integration is carried over a set of points 
("ring") sharing the same z and differing only in zn' 

For details about J, the reader is referred to KruskaI's 
article1 ; its value is independent of the canonical set 

used in its derivation, though the components of y 
are the best choice for this role if they form a canoni
cal set [the inverse transformation z --+ y must then 
be derived by means of the expansion operators (I3)]. 
Here we shall merely sketch out the connection 
between Z1 and J without deriving the details. 

Suppose that among the many sets of "nice" 
variables possible, differing in their choices of ,u;k) but 
all obeying (10), there exists a set (or a family of sets) 
that is canonical, with Zl conjugate to Zn' Obviously, 
this set, too, can be used in deriving (37), leading 
immediately to 

J = Z1' 

The existence of nice canonical variables has been 
proved by KruskaP in Appendix 2 of his article. It is 
furthermore possible to express the ,u;k) which generate 
such variables. The details of this derivation are some
what involved and will therefore be described in a 
separate article; here we shall just assume that these 
,u;k) are known. Then the transformation which they 
describe belongs to the (much larger) family of trans
formations which make Z1 a constant of the motion, 
each of which in its turn provides a solution to the cor
responding Poisson-bracket expansion. Thus, among 
the many possible solutions of Z1 and 1, there exist 
such ones for which 

1 = Zl = J. 

Practically, given the ,u;k) which make z canonical, 
these functions probably offer the best way of deriving 
Z1 or 1, since they are known to solve Eq. (30). The 
only other possibility for solving this equation is to 
use the formulas of McNW, which are valid for the 
lowest few orders only and are specifically related to 
the choice of PO) given in (32). 

1 M. Kruskal, J. Math. Phys. 3, 806 (1962). 
2 E. T. Whittaker, Analytical Dynamics of Particles and Rigid 

Bodies (Dover, New York, 1944), 4th ed. 
3 B. McNamara and K. J. Whiteman, J. Math. Phys. 8, 2029 

(1967). 
4 These operators originated in the calculation of derivatives of a 

function ofa function by F. De Bruno, Quart. J. Math. I, 359 (1855). 
They are listed up to j = 8 by P. Musen, J. Astronautical Sci. 12, 
129 (1965). 

6 The definition of Poisson brackets by McNamara and Whiteman, 
in Eq. (3.2) of their article, has a reversed sign compared to the 
usual convention. As a consequence, some equations of theirs 
differ in sign from those obtained here. 
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Some of the perturbation methods in classical Hamiltonian mechanics lead to near-identity trans
formations of the variables, with the new variables explicitly given as functions of the old ones. Two 
methods are used for identifying and characterizing the subclass of all such transformations which are 
also canonical: one approach is related to the conventional method of generating canonical transforma
tions, while the other one uses the properties of Poisson brackets and is related to an operator method of 
Lie. Either of the methods may be used to derive certain steps in a perturbation method devised by 
Lacina, inadvertently omitted by that author. 

INTRODUCTION 

Let a classical canonical system be given, described 
by 2n canonical variables collectively denoted by the 
vector y. The components Yi may be divided into 
canonical momenta Pi and canonical coordinates q;, 
and we shall assume that their order is 

y = (PI' . 'Fn' ql ... qn) 

= (p, q). (1) 

A transformation y ---+ Z is termed canonical if the 
new variables also form a canonical set 

z=(P,Q). (2) 

Canonical transformations are customarily defined 
by means of a generating function 0'1.2 depending on 
n new and n old variables (and possibly on time, 
though this will not be assumed in what follows). Of 
the several possible types of such functions, we 
choose to use those of the form 

0'= a(P, q), (3) 

for which the transformation equations are given by 

00' 00' 
oP. = Q;, oq. = Pi' 

t , 

(4) 

These equations give the transformations indirectly: 
If the old variables are given and the new ones are 
sought, additional "untangling" is generally in order. 
By contrast, a "direct" transformation 

z = z(y) 

is immediately usable. In particular, we shall be 
concerned with near-identity transformations ex
panded in terms of a small parameter €« I (the 
superscript in parentheses denotes order in €): 

z = y + !€k~(k)(y). (5) 
k=1 

In what follows, we shall investigate the conditions 
under which the transformation (5) is canonical. 

The motivation for this investigation may be of some 
interest. In the classical perturbation theory developed 
for celestial mechanics, the basic problem is the 
solution of a canonical system depending on a small 
parameter E, given that in the limit of vanishing E 
("unperturbed motion") the solution is known and 
periodic. One procedure used there (usually associ
ated with the names of Von Zeipel and Poincare) is 
as follows. 3 First, one prepares the ground by trans
forming the original problem to new variables
which will be labeled y as in Eq. (I)-so that one of 
the new variables is anglelike and represents the 
periodicity of the unperturbed motion, while the 
others, in the limit of vanishing E, are constant in 
time. If the angle variable is conjugate to the variable 
Yl, the new variables may be chosen so as to make 
the Hamiltonian H = Yl as well. 

The same variables are then introduced into the 
finite-E problem, in which case the Hamiltonian 
assumes the form 

H = Yl + !EkH(k'(y). (6) 
lc=l 

We now seek a near-identity canonical transformation, 
generated by 

" 00 

a(P, q) = ! Piqi + ! Eka(k)(p, q) (7) 
;=1 k=1 

such that, in the new variables z, the angle variable 
is absent from the transformed Hamiltonian, making 
its conjugate ZI a constant of the motion. Further 
solution of the motion involves neither of these vari
ables as an unknown, so that the problem has been 
reduced by two variables or, equivalently, by one 
dimension. 

A different approach, independently developed by 
Kruskal,4 is related to the method of Bogoliubov 

2776 
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and Krylov and describes the evolution of a system 
through 2n equations of the form 

dx = .2 Ekr(k)(x). 
dt k=O 

(8) 

The method does not require the system to be 
canonical, but we shall restrict ourselves here to 
problems where this is the case. The preparatory der
ivation of "intermediate variables" y is then very 
much the same as before. To solve the perturbed 
problem, however, the method seeks a direct trans
formation of the form (5), with the angle variable 
transformed into one of the components of z which 
will be denoted (for reasons which will be clarified 
later) as =1' The transformation is such that, when 
Eqs. (8) are transformed to give the evolution of z, 

dz = .2 Ekh(k)(Z), 
dt k=O 

(9) 

then =1 is absent on the right-hand side. One can now 
separately handle the 2n - 1 equations in 2n - 1 
variables obtained by omitting the equation for d=1ldt 
from the above set. One can also obtain a constant of 
the motion, the so-called adiabatic invariant J, thus 
removing one more unknown variable from the 
problem. The details of J will not be described here 
beyond noting that it resembles in many ways the 
constant action variable Z1 obtained by the preceding 
method-for instance, the two may be shown to be 
equal at least to order EO. 

The two methods are evidently similar, and one 
may ask whether they can be made to coincide by a 
suitable choice of the arbitrariness existing in Kruskal's 
method.5 For this to happen, the transformation (5) 
obtained by Kruskal's approach must be canonical, 
which leads one to the basic problem stated before. 
As will be shown, the matter is also intimately connec
ted to the work of Lacina,6.7 where it leads to the 
correction of an error. 

Two approaches to the problem will be described 
here: The first one is concise and is derived from the 
conventional form of canonical transformations, 
while the second one appears to be more elegant and 
has interesting geometrical implications. It is related 
to an operator method for characterizing direct 
canonical transformations, originally devised by LieS 
and recently applied to celestial mechanics by Hori9 

and Deprit.10 

1. DIRECT SOLUTION 

If the transformation (5) is canonical, then there 
must exist a generating function O'(P, q) of the form 

given in (7) that leads to it. Applying (3), one obtains 

Qi = qi + IEk(oO'(k)(P, q»), (10) 
k=1 oP; 

P 
_ _ Y k(OO'(k)(P, q») 

i-Pi ""E . 
k=1 Oqi 

(11) 

If the ordering of the components of ~(k) corre
sponds t6 the ordering of the components of yin (1), 
one may define "partial vectors," the sum of which 
equals ~(/.:) , 

n(k) = a~lC> ... ,~k), 0 ... 0), 

elk) = (0 ... 0 y(k) ••• r(k» (12) 
, "='71+1 ~2rt , 

which allows (4) to be split up into 

Qi = qi + IEke:~~(y), (13) 
k=1 

Pi = Pi + IEk1T~k)(y), i = 1, ... , n. (14) 
k=1 

Substituting in (11), we obtain 

Pi = Pi - I Ek OO'(k) (p + .2 Emn(m)(y), q). 
k=1 Oqi m=1 

(15) 

We now introduce expansion operators11. 5 S(k) such 
that, for any function f of the canonical variables 
(* means "operates on"), 

f(P, q) = I Ems(m) * f(p, q). (16) 
m=O 

The explicit expressions for s(m) may be obtained by 
replacing ~(k) with Tt(k) in Eqs. (13) of Ref. 5; they 
involve V operators in y space acting on the n(k). We 
then get (S(O) being unity) 

Pi = Pi - IEk ~ +.2 s(m) * _uO' __ , (17) 
(

::I (k) k-1 ::I (k-m») 

k=1 Oqi m=1 Oqi 

where the various orders of 0' on the rhs are functions 
of y only and may be obtained from those appearing 
in Eg. (7) by replacing P everywhere with p. This is 
formally equivalent to (14), and therefore 

OO'(k)(y) k-l oO'(k-m) 
1T?) = - -- -.2 S(m) *--. (18) 

Oqi m=1 Oqi 

Since the scm) appearing here all involve lower 
orders of n(m), this is a usable recursion formula, 
allowing Tt(k) for the direct transformation to be 
solved-provided that the O'(k) are known and pro
vided that the lower orders have already been solved. 
Similarly, one gets 

oa(k)(y) k-l oa(k-m) 
(P) = -- + ~ 8(m) * -- (19) t+n 0 k . 

Pi m=l 0Pi 

The last two equations can be joined together by 
introducing the concept of the conjugate vector y, 
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formed by permuting the order of components of y 
given in Eq. (1) to 

y = (q, -p). (20) 

Several properties of yare described in Ref. 5; 
using them, one may express Poisson brackets as 
(V operator defined in y space) 

generating direct canonical transformations. Equa
tions (27) are not very convenient for this, since they 
involve the components of ~(k) only through combi
nations of their derivatives. A method for integrating 
these equations would obviously be useful here. For 
instance, the first equation of the set, 

V x ~(l) = 0, 

[a, b] = Va . Vb (21) may be integrated to 

and, in particular, 

oa 
[a, Yi] = -0- . 

Yi 
(22) 

With this notation, (18) and (19) may be combined to 

(23) 
with 

being determined only by lower orders. In spite of its 
external appearance, this relation is not free from 
partial vectors, since the n(m) appear in the S opera
tors. A criterion for canonicity is now easily estab
lished. If the transformation (5) is canonical up to and 
including the order k - 1, one may form the vector 

u(1e) = ~(k) _ p(k), 

and the transformation will be canonical if and only 
ifu(k) is a gradient in y space, that is, if the components 
of the "conjugate curl" tensor of U(k), 

(
-V (k) au?) au?) 

xu).· = -- - -- , " a- 0-Y; Yi 
(25) 

all vanish. 

2. SOLUTION BY POI~SON BRACKETS 

A different approach involves no partial vectors 
and is based on the properties of Poisson brackets. If 
both y and z are canonical and equal in the zeroth 
order, then 

(26) 

the value of the brackets being 1 or ° depending on 
whether canonical conjugacy exists or not. Substituting 
the expansion (5) on the rhs and equating each order 
in € separately, one gets as the condition for canonicity 
a set of relations, which through (22) and (25) can be 
expressed as 

k-1 

(V x ~(k»ii = - ! Wm), '~k-m)]. (27) 
m~l 

Of more interest than a criterion for canonicity 
would be the derivation of a method for actually 

~(l) = V XO) , (28) 

with X(l) an arbitrary scalar. Similarly, an arbitrary 
conjugate gradient may be added to any of the ~("'), 

since such a gradient is ignored by the curl operation. 
We may thus formally write the most general solution 
of (27) as 

~(k) = V X(k) + f(k) , (29) 

where f(k) is any vector depending only on lower 
orders of ~(m), which gives one particular solution of 
that equation. Comparing (29) with (25) shows that 
one possible choice of f(k) is 

f(k) = p(k), 

which carries with it the identification 

X(k) = _a(k). 

(30) 

The drawback of this choice (more esthetical than 
practical) is that f(k) contains partial vectors. Solu
tions which do not split up phase space into coordi
nates and momenta also do exist to any order. The 
first of these is almost trivial: by (28), f(1) vanishes. 
The next three vectors are 

f(2) = i~(l) • V~(l), 

f(3) = ~(2) • V~(l), 

f(4) = ~(3) • V~(l) + i~(2) • V~(2) (31) 

+ H(~(l) • V~O» • V~(2) - ~(2) • V(~(1) • V~(1»] 

- H(~(l) • V~(l) • V~(l)] • V~O). 

They are far from unique, since various "curl-free" 
expressions, involving only the ~(m), may be added 
to anyone of them. A general method for deriving 
such expressions, based on Lie's method for charac
terizing direct canonical transformations, will now 
be described. 

3. LIE'S METHOD 

Let W(y) be an arbitrary function of a given set of 
canonical variables. One then defines10 the Lie 
derivative generated by W of any functionj(y) as the 
function 

Lw(j) = [f, W). 
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The operator LJr is linear 

Lw(rJj + Pg) = rxLw(f) + PLn-(g), 

and its action on a product resembles that of the 
derivative 

LJT"(fg) = fLrr(g) + gLwCf). 

By means of Jacobi's identity, one can prove similar 
properties for Lw acting on Poisson brackets, except 
that the order of terms must now be preserved: 

L w [/, g] = [Lrr(j), g] + [I, LTdg)]. 

By successive application of LIT"' various powers 
L,r- of the operator may be defined, and for complete
ness one then includes L?r- as the identity operator. If 
rx is a constant, L lr ( rx) thus vanishes for all values of n 
except zero, since all powers of LIT" except the zeroth 
involve differentiation. 

Using the preceding definitions, one may define an 
exponential operator 

exp (ELn-> * j = (I + ELn- + iE2Li, + ... ) * j, (32) 

where E is a constant much smaller than unity, which 
helps the expression converge (convergence will not 
be discussed here, however). The property of the 
exponential operator of importance here is lo 

exp (ELW) * [I, g] = [exp (ELW) * f, exp (ELw) * g]. 

We begin with the following result. 

Lemma: Suppose that (35) holds, that i < k, that 
the "function" g(~) is an expression involving orders 
of ~(m) lower than the kth, and that pm)(~) is known 
for values of 11l smaller than k; then a "function" 
h(~), similar in structure to g and pm), may always be 
found so that 

[g(~), Wi-I] = h(~). 

Proof: Using (21), (29), and (35), we obtain 

[g, Wi-I] = [ill, g] 

= Vii)· Vg(~) 
= (~(i) _ fU)(~» • Vg(~), 

and the last expression has the required form. 

Several corollaries are now easily derived: 

Corollary J: The preceding result is still valid if g 
is replaced by a vector g(~) in y space, in which case 
h is also replaced by a vector h. 

Corollary 2: If multiple-nested Poisson brackets are 
given, under the same conditions as stated before and 
of the form 

The preceding transformation shows that, if y is [ ... [[g(~), Wi-I], WH], ... WS-I], (36) 

canonical, then for any W they may still be reduced to the form h(~). 

z = exp ELrv * Y 

is also canonical, for we then have 

[Zi' Zj] = exp ELf[' * [)'i' )'j] 

= [Yi' Yj], 

(33) 

the latter Poisson brackets always being a constant 
equal to I or O. By (32), the transformation is a near
identity one, even if the "generating function" W 
does not depend on E. It is, nevertheless, possible to 
include such a dependence, expressed III a power 
series in E: 

W(y, E) = LEIcW(k)(y). (34) 
k~O 

We now prove the following. Let a direct canonical 
transformation be given by Lie's method as in (33), 
with W expanded as in (34). Then the same trans
formation may also be expressed as in (4), with ~(k) 

given as in (29). If we choose to identify 

(35) 

then the two approaches may be readily related and 
an explicit expression for f(k) may be found. 

To prove this, one only has to note that the inner
most brackets may be thus reduced, then the innermost 
brackets of the remaining expression, and so on until 
all brackets have been eliminated. 

Corollary 3: The preceding still holds if g(~) in (36) 
is replaced by y, for the innermost brackets then 
become 

[y, Wi-I] = [x(;), y] 

= VX(i) 

= ~(i) _ f(i)(~), 

which has the form of h(~). The remaining brackets 
may then be removed as before. 

We now prove the main assertion. Let 

LW(g) = [g, wOe-Ill 

(note displacement of order index) so that 

ELn- = LEkL\'P. 
k~l 
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With this notation, the expression (36) may be 
rewritten 

L (s) ••• L(})L(i)(g) 
IT" W W (37) 

and, as was noted, this can be reduced to the form 
h(~), as can the analogous expression with y replac
ing g. 

We now have, by (32), 

z = [1 + LEkLi7! + ML€kLW!)2 + ... ] * y 

= LEkMod * y, (38) 
,\:=0 

where the MUc) are expansion operators resembling 
those of (16), with the difference that account must 
be taken of the fact that L}W operators with different 
values of k do not commute. One has, for instance 
[compare the last of Eqs. (13) in Ref. 5], 

M (3) - L(3) + lC'L(1)L(2) + L(2)L(1) + l(L(1)3 -w 21T"W TVW GTI"' 

Let us denote 

N Od - M(k) _ L(k) 
- W· 

Then, since 

LW!(y) = [y, W(k-l)] = -VW(k-l" 

one obtains, from (38), 

Lacina's result is easily derived by the preceding 
formalism and, in fact, our notation allows more 
concise treatment than is found in the original 
articles, which use a separate notation for canonical 
coordinates and momenta. Let a near-identity canoni
cal transformation be given by a direct relation as in 
(5); the transformation is then fully specified by the 
various orders of X(k) appearing in (29), assuming, of 
course,that a particular choice off(k) has been selected. 
This choice could be the one of (30), in which case 
X(k) is the kth order of the conventional generating 
function (J, with sign reversed, or it may be the one 
derived in (39): any such choice may be used in what 
follows. 

By using (29), any single component of the direct 
expansion, e.g., 

o (~.) 
~(k) = ~ + l(k) 

I ~ _ I 
UY! 

(40) 

may be used to define X(k) (with a certain arbitrariness) 
and consequently the transformation. This is essenti
ally the idea behind Lacina's approach. To define the 
transformation by means of 'ik

), he uses the (i, 1) 
component of (27): 

or(k) or(k) k-I 
_"'_i_ = _"'_1 _ Z [,~m), ,ik- lIl )], (41) 
0Y1 0Yi m=l 

z = y - L€kVW(k-l) + LEkN(k) * y. (39) from which we have 
k=l k=l 

Since N(k) * y consists only of terms of the form 
(37), it may be reduced to a "function" h(~). Com
parison of the last equation with (5) and (29) then 
identifies this function with f(k)(~), provided that (35) 
holds. This completes the proof of our original 
assertion. 

4. LACINA'S EXPANSION 

Lacina6 •7 has published what he claims is a simple 
new canonical perturbation method, leading to results 
similar to those obtained from the Hamilton-Jacobi 
equation. Unfortunately, the simplicity is more 
apparent than real for two reasons: First, there exists 
an important omission in the calculation and, 
secondly, there is no assumption of near-periodicity, 
so that the elimination of secular terms may be 
dispensed with. Perturbation calculations for systems 
without periodic character are possible, but of little 
interest, since their range of validity in time is usually 
quite limited. It is the periodic character inherent in 
the problems of celestial mechanics and of guiding 
center motion which makes possible solutions valid 
over long intervals in time, provided that secular 
terms are eliminated. 

~~k) = r1h(Of~k) _ III [,j"''' 'ik- m )]) dy{ + ft~k)(Y), 
Jc UYi m=l 

(42) 

where y is the vector formed of the 2n - 1 com
ponents of y excluding ±YI (the sign being adjusted 
so that this is a component of y). 

The lower limit is arbitrary, but its choice affects 
fl;k) , which has to be chosen in a way assuring that 
(27) also holds when neither i nor j equals 1. To handle 
such cases, we express the Poisson brackets by means 
of f(k), which is known to be a solution for ~(k) in (27): 

i ii, (or(k) Of(k) Of(k)) 
~~k) = ~ + ~ _ ~ dy{ + fl~k)(Y). (43) 

Coy; 0Yl oY; 

As one forms the (i,j) element of the curl of the 
vector of which the above expression is one component, 
the contributions of nk ) and of 1

1
(k) in the integrand 

cancel out, and one is left with 

(V X 1;(k);i = [ih~~, (V x f(k);; dji{ + (V x lL(k)ii 

Je UYI 

= (V x f(k);J - (V x f(k) (jil = e»i; 
+ (V x lL(k);J' (44) 
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Here the lhs cancels with the first term on the right, 
and one is left with the condition 

fL(k)(y) = f(k) (YI = C) + Vv/k)(y), (45) 

where 1p(k) is any function of y (or zero). Because only 
the curl of f(k) is involved, any choice satisfying (29) 
may be used. None of this appears in Lacina's work,7 
because the contributions of the lower limit of integra
tion are inadvertently omitted in the last steps of the 
equations following his Eqs. (15) and (16). 

Let us assume that the unperturbed problem has 
been prepared so that the Hamiltonian has the form 
given in Eq. (6). Following Lacina, we now stipulate 
that in the new variables the Hamiltonian equals ZI' 

Since the transformation is time independent, this 
new Hamiltonian equals the old one, given in Eq. (6), 
leading to the identification 

(46) 

Substituting this choice of 'ik
) into (42) and evaluat

ing '~k) by means of (45) allows the other Zi to be 
derived to any desired order. Since the new Hamilto
nian equals ZI, the variable conjugate to ZI will be 
linear in time and all other variables (ZI included) 
constants of the motion. The problem is thus 
essentially solved. 

If one defines 

and uses (46) and (22) in (41), then the basic equation 

converts to 
k 

2 ['iml, H(k-m)] = o. 
m=O 

This is the starting point of the method of 
McNamara and Whiteman,12.5 which in turn is 
related to Whittaker's adelphic integral,13 Contop
oulos' third integral,14 and to other approaches 
quoted by Contopoulos. The difference is that 
McNamara and Whiteman assume a periodic charac
ter of the motion and include an extra step to ensure 
elimination of secular terms. While their aim is to 
generate one invariant only, cases may exist15 in which 
a complete set of invariants can be generated, yielding 
a solution similar to Lacina's but free from secularity. 
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Some atomic wavefunctions for equivalent electrons in the group scheme SU2 x (U21 + 1 ::> R21 +1 ::> Ra) 
are constructed in terms of electron fermion creation and annihilation operators. The concept of semi
conjugacy is defined and shown to reduce the number of states that must be explicitly calculated. The 
states for the d shell are calculated and tabulated. 

I. INTRODUCTION 

It has been known for some timel - 4 that the bases 
for the irreducible representations of the classical 
groups can be constructed in terms of sums of prod
ucts of boson creation and annihilation operators 
acting on a suitably defined vacuum. The group Un 
has been extensively studied using the canonical 

chain Vn :::> V n- 1 :::> ••• :::> VI as the solution to the 
state-labeling problem.3.4 SU3 has also been investi
gated by this technique using the scheme SU3 ~ 

R 3.5 
3 • 

Moshinsky6 has shown that the same analysis can 
be repeated using fermion operators. Using this 
method, Flores et al. 7 analyzed the group U6 in the 
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Some atomic wavefunctions for equivalent electrons in the group scheme SU2 x (U21 + 1 ::> R21 +1 ::> Ra) 
are constructed in terms of electron fermion creation and annihilation operators. The concept of semi
conjugacy is defined and shown to reduce the number of states that must be explicitly calculated. The 
states for the d shell are calculated and tabulated. 

I. INTRODUCTION 

It has been known for some timel - 4 that the bases 
for the irreducible representations of the classical 
groups can be constructed in terms of sums of prod
ucts of boson creation and annihilation operators 
acting on a suitably defined vacuum. The group Un 
has been extensively studied using the canonical 

chain Vn :::> V n- 1 :::> ••• :::> VI as the solution to the 
state-labeling problem.3.4 SU3 has also been investi
gated by this technique using the scheme SU3 ~ 

R 3.5 
3 • 

Moshinsky6 has shown that the same analysis can 
be repeated using fermion operators. Using this 
method, Flores et al. 7 analyzed the group U6 in the 
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scheme Us::> Rs ::> Rs ::> Ra for all representations 
of U6 of the form {4a3b2"1d

}, i.e., for nucleons, while 
Jahns has calculated the coefficients of fractional 
parentage for the scheme Us::> Rs ::> R3 , also for 
nucleons. 

In this paper, the fermion creation operator is 
identified as a single-electron creation operator with 
orbital angular momentum I and spin of t, in the 
scheme widely used by atomic spectroscopists for a 
configuration of equivalent electrons9.Io ; viz., SU2 x 
(U2!+1 ::> R2!+1 ::> R3)' Some of the basis states are 
constructed for the representations {2a l b

}, S = tb 
(S is the total spin quantum number) of the group 
SU2 X U2 !+1 in terms of sums of products of single
electron wavefunctions. 

The method used to construct these states is essen
tially one of projection with the Casimir operator at 
the R2!+l level, coupled with the demand at the Ra 
level that L+1 and S+1 on the state be zero (Sec. III). 
Hence, unless otherwise stated, every state in this 
paper has ML = Land Ms = S = tb. Lower states 
can of course be derived by cranking with Ll and 
S_I' This differs from the technique of Flores et al. 
which demands that the raising operators of R2!+1 on 
the state be zero and then obtains the Ra state by the 
use of a lowering operator. The method of this paper 
exploits the inherent greater simplicity of the atomic 
wavefunctions over nuclear wavefunctions, so that an 
explicit closed formula can be given for the states 
1{2al b}[2ctd1LM ),where LM is the maximum value of L 
in the branching rule for the [2 Cl d

] representation of 
R2!+1 upon being restricted to R3 . Closed formulas can 
also be given for some R2!+1 representations for all 
values of L, viz., [01. [1], [11], and [2]. 

In Sec. V, the concept of semiconjugacy is defined 
which, together with some group theory, allows any 
state to be written down once the state 1{2"1d }[2Cl d ]L) 
is known. In Sec. VI, the preceding theory is illustrated 
by calculating and tabulating the wavefunctions for the 
multiplicity-free case of the d shell. 

II. GROUP GENERATORS 

JuddlO has shown that the generators of the group 
U2!+1 are 

Xab = ! (_1y-a[k]l( 1 k I) V~k) 
k.q -a q b 

while the generators of the group R2!+1 are 

w"b=I(-1)l-a[1-(-1)k][k]l( I k bl)V~k). 
k.q -a q 

If we substitute for V~k),using the formulall 

W(Kk) = _l(at a)(Kk) 
1Tq 2 trq , 

these become 

and 

= Xab - (_l)a+bx_b_ a, (1) 

where the a's are single-electron creation or annihila
tion operators, with subscripts respectively identifying 
spin and orbital angular-momentum projections. 
These operators are just proportional to Moshinsky's6 
e~ and A~, respectively; in fact, Xab = e~ and A~ = 
twab • 

If we invert the expression for the U2!+1 generators, 
we have 

k I)x 
q b ab 

and, by noting thatiO 

VO) = L[3jl(l + 1)(21 + l)]l, 

we have that the Ra generators, i.e., the components 
of the vector L, are given by 

L = [lei + 1)(21 + l)]1 

x ~(_l)!-b( I 1 /)x 7 - b q b _ q b b-q 

= ! tgxqb_ q , (2) 
II 

where 

tg = (-lY- b[l(l + 1)(21 + l)]l( I 1 I) 
-b q b - q . 

We note that tg = t~_b' 
The generators for the group SU2 , namely S±1 and 

So, are given by S = (21 + l)/2!W(lO) so that, for 
instance, S+1 in second-quantized form becomes 

1 ~ + 
S+l = / '" a!m1a-im, . 

'1 2m, 
If we now define 

t -t t t t t 
V'''l'''(lnV'bl'''bm = atal ... alana-hl ... a-ibm' 

a somewhat specialized form of Moshinsky's3.6 V, 
then it follows immediately from definitions that 

X ~t V-i _.ll( b)~t ~-.~ 
abY 1'1"'#n Vl"'Vm - U !-li, V Jll"""Jli-1UP1+l""Jlnv Vl"""Vm 

+ ~(Yi' b)V!l·"l'nV;l~"v;-la\'i+l ... vm 
(3) 

and 

S+lV'!l"'l'n V';l~"vm 
= J2 t ( -liV'!r"l'nv V';!"Vi-lVi+l,,,vm' (4) 
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III. U21+1 :::> R21+1 

The condition on the form of the state is found in 
this section in order that it transform according to 
definite U21+1' R21+1' and Ra symmetry. Clearly, 

n! n-~ cu, = V1l-l"'I-a-b+lVll-l"'I-a+l 

is the greatest-weight state of {2a I b}, S = ib for 
SU2 X U21 +1 since XI'v'U = 0, f1 > v and S+llH, = 0 
while Xiicu, = k'tL, where k = 2, 1, or ° if I - a + 
1 < i < I, 1 - a - b + 1 < i < 1 - a, or i < 
1- a - b, respectively, while So'lL = ib'U.. By 
application of the step-down operators of U21+1 , 

namely XI'V' f1 < 11, it can be seen that a state of 
arbitrary weight of the representation {2alb} of U2l+1 

(but of maximum weight in SU2) takes the form of 

a linear combination of states like vt"'J1"+bV~ltva' 
To apply the additional constraint that this state IT) 
transforms according to the representation [2cJ d

] of 
R21+l' we demand that 

G IT) = g IT), (5) 

where G is the Casimir operator of R2Hl having the 
eigenvalue g for the representation l2rI d

]. 

The Casimir operator for RZ1+1 islo 

which, following Moshinsky, 6 we write as [from Eq. 
(1)] 

L [Xab - (_l)a+bX_ b_a1[Xba - (-It+bX_a_b] 
a.b 

= 2 L XabX ba - 2 L (_l)a+bXabX_a_ b , 

a. b a.b 

i.e., 

G = 21' - 2:1', (6) 

where 

:1' = '" (_l)a+bX X £., ab -a-b 
a.b 

and r is the Casimir operator for U21+1' 

Since the eigenvalues of r acting on a state trans
forming according to {2a I b

}, which are found by 
operating r on the greatest-weight state of {2aI b

}, 

are (21 + 2 - a - b)(a + b) + (21 + 4 - ala, while 
the eigenvalues of G for the representation {2ela} arelO 

4c(21 + 2 - c) + 2d(21 + 1 - 2c - d), it follows that 
the R2l+1 condition (5) becomes 

:1' IT) = [(a + b)(21 + 2 - a - b) + a(21 + 4 - a) 

-2c(2! + 2 - c) - d(21 + 1 - 2c - d)] IT) 
= piT). (7) 

If:1' is expanded as 

:r = L (X_a_aXa" + X""X_a_a) 
a>O 

+ L (Xa-uX-aa + X_a"Xa_ f ,) 

a>O 

+ L (_1)6X_bOX bO + XooX 00 (8) 
b 

0*0 
and IT) is expanded as IT) = L, a,S, where S is a 
mononomial, and if the action of each term of Eq. (8) 
on a general mononomial is examined, we get a set of 
simultaneous equations in the coefficients as of S, viz. 

tl as = (2a + b + 2Ps )as 

+ O(p~l > 0)2 L L (-1 )'1+11 V.l./J .. y-:L"", (9) 
each 11 
pair b:F-ft 

where PP is the number of s = im1 and s = -~ - 1111 

pairs in S (e.g., pJI for VLly!l is one, and for Vl20 

VO!2 is two) which will be called external pairs. The 
second term of Eq. (9) is a sum, effective only if pt! > ° (hence, O(P1! > 0»), through the coefficients of those 
mononomials which are related to S by having each of 
its a, -a external pairs replaced by a b, -b external 
pair, for all b =;f a. Equation (9), then, is the condition 
on a state I T) in order that it transform according to 
[2et d

] of R21+l' 

If the set of Eqs. (9) are written as a matrix array A 
in the coefficients IX", then the R2l+1 condition becomes 
the following: If the eigenvalues of matrix A are equal 
to p. then the corresponding eigenstate transforms 
according to {2a l b}[2 Cl d

] of U21+1 and R2l+1' It can be 
seen that A breaks up into block diagonal form, each 
block associated with a different number of external 
pairs. The problem thus reduces to finding the eigen
values and eigenstates for each block separately. 

We note now that the U21+1 ~ R2l+1 branching rules 
can be divided into two classes,10,12,13 viz., 

a 

a + b S I, {2a1b} --+ L [2a- xl b
], (lOa) 

min (a .a+b-l-l) 

a + b > I, {2al b} = L [2ft- x,21+l-2a-b+2X] 

x=o 
a 

+ L [2a- x \ b]. (lOb) 
",=0 

In both of the above cases it is assumed that 
2a + b S 21 + 1. States with 2a + b > 21 + I can be 
found by utilizing the particle-hole equivalence.D,lo 
In both cases above, 

p = 4xl + 2x(x + 2) + 2(1 - 2x)a + (l - 2x)b. 
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We now consider the function 

which has 

where m = a - e' and e' and d' are the values of e and 
d before Murnagham's13 modification rules have been 
applied, that is, e' = a - x and d' = b. Substitution 
for these values of lX& in (9) readily verifies that F m 

transforms according to {2alb}[2a-mlb] or 

{2al b} [2a-mI2H-2a-bHm] 

according to the relative sizes of a, b, and m. 
As a special case, the state 1{2alb}[2bld]Lm)' where 

LM is the maximum L in the R2!+1 -+ Ra branching 
rule for [2eld], can now be written down as 

"l>"'>"'>/1m 

X VZ~-l ... !-e'-d'+l/1II"·"l'm V~Z~l ... !-e'+1-I'l'''-''m' 

(12) 

where m = a - c', as before, and N is a normaliza
tion constant. That this is so can be seen by applying 
the raising operators Wab , b < a, of R2!+1 to :F m to 
give a null result. It follows from (12) that 

Z !-e' 

LM = 2 :1 i + I 
i=!-e'+1 i=Z-e'-d'+l 

= (21 + 1 - e')e' + t(21 + 1 - 2e
t 

- d')d'. 

Since each term in :F m has a coefficient of modulus 
one, the normalization can be derived simply by 
counting the number of mononomials in :F m' Hence, 

1 M 1'1 I'm-I 1 m-l 

-; = I I'" I 1 = - II (M + r) 
N 1'1=1/1.=1 "m=l m! r=O 

(M + m - I)! 
= , 

m! (M - I)! 

where M is the maximum number of different values 
that flol (or {ti) can take, i.e., M = 21 + 2 - a -
b - c'. 

Finally, then, 

1{2UI b}[2eld]L M) 

= (a - e')! (2 + 1 - a - e' - b)!)! 

(2 + 1 - 2e' - b)! 

X :1 (_I)I'1+"·+···+"·-c' 
,ul > "'2 > ... > Ila-c' 

A second eigenstate of the submatrix A associated 
with one pair has been obtained in the form of a single
pair identity viz. 

I (-1)aIXV~ .. a V~ .. _. = O. (14) 
all a 

In summary, the submatrix associated with no 
external pairs gives, as its complete set of solutions, 
mononomials transforming according to the pair of 
U2!+l and R2!+1 representations associated with x = 0 
[see (10)], which we shall shorten to transforming 
as x = O. The n x n matrix associated with one pair 
gives a I-dimensional solution F1 [(11)] transforming 
as x = 1 and an (n - I)-dimensional solution (14) 
transforming as x = O. This clearly exhausts the one
pair solutions. For a general number of pairs, only a 
I-dimensional solution Fm[(ll)], which transforms as 
x = m, has been found. F m has, as a special case, the 
state 

:F m = 1{2a Ib}[2CId]LM )· 

It wi\1 be shown in Sec. VI that this special case can be 
derived by the use of group-theoretical arguments. 

IV. R2!+1 ::l Ra 

We now consider the chain R2!+1 =:l R 3 • No general 
formula for arbitrary L contained within a given 
R2!+1 representation has been found. The 1- and 2-
particle case, however, can be solved genera\1y since 
[O]S and [1]1 are special cases of :F m; writing 

1{11 HU]L) as N I.BavLaa 
a 

and applying the L+1 condition, we get a set of si
multaneous equations, namely, 

1 R t lR t - 0 t L-!+WV L-I I + t W\7 L-I+1 I-I - , 

1 Rt lRt_O t L-Z+2PV L-I+1 1-1 + tZ-ll'\7 L-l+2 1-' - , 

which has the solution 
Z 

fJa = (-1)" IT t L-1I+1 , 

1I=a+1 ty 

(1 Sa) 

(ISb) 

(ISb') 

(tSa') 

(16) 

which is understood to be (-1)« = (-1)! if a = I. 
Since the Eqs. (1 Sa), (lSa'), (ISb), (ISb'), etc., are 
equal, the summation is restricted to teL + 1) ~ a ~ 

I, i.e., 

X V~!-1 ... !-e·-d'+1 "1I' .... "a_c'V~~1 ... ,-C'+1-I'I-I'2 ... -/1a-c'· No solution exists if L is even as required by the 
(13) branching rule. We get a similar solution for 1{21[2}L), 
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namely, 

1 t-i 
1{2}[2JL) = N ! {J"V L_"V" 

,,=£-1 

with the same fJ" as for [Il), (16), the summation in this 
case being unrestricted. Note that 

5+1 1{2}[2JL) = N 2: (p"VL"" + PL-avl!L-,,) 
fl 

so that, since fJ" = (-1 )LfJ L-a, this expression van
ishes for L even, as required by the branching rule. 

To find N, we must evaluate the expression 

2: fJ! = L IT (ti-;+l)2, (17) 
a "11",,,,+1 til 

with the appropriate limits for each case. We have that 

t! (-l)a(~a ~ a ~ 1) 
t~ - (_l)b( I 1 1) 

-b 1 b - 1 

= (1 + a)(l - a + l»)i, 
(I + b)(l - b + 1) 

so that (17) becomes 

L n (/ + L - Y + 1)(/- L + y) 

a 'U~a+1 (l + y)(l - y + 1) 

= (21 - L)! L (1 + a)! (l + L - a)! 
(21)l L! It (1 - a)! (l - L + a)! 

= (21 - L)1 L! L ( 1 + a ) (1 + L - a) 
(21)! a 1- L + a. I - a 

= (t) (21 - L)1 L!(21 + L + 1) (18) 
(21)! 21 - L ' 

as a consequence of one of the many variants of 
Vandermonde's convolution identity. The k occurs 
only in the restricted summation case of [11). Equation 
(18) implies that 

N = (2)(21)! (2L + l)l)t 
Ll (21 + 1 + L)l 

SO that finally 

1{1l}Ill)L) = (2(2L + 1)1 (2/- L)!)* .± (_1)a 
(L!)2(21 + 1 + L)1 a=1(£+1) 

(
1 + a)! (l + L - G)!)t t 

x 1 Y L-aa 
( - a)! (1- L + a)! 

and 
(19a) 

/{2}[2]L) = (2L + 1)1 (21 - L)!)1 i (-1)" 
(L!)2(21 + 1 + L)! ,,=L-~ 

x ((I + a)! (1 + L - a)!)\rt y-t 
(/ - a)! (I _ L + a)! L-a a • 

(19b) 

To find the expansion of a 3-or~more-particle state 
of general L and greatest weight in SU2 , in lieu of a 
general formula, we must demand that 

L+l = 2 t~Xqb_q (2) and 5+1 
I> 

on the state be zero, giving a set of simultaneous 
equations, which in the general case will have a set of 
solutions corresponding to the multiplicity of L in the 
branching rule of [2etd

] upon restriction to Ra. If at 
any stage in the U2!+1:::> R21+1 :::> Ra chain, one 
attempts to construct a state forbidden by the corre
sponding branching rule, one will get a vanishing 
result. 

V. SEMICONJUGACY 

In this section, it is shown that once the states 
I {2 cl d }[2ctd)L) have been calculated explicitly, all 
other general states may be written down. We start by 
noting that the branching rules given in Sec. III imply 
that a general state falls into two classes, namely, 

I {2c+lll ld}[2"ld]L) and l{2e+"'12!+1-2C-d}[2Cl d]L). 

We consider now the product state 

l{2cl d}[2"1d]L) 1{2:ll}[O}S). 

Since the only unitary representation of the form 
{2al b

} contained in the direct product {2 el d
} x {2:ll} 

is {2c+x ld
}, the product state is proportional to 

1{2c+:llld }[2el d ]L), the first of the two classes of a general 
state. Similarly, 

1{2c} 21+l-2C-d}(2C}ti]L) 1{2(l)}[O]S) 

is proportional to 

I {2C+(l)121H-2c-d} [2elti]L), 

i.e., the second class. Since 1{2X}[01S) is known (equals 
:Tx, Sec. VI) and 1{2cl d }[2CJd ]L) is assumed known, we 
now have the first class of a general state. To find the 
second class, we have only to find how to form 

1{2cj21+1-2C-ti}[2tJ tiJL >, given I {2 q <i}[2el dlL). 

For this, the operation of semiconjugacy is intro
duced and represented by :It. Associated with a given 
set.it ofm! quantum is a complementary set X, defined 
such that .it u A = {t, 1- I, ... , 1, 0, -1, ... , 
-I + 1, -I} and .it (\ ;t == cp, the null set; for ex
ample, if 1= 2, and .it = {2; I}, then A = {O, -1, 
-2}. Semiconjugacy is now defined by its action on a 
mononomiaJ, namely, 

,'R,ytl···ft",V;l~"vn= VJl~"'JlmV;;~'.vn' (20) 
Here 
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where {ft~ ... ft;I+1-m} is the negative of the comple
mentary set to {ftl ... I'm}. For instance, if .it; = {2, I} 
and I = 2, A = {O, -1, - 2} and the negative of this 
set is {21O}. The phase given in the definition (20) of 
:R (namely + 1) holds only if 1'1 ... I'm and ft~ .. . 

ft;l+l-m are ordered after the fashion 1'1 > 1'2 > .. . 
> I'm and ft~ > P~ > ... > P~l+l-m' The operation 
is equivalent to replacing spin-up electrons only, with 
their corresponding holes; hence, its name. 

It remains to show that :R has the desired property 
that :R l{2ctd}[2Cl d ]L> = 1{2c!2I+1-2C-

d}[2Cl d]L>, allow
ing the right-hand state to be written down simply 
by placing a bar over the Vt of each mononomial in 
the expansion of the left-hand state, assumed known. 
We see first that each mononomial 

has the same M L value as 

V !l."qa+bV-;;'~""a 
since, if 

ql + q2 + ... + qaH = Q, 

then the complementary set to q sums to -Q. More
over, 

L+1V'\Jilli-k'" = ... + (t!i+lV~'lli+1lli-k"') 
+ tl Vi + ... 

lli-k+1 '''Ili Ill-k+l , 

where the first term does not exist if fti-l = Pi + 1 
while 

-i 
L+lV" '/'1 Ill-k'" 

= L+ IV f-lli-l)-lli+I-lli+2" '-/li+k-l'" 

_ ... + (tl ol ) 
- -Ill V (-IlI)-Il/+I"'-lli+k-I'" 

+ t 1 o!- + . , . 
-IlI+k V (-lli-1)-Il/+I .. 'lti+k-2 -Ili+k'" 

_ ... + (t1 ni ) 
- lli+1 V "'!J/+I Il,-k'" 

+ t nf + ". 
Itl-k+l V "''''I IlI-k+1 . 

Hence the simultaneous equations, derived by 
:R-transforming the L+l simultaneous equations for the 
state 1{2Cl d }[2"1d ]>, are again a set of simultaneous 
equations satisfying the L+l condition. 

We consider now the action of :R on the (n - 1)
dimensional solution to the one-pair submatrix of 
A [(14)]: 

x 
where 

q == qlq2 ... qa+b-l and r == r1r2 . , . ra_ l , 

~ (_l)"'Vf V-t = ~ (-I)O,V' V-t + (V!- V-f) 
~ q.:t r-x ~ q-fli rfli aO rO 

X=-Q· 

, + 2 (-1 )"'V: ",V;!", . 
", .. 0 

"-°1 

The zero term is bracketed, since, if ri or qi equals 
zero,it does not exist. Thus, 

:R ~ (-l)"'Vf V-l L qx r-{£ 

'" = .2 (-1)QIM-QiVt~q/V;:' + (MoVrtoV;J) 
qi 

+ ~ (-l)"'M",VtxV;!, 
x .. o 
"-q/ 

(21) 

where the first summation is through qi' such that 
there exists a qj = -qi in q, while My is the phase 
required to order vtu' So, if g belongs to position k 
in Vi counting from the left, My = (_l)lc-a-b. We take 
ij as the negative of the complementary set to q, i.e., 

:RVl = V!- = V! q q q , 

while -'- means "without," e.g., {2, 1, O} -'- 0 = {21}. 
The three summations of Eq. (21) taken together are 
thus an instruction to take each qi from ij and place it 
in the spin-down space. We wish now to find the 
position i of -g in ij. To do so, we reason that, since 
the number of blanks in the sequence II - 1 ... g for 
the set of quantum numbers q + g is both equal to 
I - g - k + 1 and the position of -gin ij counting 
from the right, then the position of -g equals the 
difference of the length of ij and the right position of g 
plus one, i.e., 

i = (21 + 1 - a - b) - (1- g - k + 1) + 1 

= I + g + k + 1 - a-b. 

Finally, then, 

;R L ( -1 )"'V: x V;!x = ( -1 y+1 L ( _1)iV ii~giV;~ . (22) 
x , 

This, however, is just proportional to the general 
type of equation we get if we demand that the states 

-!- l 
V qt"'qa+bV-;;'''''rn 

satisfy the S+l condition [cf. (4)]. Conversely, we find 
that any S+l equation for the 

Vt."qa+S-;;'~ .. ra 
states transform under :R to a single-pair R 21+1 condi
tion (18) for 

Since :R can clearly be applied in the reverse sense 
(i.e., from V to V) giving the same result, we have that 
the total set of equations required to solve for the state 
1{2C}d}[2Cl d]L) is identical apart from a barred V1- to 
the total set of equations for :R. 1{2 cl d }[2Cl d ]L). Since 

-! ! 
V QlO"Qa+b V-;;. "'r. 

has 21 + 1 - a - b terms in the spin-up space and 



                                                                                                                                    

SECOND QUANTIZED ATOMIC WA VEFUNCTIONS 2787 

Ms and ML are maximum, we have as required that they must be found by solving the set of simul
taneous equations given by the L+1 and S+l conditions 
and applying additionally the single-paired condition 
(14) given in Sec. III. Even this may not be enough; 
since in Sec. III only one solution, corresponding to 
one eigenvalue, could be given to the multipaired case 
(11), it may happen that some of the eigenvalues for 
two or more pairs are also equal to the p value (7) of the 
state in question. Any attempt to solve for this state, 
with only zero and one pair, will give a vanishing 
result. In practice, this serves as a guide to finding 
which states are of this type. 

:R 1{2Cl d}[2ctd]L) = 1{2c}2!+1-2C-d}[2CJ d]L). (23) 

Now since a general state is proportional to the 
product of 1{2CJd}[2CJd]L) or :R 1{2Cl d}[2Cl d]L) with 
1{2"'}[O]S), it is clear that the proportionality constant 
is dependent only on the values of c and d and is thus 
equal to the normalization of :To; divided by the 
normalization of 1{2"'}[O]S), i.e., is equal to 

(
(21 + 1 - 2c - d - x)! (21 + l)!)t. 
(21 + 1 - 2c - d)! (21 + 1 - x)! 

VI. THE d SHELL 
In the d shell the only term of this type is 1{22}[22]S). 

We have shown how to reduce the problem of con
structing atomic wavefunctions in the U2!+1 =:> 

RU+1 =:> R3 to finding only the states 1{2ctd}l2CJd]L). 
Unfortunately, it has not been possible to find a closed 
algebraic expression for these terms in general (with 
the exception of a few special cases given in Sec. IV) so 

The double-paired submatrix for this case has eigen
values 10, 5 (four times), and 2 (five times). The eigen
value of 10, beingthesameas thep value for 1{22}[O]S), 
corresponds to the doubly paired solution to this 
state, namely:T2 (12). The eigenvalue of 2 equals the 
p value for 1{22}[22]S) and gives an eigenstate span
ning a 5-dimensional space, described by the following 

State quantum 
numbers 

{O}[OIS 

{l}[lID 

{l1}[llIF 

{ll}[llIP 

{2}[21G 

{2}[21D 

{21}[211H 

{21 }[21]G 

{21 }[211F 

{21}[211D 

{21 }[2l]P 

{22}[221! 

{22}[221G 

{22}[22]F 

{22}[22]D 

{22}[22]S 

TABLE I. The states 1{2'ld}[2'ldlL) of the dshelI. 

Mononomial expansion 

vg 
vL 

5-t(2~V±1 2 - 31vt ,) 

VgV2~ 

7-t(2tv3V;-! - 31vtv;.-1 + 2!vtV- l) 

vg ,Vi t 

5-}(3)V~ ,v;-t - 2lVt ov;-t) 

12-t(vi v- l - vi v- t + 6}V1 v- l - 2V! v-t) 
2 1 0 2 0 1 2-1 2 1 0 2 

(_!!._).I(v1 V-} - v 1 v-} - IV! v-} + !!.V} V-l - ±V~ v-} + §JV 1 v-i) 
28" 2 1 -1 2 0 0 a 2-1 1 a 2-2 2 a 1-1 2 3 1 0 1 

(_!!._)}(~n} n-} _ 'It n-} _ 3n) ...,-J _ I'I} n-} + J(6)-!n} n-1 _ (ll)''''''} 'I-t 
as 4"'1 nVo \/12\'-2 4Vl_1"1 2\'1_2'2 "2 -V2_1 V O 3 2V 2 0"_1 

+ !!.(6)-lnt V-l + .In! ...,-1) 
2 v 0-1 2 ~ V 2-2 V 1 

v~ ,V;}, 
b\-)}(vt ,V;::~ + 2Vg- oV;~ + vL V;f - 3(WVg- ,v;-t - 3mlV~ OY2-j) 

(_!!._)!(yl y-~ _ Vi V- t + 2V} v-} + V} V-} _ d ...,-t + 2n ! t"7-1 
40 - 21 1-1 20 10 2-2 12 1-1 2-1 VI 0"20 "21"2-2 

- (i)tV'[ OV2!' - (WV'LV2~) 

(,h-)}(vLV;-~ + 'Vi oV;::'~ - (t)}vi IV~t - 6>v{ oVl~O + V't OV2!' + VLV2t 

- (!)tvL,v2[ + vt oV~.t, - MvLv,;-), + vLv;-t 

(7"o»(V'J,V'=L2 - vLV'~k - vLovd - WL,V'2~' - !V'LV'}2 + (WVtOV'~!2 
+ 2(i)}vL V;;-!, + their oppositesR + (wI-. V2!' - tvLV1!,» 

a E.g., the opposite of - ~\'1_.tV2_'-!- is -IIV2_, ~V'_2 -~. 



                                                                                                                                    

2788 M. J. CUNNINGHAM 

equations: 

a. t -! - a. t -! + a.! -. - a. It -It - ° V21V-i-. VO- 1V10 VO- 2V2,; V: 1-.V,i - , 

a.vLv~!. - a.~~_IV;!1 + a.V~_2V;!1 + a.vL.",;: = 0, 

a.! -! - a.! -t + a. t -! - a. t -t = 0, 
V.-1V1-. V1- 1V1- 1 VO-.V. O V- I- 2V10 

This, taken with the LH and S+l equations, gives 
the expansion of 1{22}[22]S) as tabulated in Table I. 
There is no single-paired condition for this state, for,if 
it has one pair,it has two. 

As an example, the equations for the state 1{21} 
[2I]D) are displayed: the R2lH equation 

a...,t ..,-i - a....,t ..,-t + a....,t L;-t - a...,t ...,-t = 0, 
"21 V-1 "20vo "2-1 1 "'!-2'"2 

the LH equations 

t~a.vt .,.-t + t~a.v! v -! = 0, 
20"0 21 -1 

t~a....,! ...,-1 + t~a.v! ..,-1 + t~a...,t ...,-t = 0, 
"10"1 2-1"1 v oVo 

and the S+l equation 

a. i -, - a.! -i + a. t -t = 0. 
V21V-l V2- 1<;;\ V1- 1V1 

Since tiM = Ji, the normalized solution to these 
equations is 

( 
3 )l(nl n-l nl n-~ 1 n! n-l + !i_nl n-l 

28 v 21 v -1 - v 2 0 v 0 - 3" V 2-1 V 1 3 V 2-2 V 2 

4nl nl + 8nl n-l) 
- 3 v 1_1 V 2 :f v 10 V1. 

One point to note: for the 1{22}[22]L) states, the 
SH condition becomes 

i.e., 
a. t -, - a.! -1 = 0, 

VabVca VacVbd 

which gives us, with the exception of L = ° (it has 
other S+1 equations as well), nearly half the number of 
unknowns. 

The states of the form 1{2Cl d }[2Cl d ]L) are found 
tabulated in Table I. 

VII. CONCLUSIONS 

In this paper, the atomic states 1{2a l b}[2 cl d ]L) for 
maximum M Land M s and for 2a + b ~ 21 + 1 have 

been constructed in the scheme U21H ::> R2I+l ::> R3 • 

Clearly, states with 2a + b > 21 + 1 can be derived 
by using particle hole equivalence9.10; in terms of the 
notation of this paper, one would simply place a bar 
over both Vl and V-l to derive the hole state equiv
alent to a given particle state. The form of the states 
in this paper imply a phase convention, for the state 
Vi2l V=t-l could equally well be written as V!21 V=t-2 
(any other permutation of ml indices is clearly equiv
alent to one of these two states). This matter of 
phase has not been pursued in this paper, but more 
care may have to be taken if Clebsch-Gordan co
efficients and isoscalar factors are to be derived using 
this basis as a starting point. Defining semiconjugacy 
makes it necessary to calculate only the states 
1{2ctd}[2ctd]L); for these states, however, no general 
closed algebraic expression could be found. In fact, 
in view of the immense combinatorial complexity of 
this problem, it seems doubtful that such an expression 
exists. 
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An approach first developed by one of the present authors for computation involving Poincare 
incidence matrix is now carried over to the so-called "loop-matrix" formalism. A matrix 'T'i:l is introduced 
to prove some important properties of transformations among different sets of basic loops. Several 
properties in the form of lemmas and theorems are presented here. In particular, a formula of very concise 
form is found for the total number of possible tree graphs of a given Feynman graph in terms of its corre
sponding Poincare incidence matrix. Also derived here is the formula for the total number of tree graphs 
in terms of any loop matrix. Their proofs show that the previously developed approach for Poincare 
incidence matrix can be nicely generalized to a surprising extent to the loop matrix formalism and thus 
demonstrate the duality between the two formalisms. 

I. INTRODUCTION 

In dealing with a Feynman amplitude in its para
metrized form, some important properties can often 
be extracted from its corresponding Feynman graph 
by means of the topological properties imbedded in 
the graph. In this paper, we present some results of 
our investigations of topological properties by means 
of the loop matrix 1. 2 and some applications of these 
results to the U function and the V function. 2•3 

Our notation here essentially follows that of Ref. 2 
unless otherwise specified. Given a Feynman graph 
containing N vertices and J internal lines, a set of 
basic momenta {k z} can be introduced; each basic 
momentum flows along a loop (or closed path) due to 
conservation. Whenever {k l } is given, a set of inde
pendent basic loops {I} is uniquely defined; each basic 
momentum is required to belong to one and only one 
basic loop. Hereafter, we refer to the set {k l } as a 
basic momentum set, and the set {I} as a basic loop set. 
Now, if we denote the jth internal momentum (i.e., 
the momentum of the jth internal line) by qj and the 
set of the external momenta1.2 •4 by {Pi}, then we can 
write qj into a linear combination of {k z} and {Pi}: 

q=e·k+).·p 
and 

qj = K j + Pi' 

where e is the so-called loop matrix with its entries 
defined by 

£OJ! = 0, if line j does not belong to loop I, 
ejl = 1, ifline j belongs to loop I and if j is parallel to I, 
ejZ = -1, if j line belongs to loop 1 and if j is anti-

pare lIe I to I 

and where Aj; can take any arbitrary real value pro
vided momentum conservation at every vertex is 
satisfied. We note that the loop matrix e is not uniquely 
defined for a given Feynman graph since the choice of 
the basic momentum set {k z} is not unique. However, 
once {k I} is chosen, then the corresponding e is uniquely 
determined. The different choices of a basic momen
tum set {k l } correspond to the different possible ways 
of assigning, if topologically admissible, 

{kI ,'" ,kL } = {qvl"" ,qv)' 

where {VI' ... , vL} is a proper subset of {I, ... ,J} 
and L is the total number of independent loops. It is 
well known that N, J, and L satisfy the condition 

L =J - N + 1, 

where N is the total number of vertices involved in the 
given graph. 

Remark: If {VI> ... , vL} is a basic momentum set 
and {I,'" , L} is the corresponding basic loop set 
determined by {VI' ... , vL}' then it is necessary that 

eVjl = ±OiZ' 1= 1,'" , L,j = 1,'" ,J. 

For any given Feynman amplitude, there are dif
ferent parametrized forms of Feynman amplitude due 
to different ways of parametrization. However, here 
we concern ourselves with the following parametrized 
form of Feynman amplitude: 

with 
i

l 11 J <'l(1 - IlXi) 
F = const ... IT dlX. 3=1 

o 0 ;=1 3 U2(V _ iO)J-2L' 

U == detA' 

2789 
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and 
+-> -T+->-
A ==8 1X8, 

where IX is a diagonal matrix of order J, defined by 

lXii == ocibii , V j. 

The V function takes the form 

whose determinant has been shown to be of consider
able interest in connection with the so-called "tree set" 
(i.e., the set of aU tree graphs) as discussed in Ref. 2. 

From a kind of "duality" (since it is not really 
duality in the strict sense), we are led intuitively to 
define a similar matrix for a set of basic loops, namely, 

8VIl8Vll 8V118v12 

8V228vol 8 V2 28 v22 

<:;m == (1) 

where {v} = {VI' •.• , V d is an arbitrary set of dis
tinct L internal lines. The second subscript ofe refers 
to the different members of an arbitrary set of basic 
loops which are labeled by {I} = {l, ... , L}. 

Indeed, the introduction of this matrix ;~W as guided 
purely in the beginning by our intuition can be seen to 
be very useful. In this section, we discuss two of the 

interesting properties of ;;W which are then used to 
prove two theorems in the next section. 

For convenience in our subsequent discussions we 
introduce here a matrix for a given arbitrary set of 
distinct internal lines {v} and an arbitrary set of basic 
loops {I}: 

eVIl e v,2 eVIL 

8"21 8 V2 2 8 v2L 

e{V} = 
{ll - (2) 

8 v!,1 8 v!,2 evLL 

where 

II. SOME PROPERTIES OF MATRIX 'Ti;? 
In the study of a Feynman amplitude by means of 

the Poincare incidence matrix';, one of us has intro
duced the matrix2 

+-> 
Lemma 1: In defining the matrix 81;(, if the set {v} 

of L distinct internal lines happens to be a basic 
momentum set, then 

det em = ±1. (3) 

Proof Let {l} be the corresponding basic loop set 
determined by {ji'}. It is trivial that 

det em = ±1, (4) 

since each diagonal element in em is ± 1 and each 

off-diagonal element in e@ is zero. 
Since the transformation between any two sets of 

basic loops is linear, we can carry out the transforma
tion {l} ~ {I} in n + 1 steps: 

{l} ~ {II} -* {/2} ~ ... ~ {In} -* {f}, 

such that in each step, e.g., {Ii} ~ {1m}, the elements 
in {/i +1} are obtained from {Ii} by one of the three 
possible processes: 

(i) Relabel some (or all) of the elements in {Ii}' 
(ii) Choose two elements (i.e., two loops) a and b 

in {I;}. Add (or subtract) them if loops a and b have 
different (or the same) senses in the overlapping path, 
to form a new element. Replace a or b by the new loop. 

(iii) Reverse the sense of some (or all) of the loops 
in {Ii}' 

These steps can only result in the following corre-

sponding changes in Ei: elf!) differs from Eim+l) only in: 

(1) exchange of columns; 
(2) addition (or subtraction) of columns like 

(a a') (a + a' a') 
b b' -* b + b' b' ; 
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(3) change of signs of all the elements in the same 
column; this can result in only a change of sign for the 
determinant. 

Consequently, we have 

Therefore, 
+-> I;;) <-> I;;) 

det 0{i) = ±det 0{l} . 

Finally, (3) follows from (4) and (6). 

(5) 

(6) 

QED 

Lemma 2: Let X be the transformation on 01;l 
induced by a transformation connecting two sets of 
basic loops; then 

+-> 

det X = ±l. (7) 

Proof: When the basic loop set {I} is transformed 
into another basic loop set {I}, i.e., 

{I} -+ {I}, 

<-> 

we have the induced transformation matrix X, 

(8) 

where X is an L x L matrix and is uniquely defined 
whether {v} is a basic momentum set or not. 

But, from Lemma 1, we have 

det 0:'{v) - ±det 0:'lv) UJ - {l)' 

if {v} is a basic momentum set. Therefore, 

P is the number of transpositions involved in IP. The 
summation sign and the product sign of (11) can be 
exchanged by properly adjusting some of the sub
scripts and range of summation: 

where {p} = {PI"" ,PL} with PI = I,"', L. We 
note that, in principle, any kind of repetition of ele
ments is allowed for {p}. However, it will be shown 
that there is actually no repetition of elements in {p}. 

First, let us rewrite (12) into the form 

L 

det (01;tel;!) = L L Cry) II Bp y Bp I 
VIp) v{y) 1~1'!! 

= L [(IT Bp!t) (L Cry) IT BP1Y1 )]' 
VIp) 1~1 v{y) 1~1 

If there is a repetition in {p}, say 

PI' = PI", 
then, in the summation 

L 

I C{y) II Bp,y!' 
V(y) 1~1 

there are two terms 
L L 

Cry') II Bp y' and Cry"~) II Bp y " 
1~1 !! 1=1 !! 

which cancel each other exactly because 

(13) 

det X = ±l. QED {y'} = 1Pl'l"{Y"}, 

Theorem 1: In defining the matrix T{~}) , if the set {v} 
of L distinct internal lines is a basic momentum set, 
then 

'" d <->{v) 1 k et T {l} = + , (9) 
V{v) 

where the summation with respect to {p} is taken over 
all the possible permutations of the given basic 
momentum set. (It should be emphasized that in 
defining TiW, the set {I} is not in general the corre
sponding basic loop set determined by {v}.) 

+-> T+-+ 
Proof' Let us consider (01;1 Eli;/). The ll'th matrix 

-f-> T t-> 

element of (0(V) 0(v) is simply (lJ (ll 

where {y} = {Yl' ... ,YL} are all the possible sets 
1P{1,"', L}, P = permutation, Cry} = (-)P(y), and 

where IP 1'1" is the transposition operator for l' and 1". 
Further, any repetition of elements in {p} more than 
twice is clearly impossible, since the same argument 
applies to successive transpositions. Therefore, we 
conclude that there is actually no repetition of elements 
in {p}, i.e., {p} is just {p}, differing only by some 
permutation of elements. Thus, (13) can be written in 
the form 

det (Ell;IT01m = I I Cry) II Bp IBp Y 
<-> +-> ( L ) 

V(p) V{y) 1~1!! ! 

'" d +->(v) = k et T(ll' (14) 
VIp) 

where V{p} under the summation sign means the sum 
over all the possible {p} obtained by different permuta
tions of {pl. The last step follows from the definition 
fd t -(pI o e T{l)' 

However, since the {p} are just the {v} which differ 
from each other only by some permutation of elements 
and, using Lemma 1, we have 

det (0{V}Te{V) - + 1 
{l} {l} - • 

We have, therefore, completed the proof. QED 
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.... 
Theorem 2: In dealing with the matrix 0l~~ , if the set 

{v} of L distinct internal lines is not a basic momentum 
set, then it is necessary that 

(15) 

Proof· We use mathematical induction on the num
ber L. Let the theorem be true for the case of 

{I} = {I, ... , L} 

and 

det elTi = ±det em = ± 

=± 

=0, 

° 
CVHll 

CVL+ll 

since the right-hand side of (17) only depends on L 
loops and L internal lines, if {VI' ••• , V;_I, VHI ' ••• , 

VLH} is a nonbasic momentum set in the -subgraph. 
Further, one can show that {VI' ••• , Vi_I, VHI ' ••• , 

V Ltl} should be a nonbasic momentum set in the sub
graph. This is discussed in full in Appendix A. Then 
the mathematical induction is completed. QED 

Remark: Given a graph G, the total number of in de
pendent loops L is determined uniquely. Therefore, if 
a mathematical induction on L is used, we have to 
consider all the subgraph of G. For a strongly con
nected graph (i.e., after any single internal line is 
deleted the subgraph remains connected), the deletion 
of an internal line results in the necessary removal of a 
loop. Consequently, the total number of independent 
loops for the subgraph has to be one less than before. 
However, for a graph which is not strongly connected, 
such as Fig. 1, then the deletion of line a yields the new 

We want to show that the theorem is also true for the 
case of 

{I} = {I,· .. ,L, L + I} 
and 

{V} = {VI'···' VL, vLtI}; 

that is the case of L + 1 basic loops for the set {I} and 
L + 1 distinct internal lines for the set {v}. By Lemma 
2, we can transform {I} into a new set {l} in such a way 
that there is at least one internal line, say Vi' satisfying 

Vi Eland Vi rt J for J:;t. 7, j~ r E {I}. 

This leads to 

t'oJ 

f"i_Ii 
t'oJ t'oJ 

e"i-li-l CVi-li+1 fVi-lLtI 
(16) 

° CVi1 ° ° t'oJ 

8Vi+1; 
t'oJ t'oJ 

C"i+li-l Cvitli+I CVH1L+I 

eVL+l~ eVL+1f. CVL+l~ C VL+l41 

eVl~ '" t'oJ 

CvlHI CvlLtI 
t'oJ t'oJ 

CVi-1UI c"i-li-l CVi_H+I 

fVi+l~ 
t'oJ 

CVi +1i+l 
t'oJ 

CvH1L+I 

(17) 

(18) 

graph shown in Fig. 2. In this case, the total number of 
the independent loops in the subgraph is equal to the 
total number of the independent loops in the original 
graph. It appears, at first, that the mathematical 
induction may not be applicable in this case. However, 
this apparent difficulty can be removed by the follow
ing considerations: 

By definition of em, we can easily see that, if a E {v}, 
in Fig. I, it follows immediately that 

det 01;1 = 0, 
since 

Cal = 0, VI. 

a 

FIG. I. A graph which is not strongly connected. 
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FIG. 2. A subgraph of Fig. \. 

On the other hand, if any internal line in {VI' ... , 
V L+l} does not behave like the line a in Fig. 1, the 
mathematical induction is obviously applicable. 

Corollary: For the TiW matrix, if the set {v} of L 
distinct internal lines is not a basic momentum set, then 
it is necessary that 

Proof: 

+-+{V} _ 
Tp} -

= 

= 

d -{v} 0 et T(l} = . 

evLLeVLI evLLeVL1 

eVIl 

eV22 

eVLL 

eVIl eV, 2 eVIL 

ev21 ev2 2 ev2L 

X 

eVLl e VL2 evLL 

C' )@{.J 
w· 

evLL 

evLLeVLL 

By Theorem 2, we have 
+-+{ ~ 

det T{,'? = (eVIl' •• evLL) det e~;l 
=0. 

(19) 

(20) 

III. SOME PROPERTIES OF THE MATRIX e 
Theorem 3,' For any loop matrix s, det (sT. s) is 

independent of the particular choice of the basic loop 
set {I} used to define s. 

Proof' For any two given sand s' corresponding to 
the basic loop sets {I} and {l'}, there is a transforma

tion connecting e and e', namely, 

+-+ +-+ 

X:e-s'=e'X, (21) 

where X is an L X L matrix to be multiplied to the 

right of s. 
Consider now 

det (S,T . s') = det (XT . e'l' . e . X) 
= det (XT

• X) det (f''l'. e) 
= del CST . e), 

where Lemma 2 is used in the last step. 

Theorem 4: For any loop matrix e, we have 

(22) 

QED 

det (71' . e) = total number of all possible choices 

of the basic momentum set. (23) 

Proof: Since the ll'th matrix element of (sT. 7) is 
simply 

(24) 

we have, therefore, 
L J 

det (eT 
• e) = I C(y) II Ieiy!ejl, (25) 

V(y} l~l i~l 

where {y} and C{y} have the same meaning as that in 
Theorem 1. The summation sign and the product sign 
of (25) can be exchanged by properly adjusting some of 
the subscripts and range of summation: 

L 

det (7
T 

• e) = I C{y} I II ell ell I' (26) 
V{y} V(lll l~l ! ! 

where {u} = {,u1' ... ,,uL} with ,ul = 1, ... ,J. We 
know that, in principle, any kind of repetition of 
elements is allowed for {,u}. However, it can be shown 
that there is actually no repetition of elements in {,u}, in 
a manner exactly like that given in Theorem 1. 

Next, (26) can be written in the form 

det (7
1
' . e) = I (I ely) IT e}J leI' Y!) 

V(Il} V(y} !~1 1 ! 

= I det TM· (27) 
(II) 

The last step follows from the definition of det T{<;jl • 
At this stage, we can split the summation over {,u} into 
two summations !~{Il} + !~{Il}' where the single
primed summation is carried over all the possible 
basic momentum sets and all their distinct permuta
tions. The double-primed summation is carried over 
all the sets that are not basic momentum sets (and 
their permutations). 
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From Theorem 1 and the Corollary to Theorem 2, 
we know that 

!' det ri:'i = + 1, (28a) 
vIp} 

if {,u} is a basic momentum set and the sum over here 
is only carried over all the distinct permutations of a 
particular basic momentum set, and 

!" det T'NJ} = 0, (28b) 
vIp} 

if {.u} is not a basic momentum set. 
Therefore, the nonvanishing contributions to (27) 

come from (28a), or more precisely, + 1 for each 
choice of basic momentum set. That is, 

det CST . f) = total number of all possible choices 
of the basic momentum set. 

QED 

Remark: For a given graph, the tree set is defined 
as the complement of the corresponding basic momen
tum set. This leads to 

det (fT. f) = total number of all possible 
choices of the tree set. (29) 

IV. SOME THEOREMS ON U FUNCTIONS 
AND V FUNCTIONS 

The following theorem, Theorem 5, is not new, but 
the existing proof, to our knowledge, is rather 
tedious. I The proof given below following our present 
approach is most straightforward. 

Theorem 5: The U function is independent of the 
particular choice of the basic loop set {I}, used to 
define e. 

Proof' Let X transform 7 into s': 
+-> +-> 

X:e ---+ 7' = 7· x. 
Then A transforms according to 

where 
A == s'1' . +;.7 

and 

as defined before. 
Since 

A' = xT. ST. ex' 'ftx 
~'1' ~ ~ 

=X ·A 'X, 
we have, therefore, 

det A' = (det X)2 det A. 

(30) 

(31) 

(32) 

(33) 

(34) 

By Lemma 1, (34) becomes 

+-> 

det A' = det A. (35) 

QED 

We note that, in the proof of Theorem 5, we have 
not used the diagonal properties of the matrix ex. 

+-> 

Actually, for any L X L matrix {3, the value of .... 
det (7T (37) is independent of our particular choice 
of the basic loop set in defining S. 

The following well-known property can also be 
proved by our present approach; the emphasis is on 
the uniformity of the nature of our proof. 

Theorem 6: For any Feynman graph,I.3 

+-+ L 
det A = ! II OCv , 

V{v} l~l I 

where {v} is a basic momentum set. 

Proof' By definition, we have 

and 

<-+ L 

det A =! ely} II a y ! 
v{y} !~l I 

J 

all' == !OCjlOjllOil" 
j~l 

(36) 

(37) 

(38) 

where both {y} and ely} have the same meaning as that 
in Theorem 6. Substitution of (38) into (37) gives 

+-> L J 

det A = ! ely} II !OCjlOjy lOj1 
v{y} l~l j~l I 

L 

= ! e{y}! II OCt lOt y lOt I 
v{y} vlt} l~l I I I I 

= ~ [(IT OCtl) ! ely} IT lOtly/tIZ] ' (39) 
v{t} !~l v{ y} !~l 

where {t} = {t l ,"', tL } with t z = 1,··· ,J. Follow
ing the arguments and steps as those in the proof of 
Theorem 6, we conclude that 

(40) 

In virtue of (29a) and (29b), we have immediately 

+-+ L 
det A = ~ II OCv , 

V{v} !~l I 

where {v} is now a set of basic momenta. QED 

Theorem 7: The V function, defined by 

V == ±ocj(m~ + P~) + pT+;'eX-1eTexP, (41) 
j~l 
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is independent of the particular choice of the basic 

loop set {I} used to define l!. 

Proof' We note that both P and oc in (41) are inde

pendent of {I}. We need only consider [!A-IE. If there 

is a transformation connecting E' and El', 
~ ~ 

X:l! ->- l!' = EX, 
then 

(42) 

We know from Lemma 2 that the matrix X has an 
inverse. Therefore, by making use of (33), we have 

then 
ElX-leT = eXX-lA-liT-liTl!T 

= (l!X)i-lA-lXT-,(ElA)T 
= e'A,-le,T. 

APPENDIX A 

(43) 

(44) 

We want to show that the subset {VI" .. , Vi-I, 

VHl , •.• , VL+l} of (17) should be a nonbasic momen
tum set in the subgrapL of the original graph G. This 
can be proved by contradiction. 

If {VI' .•. , Vi-I, Vi+l' .•. , VUl} is a basic momen
tum set in the subgraph of G, then we can find the 

A /~ /~ 
corresponding basic loop set, {I,···, i-I, i + 1, 
~ A /~/""-.. 

... , L + I}, where each element of {I, ... , i-I i + 1, 
/~ 

... , L + I} is a linear combination of elements in 

{I, ... , r=::-t, T+1, ... , L+1} which is the basic 
loop set corresponding to {VI'" . , Vi-I, Vi+l"" , 

VL+l}' It follows that 

Vj E ojkk, j ¥= i, (AI) 

since Vi was deleted. In the subgraph of G, the com
plement of {VI' •.. , Vi-I, VHl , •.. , vL+l}' denoted by 

has the following property: 

(number of vertices of the subgraph of G) - 1 

= (number of internal lines of the subgraph of G), 

(A3) 

i.e., {VI' ... , 1'i-l, VHl, ... , vL+l}c in the subgraph of 
G is a tree set. 

Now let us look at the original graph G. {VI' •.. , 

Vi_I, Vi' Vi+l' ... , VL+l} c in G is the same as {VI' ... , 

Vi-I, Vi+l , ••• , vL+lL in the subgraph G since the sub
graph of G is obtained from G by the deletion of Vi' 

Therefore, {VI' ... , Vi-I, Vi' VHl ' ••• , VL+l} in G is a 
tree set. That means {VI' .•. , Vi-I, Vi' VHl ' .•• , vL+l} 

in G is basic momentum set. This is a contradiction. 
Chow and Kleitman3 have derived a systematic 

way of calculating the V function for a given Feynman 
graph. Their method consists of reducing the graph by 
shrinking all possible paths connecting any two 
arbitrary vertices. By repeating this, they obtained 
graphs,each of which has only a single vertex. This 
result can be easily verified by our expression (40). 

By (14) and (40), we have 

where 

L ~ ~ 
~ II rY. det <';{v} = det (8{V}T~{v}8{v}) 
£.., 'V I III III {I} , 

V{v} l~l 

o ",). 
L 

(A4) 

(AS) 

However det (0{V)T OC'{V)@(v})istheVfunctl'onofL , {I} III 
internal lines and L loops, i.e., there is only one vertex 
for the graph. For any graph, the V function can be 
written as 

where 

V = I vs, 
'Is 

L 

V s == II IXs, V S , 
j~l ' 

(A6) 

(A7) 

is the V function for a single-vertex graph G s contain
ing L lines and the sum is over all such graphs obtain
able from G by choosing different basic momentum 
sets. 

In the Introduction, the V function is expressed in 
terms of internal momenta explicitly using loop 
matrices. However, we can write it in terms of external 
momenta explicitly using incidence matricesl.2.4-7 

J N-l 

V = I IXjm~ + I (h -1 )nn' PnPn' , 
j=l n,n'~l 

with 

(A8) 

(A9) 

(AIO) 

(All) 
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where 

Ejn =0, if the internal line j does not initiate or 
terminate at the vertex n, 

Ein = + 1, if the internal line j initiates from the 
vertex n, 

Ein = -1, if the internal line j terminates at the 
vertex n. 

We would like to show that V function, in terms of 
external momentum explicitly, is independent of the 
particular choice of the N - 1 vertices out of the total 
N vertices in the graph. For different choice of N - 1 
vertices, €'~ and h are transformed according to 

(AI2) 

and 

+--fT<f-.+H 

= Y hY, (A13) 
H 

where Y is a (N - 1) x (N - 1) matrix. For a given 
graph, a I-to-I correspondence exists between the 

<-> 
incidence matrix; therefore, the matrix Y has an in-

verse. (Since det h is independent of the particular 
choice of the N - 1 vertices,2,7 it follows immediately 

.... 
that det Y = ± 1.) By making use of (A13), we have 

thus 
P~Th-lp'q = p~Ty(y-lh-lyT-l)yTp~ 

= pq'T'h'-lp~'. (AI7) 

Consequently, the V function is independent of the 
particular choice of the N - 1 vertices when the V 
function is expressed in terms of external momenta 
using incidence matrix. 

By using (AI4), we have 

V = Iex.im; + pT'E~h-l,;,qTp. (AI8) 
;=1 

However, 

7'q'h-1€,'qT = €,~y(y-l'h-l(yT)-1)yT7~T 

.... ~ .... h ,-1 H'q'T. = E' • E , (AI9) 

i.e., the V function is also independent of the partic
ular choice of the N - 1 vertices when the U function 
is expressed in terms of internal momenta using in
cidence matrices. 

We know that2 

det (€,'qT'E'q) = Z det a(It} 

v(It} 

= total number of all possible choices 
of the tree sets. 

That mean that the matrix (,€'qT ,€'q) has an inverse, so 
that,by means of (AI4), we have 

.... Y .. +->h-1 ~ +->h,-1 __ +->y-1-'1-1(+-+yT)-1. " ". • 
~ p = 'i'"(,€"T,€")-1p". (A20) 

The relation between external momenta and in- Therefore, (41) can be written in the form 
ternal momenta is given by 

and 

'E == ('" "N). 
EJI EJN 

Since momenta are conserved, i.e., 

N 

~Pn = 0, 
n=1 

we need only 

where 

(A14) 

(A15) 

For different choices of N - 1 vertices, p~ is trans
formed according to 

Y:P~ -+ p'q, == 7~'Tp 
(AI6) 

(A21) 
By virtue of (A8), Eq. (A2I) gives 

+-+h -1 ( .... 'qTH'q)-l<->'qT(+-+ .... H
A 
.... -l<->T )<->'q( ..... 'qT-q)-1 = E E E ex. - ex.8 8 ex. E E E • 

(A22) 

APPENDIX B 

In this appendix, we give some simple examples to 
illustrate the use of the formulas (29) and its counter
part given in Appendix A and also to show a certain 
"dual" nature between the Poincare incidence matrix 
and the loop matrix associated with a Feynman graph. 
First, the usefulness of knowing the total number of 
possible tree graphs of a given Feynman graph lies in 
the fact that the U function can be evaluated by 
drawing all the possible tree graphs. [See Eq. (11) of 
Ref. 2.] It is easy to miss one in drawing the set of all 
tree graphs; thus it is useful to know the total number 
of trees we should have each time. 
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v
4 

FIG. 3. An 2 

example. 
4 

v2 
v3 3 

Our first example is the one given in Fig. 3. The 
corresponding Poincare incidence matrix is 

-1 0 0 1 0 

-1 1 0 0 0 

0 1 -1 0 0 -- 0 0 -1 1 0 (Bl) e = 
1 0 0 0 -1 
0 1 0 0 -1 
0 0 0 -1 1 

FIG. 4. Trees of Fig. 3. 

To get ~~, let us delete, say, the second column: 

-1 

-1 

0 

E'q= 0 

1 

0 

0 

Therefore, 

det (';~T';~) = ( ~ 
-1 

-1 

0 1 0 

0 0 0 

-1 0 0 

-1 1 0 (B2) 

0 0 -1 

0 0 -1 

0 -1 1 

2 -1 0 
o -1 _1) 

= 24, (B3) 
-1 3-1 

o -1 3 

i.e., there are 24 trees from Fig. 3. They are given in 
Fig. 4. 

On the other hand, one can use Eq. (29). If we draw 
the loops as in Fig. 5, then we have the loop matrix 

<-+ 
B = 

FIG. 5. Loop 
matrix analysis of 
Fig. 3. 4 

1 

0 

0 

0 

1 

0 

1 

0 0 

-1 0 

0 1 

0 -1 (B4) 

-1 0 

-1 

0 -1 
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FIG. 6. An example. 

Therefore, 

3 -1 -1 
det (eTf) = -1 3 -1 = 24, (85) 

-1 -1 4 

which agrees with the result of (B3). However, we can 
easily see in this example that it is slightly easier to use 
loop matrix '6 than to use Poincare incidence matrix € 
because in the former case we deal with an L x L 
matrix (L == total number of independent loops), 
while in the latter case we deal with a (N - 1) x 
(N - 1) matrix (N == total number of vertices in the 
graph). Therefore, a choice between the two ways of 
calculation depends on whether 

L > N - 1 or L < N - 1. (B6) 

The following trivial examples show not only the 
extreme cases of favoring one method over another 
but also illustrate the "duality" between the two 
graphs. 

Consider an r-sided polygon graph of Fig. 6. 
It is trivial that 

<-+ 
c: = 

1 

1 

(B7) 

FIG. 7. An example. 

where'; has r elements 1. Thus, 

det (6T':) = r. (BS) 

On the other hand, if one wants to use Poincare in-
cidence matrix, the computation is not simple at all. 
For instance, let us consider r = 5: 

1 -1 0 0 0 

0 1 -1 0 0 
<-+ 0 0 -1 0 (89) E = 

0 0 0 1 -1 

-1 0 0 0 1 

which leads to, by deleting the last column of':, say, 

2 -1 0 0 

det (,:klTE'kI) = -1 2 -1 0 
= 5. (810) 

0 -1 2 -1 

0 0 -1 2 

This is certainly a ridiculous way of doing a trivial job. 
The last example is sort of "dual" to that of Fig. 6. 

Consider now the graph given in Fig. 7. 
In this case, using Poincare incidence matrix, we get 

+-+ 
E = 

1 -1 

1 -1 

1 -1 

(Bll) 
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5 
FIG. 8. An example. 

an r X 2 matrix, i.e., 

1 

1 

with r elements, which trivially leads to 

<-+qT<-+!:i det (0: 0:) = r. 

On the other hand, it is not simple to evaluate it 
with loop matrix method. For instance, consider the 
case of r = 5; then for the loops drawn in Fig. 8 we 
have 

-1 -1 -1 -1 

1 0 0 0 
H 0 1 0 0 (BI4) e = 

0 0 1 0 

0 0 0 1 

Therefore, 

2 1 1 1 

det (eTe) = 
1 2 1 1 

1 1 2 
= 5, 

1 

1 1 1 2 

which is again a roundabout way of getting the trivial 
result (B13). 

(BI2) 1 N. Nakanishi, Progr. Theoret. Phys. (Kyoto) Supp1.18, 1 (1961). 
2 Y. Chow, 1. Math. Phys. 5,1255 (1964). 
S Y. Chow and D. J. Kleitman, Progr. Theoret. Phys. (Kyoto) 32, 

950 (1964). 
4 Y. Chow, J. Math. Phys. 7,1158 (1966). 
6 K. Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 (1958). 
6 A. A. Loganov, I. T. Todorov, and N. A. Chernikov, Zh. Eksp. 

Teor. Fiz. 42, 1285 (1962) [Sov. Phys. JETP 15, 891 (1962)]. 
, I. T. Todorov, Doctoral dissertation, Joint Institute of Nuclear 

(B13) Research, Report P-1205, Dubna, 1963, and literature cited there. 
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The propagation of an optical pulse through a system of two-level atoms embedded in a host medium 
of constant refractive index n is considered. It is shown that the values of the solutions of the nonlinear 
system of coupled Maxwell and Schrodinger equations at time t at a point z, in the McCall-Hahn 
approximation, depend only on data contained in the interval [z - c/nt, zl at t = O. Thus, information 
cannot be transmitted through this medium with velocity greater thanc/n. Apparent violations of this prop
erty in the case of self-induced transparency are explained. 

I. INTRODUCTION 

The problem of how causality requirements are 
satisfied in the propagation of light through a material 
medium has been considered since the beginning of 
this century. In 1914, Sommerfeld and Brillouinl in-

vestigated the propagation of an electromagnetic 
wavetrain with a sharp front through a medium with 
a refractive index given by the Lorentz dispersion 
formula. They showed that, in spite of the fact that 
both the phase and the group velocity can exceed c in a 
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region of anomalous dispersion, the front of the wave
train cannot propagate faster than c. A far-reaching ex
tension of this result was obtained by Kramers2 and 
Kronig,3 who derived a general condition that must be 
satisfied by the refractive index of any linear medium, 
the dispersion relation,4 in order that the requirements 
due to causality be satisfied. 

The results of the recent investigations on the 
propagation of intense laser pulses in resonant 
media5- 12 suggest that the causality problem should be 
reexamined in this new domain. In fact, the inter
action between the intense laser field and the resonant 
medium is described by an essentially nonlinear system 
of coupled Maxwell-Schrodinger equations, so that 
the usual causality criterion expressed by the Kramers
Kronig dispersion relation, which is valid only for 
linear media, cannot be applied. 

It has been found5 •6 •9 that, in media containing 
excited atoms, there seems to exist, under certain 
conditions, the possibility of pulse propagation with 
velocities greater than c. This would not occur for 
pulses with sharp wavefronts, but rather for pulses 
with tails that (though very weak) would extend to 
infinity. 

Due to the absence of sharp fronts, the fact that the 
bulk of such a pulse would travel faster than c does not 
constitute a clear cut violation of causality. In fact, 
it was suggested by Basov et al.6 that this effect can be 
explained in terms of stimulated emission induced 
by the weak leading edge of the pulse (cf. Sec. IV 
below). 

With the discovery of self-induced transparency by 
McCall and Hahn,7.s the possibility was raised that 
such "fast" pulses might propagate without change of 
shape, as if the medium were transparent. Again, these 
self-transparent pulses, as well as other "fast" solu
tions found by Eberly9 and Crisp,lo would not have 
sharp wavefronts, so that it is not a priori clear 
whether or not their existence would constitute a 
violation of causality. 

It should be emphasized that, even for pulses with
out sharp fronts, the problem of causality can still be 
discussed. What is required is that influence shall not 
be propagated faster than c. Whether or not this 
requirement is satisfied can be determined quite 
generally by investigating the domain of dependence 
(Ref. 13, pp. 209, 438) of the solution at a given space
time point on data given at previous times (e.g., for 
the ordinary wave equation, this domain is the 
backward light cone). 

To the best of our knowledge, it has not been proved 
that all solutions of the nonlinear equations employed 
in the theory of self-induced transparency satisfy the 

causality condition in the above sense. On the other 
hand, it is not inconceivable that causality-violating 
solutions might exist, in view of the nonrelativistic 
character of the Schrodinger equation, as well as the 
use of several approximations in the derivation of the 
equations. It seems worthwhile, therefore, to in
vestigate this problem. The discussion of causality for 
a nonlinear system can also be of some methodological 
interest. 

The basic equations of the theory of self-induced 
transparency are reviewed in Sec. II. The domain of 
dependence of the solutions is derived in Sec. III. 
The result is that all solutions of the equations are 
indeed causal. In Sec. IV, this result is applied to self
transparent "fast" pulses, providing a justification of 
Basov's argument in this case. Finally, some comments 
are made about the reasons for the validity of the 
obtained results. 

II. THE McCALL-HAHN EQUATIONS 

Let us consider an infinite nondispersive host 
medium with refractive index n, in which is embedded 
a uniform distribution of N two-level atoms per unit 
volume. Let the atomic energy levels be ±tliwo and 
let p be the magnitude of the transverse components 
of the transition electric dipole moment. The electric 
field is taken as a slightly perturbed, circularly 
polarized plane wave propagating in the z direction, 

E(z, t) = E(z, t){cos [wt - kz + c/>(z)]x 

+ sin [wt - kz + c/>(z)]y}, (1) 

where both E and c/> are assumed to be slowly varying 
functions of their arguments and c/> is assumed to be 
time independent, so that frequency modulation and 
pulling effects are disregarded. 

Let u and v be the dispersive and absorptive com
ponents, respectively, of the transverse electric polari
zation density associated with the two-level atoms, 
and let W be their energy density. These quantities 
can be combined together to define a pseudopolariza
tion vector14.1fi 

where K = 2p/li. In a frame of reference (x', y', z) 
rotating about the z axis with angular velocity OJ, this 
vector satisfies the torque equationI4

•
15 

dP = P x [KEi' + (w - wo)i]. (2) 
dt 

The effect of inhomogeneous broadening on the 
system of two-level atoms is taken into account by 
introducing a normalized atomic line-shape function 
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g(y), y = Wo - w, with the polarization now given by unknowns: 

P +(z, t) = P .,(z, t) + iP,uCz, t) 

=LXloog(Y)[U(Y, z, t) + iv(y, z, t)] 

x exp {i[wt - kz + c/>(z)]} dy. 

By combining the above results with Maxwell's 
equations and neglecting higher-order terms (slowly 
varying envelope and phase approximation), one 
obtains the following set of equations7

•8 : 

OU I U I at = -ylvi - T2 ' 

oVI K2 VI 
- =YIUI+-EWz --, at OJ T2 

OWl W - Wo 
- = -woEvl 
ot Tl 

(6) 

(7) 

(8) 

(9) 

oe n ae 217Wfoo - + - - = - v(y, Z, t)g(y) dy, 
OZ C ot nc-oo 

(3) where the only nonlinear terms are those in eWI and 
Ev l • 

As was mentioned in the Introduction, the non-
oc/> W

2
foo k - e = -217 2" u(y, z, t)g(y) dr, oz c -00 

au U 
- = -yv --, at T2 

OV /(2 V 
- = yu + - &W - - , at w T2 

(4) linearity of this system prevents us from applying the 
well-known causality criteria associated with disper
sion relations. However, it is possible to determine the 
domain of dependence by a technique similar to that 
employed in the uniqueness proof for quasilinear 

oW W - Wo 
- = -wv&- , 
ot T1 

(5) 

where we have introduced phenomenological Bloch
type damping terms, associated with the relaxation 
times T1 and T 2 • 

Equations (3)-(5) are the McCall-Hahn equations. 

III. PROOF OF CAUSALITY 

As mentioned in Sec. I, the problem of causality can 
be reduced quite generally to the determination of the 
domain of dependence of the solutions to the above 
equations. Equations (3) and (5) form a system of 
integral and partial differential equations for the 
unknowns &, u, v, and W, whereas Eq. (4) plays the 
role of a subsidiary condition, since c/> has been as
sumed to be time independent. 

To simplify the treatment, we approximate the inte
gral in (3) by a sum of m terms, where m can be taken 
arbitrarily large: 

0& n 0& 217W m ;- + - -;- = - I V(YI, z, t)g(YI)dYI' 
uZ cut nc 1=1 

We also introduce the new unknowns 

UI(Z, t) = u(yl' Z, t), VI(Z, t) = V(YI' Z, t), 

WI(Z,t) = W(Yz, z, t), 1= 1,2,··· ,m. 

We can then write (3) and (5) as a system of 3m + 1 
semilinear13 partial differential equations in 3m + 1 

systems (Ref. 13, p. 448). 
Let El , ul.l' Vl,l' WI.1 , and E2 , UI.2 , VI.2, WI.2 be 

two solutions of the system which, at t = 0, coincide 
at all points of the closed interval [zo, Zl]' The new 
unknowns 

E* = E2 - El , 

v: = VI.2 - VI,l, 

ut = UI,2 - UI,l, 

wt = ~,2 - ~,1 (10) 

then satisfy the linear equations (6) and (7), together 
with the equations 

a * 2 * VI * /( * * VI -a = YIU I + -(E2WI + WI,le) --, 
t Wo T2 

oW* * * W: - = -wo(E2vZ + vilE) - - , (11) 
ot ' TI 

which are also linear in the above unknowns. 
Considering e2 , vt,l,and Wl,l as known functions of 

(z, t), we see that the unknowns (10) are solutions ofa 
completely hyperbolic linear homogeneous system13 

satisfying the initial conditions 

E*(z, O) = uz*(z, 0) = Vj(Z, 0) = ~*(z, 0) = 0 

for all z in [zo, Z1]' It follows (Ref. 13, p. 445) that 
S*, ut, vt, and Wi are identically zero in a region of 
the upper (z, t) plane bounded by the z axis and by 
two characteristic curves passing, respectively, through 
Zo and 2 1 , 

Since the characteristic curves for the system (6), 
(7), and (11) are given by 

2 = Cl and Z - (cfn)t = C2 (12) 
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(where C1 and C2 are constants), the above region is 
the right triangle bounded by the z axis and by the 
straight lines 

z = Zl, Z = Zo + (e/n)t. 

We conclude that the values of the solution of 
(6)-(9) in this triangle are uniquely determined by the 
initial data in the interval [zo, ZlJ. The domain of 
dependence of a given point (z*, t*) is, therefore, the 
angular region of the (z, t) plane 

z* + (e/n)(t - t*) ~ z ~ z*, t ~ t*. (13) 

Since this region is contained within the backward 
light cone with vertex at (z*, t *), the proof of causality 
is completed. 

IV. THE SELF-TRANSPARENT SOLUTIONS 

In the treatment ot self-induced transparency/'s 
solutions of the McCall-Hahn equations of the form 
e = S(z - Vt) have been found, corresponding to 
an envelope shape which is preserved and propagated 
with velocity V. For a hyperbolic secant-shaped pulse 
with all the atoms initially (t -'>- - (0) in the ground 
state, it is found that V < e/n. This retardation arises 
from the continuous absorption of energy by the atoms 
from the leading edge of the pulse and its later 
reemission into the trailing edge in such a way that the 
pulse shape is preserved; ultimately (t -'>- (0), all the 
atoms return to their ground state. 

If all the atoms are initially in the excited state, the 
converse process takes place: The leading edge of the 
pulse gives rise to stimulated emission by the atoms, 
and the energy is later reabsorbed from the field to 
form the trailing edge. This gives rise to a velocity 
V> e/n (and, eventually, greater than e). Other 
shape-preserving solutions with V> e/n have also 
been found. 9•10 It must be emphasized that spontan
eous emission, as well as other damping terms included 
in (5), are neglected in the treatments that led to these 
results. 

Without going into the question of the stability of 
such "fast" solutions, that would involve a detailed 
examination of the effect of neglected terms, it follows 
from the results of Sec. III that no violation of 
causality is involved. The existence of solutions of the 
form e(z - Vt) does not imply a causal relation 
between the points (z, t) and (z - Vt', t - t'). In the 
case of hyperbolic-secant pulses with V> eln, for 
example, the domain of dependence (13) of the peak 
of the pulse at time t does not contain the peak of the 
pulse at any previous time, but only a part of its lead
ing edge. 

What propagates with velocity V, in this case, is 
only the pulse shape and not the energy. lfwe consider 
two times t and t' (t > t'), at which the pulse is peaked 
at z and z', respectively, it is not the energy around z 
that propagates to z' during the time interval t - t'; 
rather, the excitation energy that was already con
tained in the atoms around z' is triggered by the weak 
leading edge of the pulse and released into the field 
to form the peak at t'. This effect, as ought to be 
expected, depends on the pulse width, the "propaga
tion velocity" V approaching e/n as the width goes to 
zero. 

An electric field pulse with a sharp wavefront, i.e., 
identically vanishing for z > Vt, might be considered 
to define the velocity of propagation of a signal. In this 
case, we always have V = eln, as may readily be seen 
from the fact that characteristic curves [cf. (12)] are 
the only branch curves for a differential system,13 
i.e., the curves along which two different solutions can 
be joined together. 

Another point that deserves some comment is the 
independence of the values of the solutions at (z, t) 
with respect to data given at t' < t, z' > z, which is 
related to the characteristics z = C2 in (12). This is a 
consequence of the slowly varying envelope approxi
mation, in which contributions from back scattered 
radiation16 are neglected, as well as of the assumed 
absence of interaction among the atoms (other than 
through the common radiation field). This feature, 
therefore, is not likely to appear in more general 
treatments. 

A final comment about the reasons why causality 
requirements are actually met in this model is in order. 
The nonrelativistic character of the Schrodinger 
equation does not lead to any limiting velocity. How
ever, this property is not manifested when the atoms 
are treated as pointlike particles, interacting only 
through the common radiation field. In this sense, 
therefore, the equations are causal not so much in 
spite of the approximations made in their derivation, 
but rather because of them. 
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A labeling for the basis vectors in a general unitary irreducible representation of U(n + m) is intro
duced with the Casimir operators of the subgroup U(n) x U(m) diagonal. The multiplicities are calcu
lated in the reduction U(n + m) 1 U(n) x U(m) for some special cases. 

1. INTRODUCTION 

The irreducible representations of the unitary and 
orthogonal groups have already been constructed 
explicitly twenty years ago by Gel'fand and Zetlin,l 
who introduced the triangular Gel'fand-ZetIin pat
terns for the labeling of the basis vectors. In the case 
of U(n), this labeling is based on the Weyl branching 
rule. 2 In Ref. 1, the matrix elements of the generators 
of the corresponding Lie algebras are given without 
derivations. These results were later derived by Nagel 
and Moshinsky3 and by Baird and Biedenharn4 for 
U(n), using boson operator techniques. For the group 
SO(n), this has been done by Pang and Hecht5 and 
Wong.!; 

Common to all these papers is that the problem is 
treated using the canonical chain of subgroups 

U(n) :::> U(n - 1) :::> ••• :::> U(I), 

SO(n) :::> SO(n - 1) :::> ••• :::> SO(2), 

respectively, and diagonalizing the Casimir operators 
of these subgroups. During the past years it has 
become important to have explicit reductions also in 
the cases U(n + m) ! U(n) x U(m) and SO(n + m) ! 
SO(n) x SO(m), i.e., the Casimir operators of the 
subgroup U(n) x U(m) and SO(n) x SO(m) are 

diagonalized. In particle physics, especiaIly popular 
have been the choices U(2n)! U(n) x U(n) , n = 
2, 3, 6, and corresponding noncompact forms, e.g., 
U(3, 3) ! U(3) x U(3). In this paper, we study the 
general case U(n + m) ! U(n) x U(m). 

In Sec. 2, we give a complete set of labels for the 
basis vectors in the reduction U(n + m) ! U(n) x 
U(m). Using this set of labels, we derive formulas 
(Sec. 3) for the multiplicities of the UIR's of 
U(n) x U(m) in a UIR of U(n + m) in the foIlowing 
cases: (a) U(n + 2) ! U(n) x U(2) and (b) A4 = A5 = 
... = An+m = 0 (the Ai are the row lengths in the 
corresponding Young diagram equaling the highest 
weights). We complete Sec. 3 with a discussion of the 
physicaIly interesting case U(6) ! U(3) x U(3).7 

2. A FORMAL BASIS FOR THE REDUCTION 
U(n + m) -!- U(n) x U(m) 

In the case U(n):::> U(n - 1) :::> ••• :::> U(1), the 
labels for the basis vectors are given by a set of 
nonnegative integers mij' i = 1, 2,"', n, .i = 1, 
2, ... , i, with the following properties1 •2 : 

(i) the numbers mkj , .i = 1, 2,···, k, are the 
highest weights for a UIR of the subgroup U(k); 

(ii) mk+li ~ mki ~ mk+1i+l' 
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1. INTRODUCTION 

The irreducible representations of the unitary and 
orthogonal groups have already been constructed 
explicitly twenty years ago by Gel'fand and Zetlin,l 
who introduced the triangular Gel'fand-ZetIin pat
terns for the labeling of the basis vectors. In the case 
of U(n), this labeling is based on the Weyl branching 
rule. 2 In Ref. 1, the matrix elements of the generators 
of the corresponding Lie algebras are given without 
derivations. These results were later derived by Nagel 
and Moshinsky3 and by Baird and Biedenharn4 for 
U(n), using boson operator techniques. For the group 
SO(n), this has been done by Pang and Hecht5 and 
Wong.!; 

Common to all these papers is that the problem is 
treated using the canonical chain of subgroups 

U(n) :::> U(n - 1) :::> ••• :::> U(I), 

SO(n) :::> SO(n - 1) :::> ••• :::> SO(2), 

respectively, and diagonalizing the Casimir operators 
of these subgroups. During the past years it has 
become important to have explicit reductions also in 
the cases U(n + m) ! U(n) x U(m) and SO(n + m) ! 
SO(n) x SO(m), i.e., the Casimir operators of the 
subgroup U(n) x U(m) and SO(n) x SO(m) are 

diagonalized. In particle physics, especiaIly popular 
have been the choices U(2n)! U(n) x U(n) , n = 
2, 3, 6, and corresponding noncompact forms, e.g., 
U(3, 3) ! U(3) x U(3). In this paper, we study the 
general case U(n + m) ! U(n) x U(m). 

In Sec. 2, we give a complete set of labels for the 
basis vectors in the reduction U(n + m) ! U(n) x 
U(m). Using this set of labels, we derive formulas 
(Sec. 3) for the multiplicities of the UIR's of 
U(n) x U(m) in a UIR of U(n + m) in the foIlowing 
cases: (a) U(n + 2) ! U(n) x U(2) and (b) A4 = A5 = 
... = An+m = 0 (the Ai are the row lengths in the 
corresponding Young diagram equaling the highest 
weights). We complete Sec. 3 with a discussion of the 
physicaIly interesting case U(6) ! U(3) x U(3).7 

2. A FORMAL BASIS FOR THE REDUCTION 
U(n + m) -!- U(n) x U(m) 

In the case U(n):::> U(n - 1) :::> ••• :::> U(1), the 
labels for the basis vectors are given by a set of 
nonnegative integers mij' i = 1, 2,"', n, .i = 1, 
2, ... , i, with the following properties1 •2 : 

(i) the numbers mkj , .i = 1, 2,···, k, are the 
highest weights for a UIR of the subgroup U(k); 

(ii) mk+li ~ mki ~ mk+1i+l' 
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These numbers can be arranged in a pattern (GZ 
patternl

), 

such that every number is greater than or equal to 
the number above right and less than or equal to the 
number above left. Now we would like to have the 
same kind of pattern in the general case U(n + m) ! 
U(n) x U(m). U(n + m) operates in a (n + m)
dimensional complex vector space; U(n) transforms 
the first n components and U(m) the last m com
ponents of an (n + m)-component vector. To begin 
with, we have two small GZ patterns, namely, those 
associated with the UIR's of U(n) and U(m). Then 
we have n + m labels furnished by the highest weights 
of the group U(n + 11J). But we need more labels, 
because, in general, a UIR of U(n) x U(m) occurs 
more than once in a UIR of U(n + m). 

Let [/;], i = 1, 2,"', n (respectively [j;J, i = 
1,2, ... ,m) be the row lengths in the Young diagrams 
associated with the UIR's of U(n) [U(m), respectively] 
and [A'i], i = 1, 2,'" , n + m, for U(n + m). As 
shown in Ref. 8, the multiplicity mli). giving the 
number of times the representation [I;] X [j;] of 
U(n) x U(m) occurs in [A'i] is equal to the multi
plicity of [Ai] in the direct product 

[11,12,···,ln'~J 
m zeros 

X [jl'h,···,jm'~J 
n zeros 

of two UIR's of U(n + m): 

[Ii' 0] X [j;,OJ=Imz;;.p.;], (1) 
). 

Let us recall how the direct product of two irreducible 
representations of the unitary group is reduced.9 One 
proceeds as follows: one fills the boxes in the first row 
of the Young diagram [ji] with letters a, the second 
row with b's, and so on. Then, one forms new 
Young diagrams from the diagram [Ii] by adding 
first the boxes which contain a's, then the boxes 
filled by b's and so on, in every possible way subject 
to the following three conditions: 

(i) the new diagram should be a regular Young 
diagram, i.e., Al ~ .1.2 ~ ••• ~ An+m; 

oil II a a 101 
oil 12 .. a a alb b 

a a a alb b b 
· b b b • · • • · , 

I I I 

'~k2-'" , . 
• 
!,' ... 0IIf---- k: -----.4.~ 

FIG. l. Definition of multiplicity labels q and k~. 

(ii) no letter should be repeated in the same 
column; 

(iii) reading from right to left and from top to 
bottom in the new diagram, the number of a's should 
be ~ the number of b's ~ the number of e's ... at 
every step. 

Now we introduce the multinlicity labels k~ i = 1 2 r 3" , 

... , m - 1, and j = 1, 2, ... , n. The number kl is 
i 

defined as the length of the (j + I )th row in the 
intermediate diagram after insertion of the letters a. 
In a similar way, the number k; gives the length of 
the (j + 2)th row after insertion of the b's, and so on. 
Because of (i)-(iii), we have some restrictions on the 
numbers k;, in addition to the requirement that the 
row lengths in the new diagram should be [Ai). Let us 
first study the caselO U( 4) ! U(2) x U(2) as an 
example and then generalize to arbitrary m and n. 
From (i), (ii), and the requirement mentioned above 
follow the inequalities 

.1.2 ~ k} ~ .1.3 ~ k~ ~ .1.4, 

Al ~ 11 ~ k~ ~ 12 ~ k~. (2) 

Let us now arrange the numbersll Ai, k;, and Ii into 
a pattern in the following way (see Fig. I): 

[

A2 A3 A,4] 
Al k~ k~. 

11 12 

(3) 

From the inequalities (2), a GZ-type condition 
follows, namely,that every number in the pattern (3) is 
less than or equal to the number above left, and 
greater than or equal to the number above it. Further, 
from (iii) (see Fig. 1) there follows 

;'2 - k~ ::;; Al - 11> 

~+~-~-~::;;~+~-~-~. ~ 
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Now let us generalize to arbitrary nand m. We have 
the following pattern: 

Am Am+l Am+2 A",+n 

Am- 1 km- 1 
1 

k~-1 km- 1 
l' 

A",_2 k,{,-2 k';-2 km- 2 
l' 

(5) subject to the above mentioned conditions and 
vice versa; from this follows 

(a) the pattern (5) together with the GZ patterns 
for the subgroups U(n) and U(m) furnishes a solution 
to the labeling problem in the reduction12 

U(m + n) ! U(m) x U(n); 

(5) (b) the multiplicity ml;l is just the number of ways 

1" 
Again, from (i) and (ii) we can derive a "betweenness 
condition." Next, we introduce the notation 

;-1 ; 

S~ = Ai + L k~ - L k~-I; i = 1, 2, ... , m, 
p=1 p=1 

j = 1, 2, ... , n, (6) 

k~ == Ii and k;" == Am+i' 

In other words, SJ is the sum of j first numbers in 
the (i + 1 )th row from the bottom minus the sum of 
numbers immediately below right. Corresponding to 
(4), we have now the conditions 

S~+1 ::;; S~, i = 1, 2, ... , m - 1; j = 1, 2, ... , n. 

(7) 

The highest weights of the subgroup U(m) are given by 

(8) 

Let us summarize: To every possible way of con
structing the diagram [Ai] from [Ii] and [ji], through 
the procedure explained immediately after Eq. (1), 
there exists one and only one way to fill the pattern 

(j;)min is the smallest value for which mw > O. 

B. A4 = As = ... = An+m = 0 

Now the nonzero corner of the pattern (5) is simply 

[

AS 1 A2 ki 
1 1 • 

Al kl k2 

11 12 1 

(14) 

Because of (8) only one of the k; is independent; we 
may take this as k~ == x. From (8), it also follows that 

!A; =! Ii + !ji' (15) 

to fill up (5) with [I;], [j;], and [Ai] fixed. 

3. SOME SPECIAL CASES 

A. U(n + 2) ~ U(n) x U(2) 

In this case, there is only one "multiplicity row" in 
our pattern : 

[

).2 Aa A4 ... An 1-2] 
Al k~ k~ ... k!. . 

11 12 In 

(9) 

For the representation [Ii] of U(n) to appear in [Ai], 
one can easily see that the conditions 

Ai ~ Ii ~ AH2 (10) 

are necessary and sufficient. The conditions for ji 
(with the Ii fixed) are more complicated. Note that h 
is not independent: From (8) there follows 

(11) 
We have 

n 

(jI)max = Al + L (min {Ii' AHI} - Ii)' (12) 
i=1 

One can also derive a lower bound for h, but, 
because of (7), it is very complicated and is therefore 
not repeated here. According to (b) and (7), mw is 
given by 

(13) 

Using (8), we read the "betweenness conditions" as 

la ::;; A2 + Aa - j2 - ja - x ::;; min {Aa - j3, 12}, 

max {f2' Aa - ja} ::;; x ::;; min {A2' II}, Al ~ II' 
(16) 

From (7), it follows that 

A2 - x ~ h , Al - 11 ~ A2 - x, 
Al - II - 12 ~ j2 - x. (17) 

From (16) and (17), we can reduce the multiplicity: 

mill = min {II, A2 - ja, A2 + Aa - j2 - ja -fa} 

- max {/2' Aa - ja, A2 + 11 - AI' II - Al 
+ 12 + h, A2 - j2, 13 + h - Aa + II} + 1. (18) 
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If mli). S 0, that means that the representation 
[ji] X [Ii] does not occur in [AJ 13 

C. U(6)U j, (3) x U(3) 

In this case, the calculations are already very 
tedious. Finding the multiplicities is equivalent to 
solving a large set of inequalities, namely,(7) and the 
"betweenness conditions." That is why it is appropri
ate to use an automatic data machine, especially when 
handling a big class of representations. Using the 
Elliott 803 computer, we calculated the multiplicities 
for all representations with Al S 3 and A6 = 0 [if we 
restrict our attention to the subgroup SU(6), we can 
always put A6 = 0]. There are 55 such representations. 
In only ten cases were there mw bigger than one. 
These are (the last number is the dimension) 

(3,2,1,1,1,0;384), 
(3,2,2,1,1,0;540), 
(3,2,1,1,0,0; 840), 
(3,3,3,2,1,0; 896), 
(3,3,2,1,1,0; 1050), 

(3,2,2,2, 1,0; 384), 
(3,3,2,2,1,0;840), 
(3,2,1,0,0,0; 896), 
(3,2,2,1,0,0; 1050), 
(3,3,2,1,0,0; 1960). 

4. CONCLUSION 

In this paper, we have solved the labeling problem 
in U(n + m) ! U(n) x U(m). The matrix elements of 
the generators remain to be calculated. One method 
would be to modify somehow the boson operator 
calculus used in Refs. 3 and 4. The difficulty is that 
the success of this method in the case U(n) => U(n - 1) 
is intimately connected with the fact that this reduc
tion is multiplicity free; in the case U(n + m) ! 
U(n) X U(m) , there exists a large amount of arbi
trariness in defining the lowering operators for the 
highest weights of the subgroup U(n) x U(m). 
Perhaps the only sensible way is to try to guess the 
correct form of the matrix elements and then prove 
the commutation relations. 

The knowledge of matrix elements in the compact 
case is clearly important also in constructing represent
ations of the noncompact groups U(n, m). The question 
is: What representations of U(n, m) can be achieved 

through analytic continuation from those of U(n + m) 
in U(n) x U(m) basis? 

We hope to discuss the cases SO(n + m) ! SO(n) x 
SO(m) and Sp(2n + 2m) ! Sp(2n) x Sp(2m) in a 
future publication. 
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In this paper, we construct all possible groups of motion (symmetry groups) for empty Einstein spaces 
admitting a diverging, geodesic,and shear-free ray congruence. (Minkowski space is excluded throughout 
the discussion.) It is proved that any such Einstein space cannot admit a symmetry group with dimension 
greater than four. Although the field equations are not solved completely for spaces with groups of 
dimension one or two, a generalization of the Kerr spinning-mass solution is obtained from the 2-
dimensional class. It is shown that all such spaces with 4-dimensional symmetry groups are well known: 
Schwarzschild, NUT (Newman, Unti, and Tamborino), and a particular hypersurface orthogonal 
Kerr-Schild metric. The only member of these spaces admitting a 3-dimensional symmetry group is a 
Petrov Type III hypersurface orthogonal metric. 

1. INTRODUCTION 

In a previous paper by Oebney, Kerr, and SchiW 
(hereafter referred to as OKS), we derived the field 
equations for empty Einstein spaces containing a 
diverging shear-free ray congruence. In this paper, 
we study the possible groups of motion'S which such 
a metric (t, say) admits. We find that, when the 
dimension of S is greater than two, it is possible to 
find all possible solutions but that, for lower dimen
sional symmetry groups, the field equations reduce to 
ordinary differential equations which we have not 
always been .able to solve completely. 

We follow the notation of OKS so that {ea}{Ea} are 
dual bases in the tangent and cotangent planes, 
respectively, gab is the metric tensor, and the {wab } 

are the connection forms 

Wab = gacr~dEd = -eaJl;Ve~ dx v
• (1.1) 

It is assumed that {ea} is a null basis, so that the 
metric is 

(1.2) 

Both E3 and E4 are real vectors, while E1 and E2 are 
complex conjugates El = €2' (We use a bar to denote 
complex conjugation. With the dual basis {Ea}, we use 
the convention Ea == gabEb.) 

The vector e4 is assumed to be a multiple Oebever 
vector, and so the only independent nonzero com
ponents of the curvature tensor are 

e(S) = 2R4231 ' 

em = 2t(R1231 + RS431 ) , (1.3) 

em = 2Rs131 . 

[The notation here is that of Goldberg and Sachs2 

with the exceptions that (0 E3 and E4 are exchanged 

and (ii) numerical multipliers are not the same since 
there is always a freedom of choice of the basis for 
the space of 2-forms A2(cotangent plane).] The 
proper orthochronous Lorentz transformations pre
serving the direction of e4 can be written as 

ei = e-iB(e l + ye4), 

e: = e-A (e3 - ye1 - ye2 - yye4), (1.4) 

where A and B are real and y is complex. [Through
out this paper, we endeavor to use Latin (Greek) 
letters for real (complex) functions.] 

The Cartan structural formulas are 

dE
a + w~ A E

C = 0, 

dw~ + (J)~ A w~ = tR~cdEc A Ed. 

Since the gab are assumed constant throughout this 
paper, the Wab are antisymmetric: 

dgab = 0, Wab = -Wbn • 

As was seen in OKS, the most important of the 
Cartan equations is 

dW42 + W 42 A (W12 + W 34 ) = C(3)E4 A E2' (1.5) 

The components of W42 are the optical scalars of 
Sachs. 3 In particular, 

r 241 = Z = complex divergence, 

r 242 = (j = shear, 

r 244 = K = geodesy. 

The Goldberg-Sachs theorem2 states that, if ¢ is an 
empty Einstein space and e4 is a multiple Oebever 
vector, then it must be geodesic and shear free. 
Consequently, 

(1.6) 

2807 
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and so, from Eqs. (1.5) and (1.6), 

dW42 A wn = C(3)E4 A E2 A W42 = 0. 

From this, there exist two locally smooth complex 
functions rp and ~ such that 

dwu = -e4> d~. 

Under a tetrad transformation (1.4), W 42 trans
forms as 

and so, by taking A + iB + rp = 0, we can arrange 
that W42 is a perfect differential; 

(1.7) 

Also, since we are only investigating spaces for which 
the complex divergence is nonzero and since 

r:23 = eW
( flm - '9z), 

(1.8) 

it is possible to transform r 423 to zero (by solving 
for y), so that 

(1.9) 

The group of transformations which preserve this 
condition must satisfy 

w:4 = eA+iIJ d~ = d~*, 
which gives 

~* = <l>m, (LlO) 

e"HiB = a,<l> = <l>~, y = 0, 

where <l> is an analytic function of ~. 
The two functions ~ and ~ are used as local co

ordinates. As was proved in OKS, it is possible to 
introduce a real function u satisfying 

eaU == ea"u.1l = 1, e4u = 0. 

The Oebever vector E4 can then be written as 

E4 = du + n d~ + n d~, (1.1 1) 

where 0 is a smooth function. We do not use the 
fourth coordinate of OKS but, instead, that of Kerr,4 
v = Re (Z-1), since its transformation properties are 
simpler. It was shown in Ref. 4 and OKS that the 
metric can be written as a function of 0 and another 
function I-' (roughly speaking, it is the complex mass): 

£1 = (v + d) d" 
103 = dv - 2 Re {[(v - d)Q + i5d] d,} 

+ Re (tsn + I-'Z)f(. (1.12) 

The operator i5 is given by 

(1.13) 

a "dot" denotes differentiation with respect to u, 
e.g., Q = a"o, and Z and d are given by 

z = (v + d)-I, 

d = iIm (60) = -~. (1.14) 

[t5 == D in OKS; i.e., e1i'all = z(a - (3av), where 
Ea = dl' + (3 d~ + P d~ + HE(. Hence, as an operator 
on functions independent of v, i5 = Z-le1 .] The v 
dependence of the metric is shown explicitly; in 
particular, both ft and 0 are independent of this 
coordinate: 

I-' = ft(~, t u), 0 = Oa, t u). 

These functions have to satisfy the field equations 

i5ft = 30ft, 

1m (I-' -~ ~t50) = 0, 

au(1-' -~ ~i50) = lau t501 2
• 

(l.I5a) 

(U5b) 

(U5c) 

It was also shown in OKS that the tetrad is paraIlel
propagated along the Oebever congruence e4, but we 
do not need this result. Finally, the independent 
components of the conformal tensor are 

C(3) = I-'Z3, 

C(2) = -(8aui50)z2 + (terms = 0 if C(3) = 0), 

C(1) = (a uaut50)z + (terms = 0 if C(3) = Cm = 0), 

(1.16) 

and so $ is fiat iff the following equations are satisfied: 

RabCd = O<=>ft = Eaut50 = a"au i50 = O. (1.17) 

Henceforth, it is assumed that ¢ is nonfiat, so that at 
least one of the conditions on the right of Eq. (1.17) 
is not satisfied. 

2. THE GROUP e 
The coordinate system and tetrad is not defined 

uniquely and, in fact, cannot be if the manifold 
admits a symmetry. In this section, we determine the 
residual group of coordinate and tetrad transforma
tions which preserve the coordinate conditions. Since 
we eventually restrict our attention to infinitesimal 
transformations, we only consider those which lie in 
the identity component, e (say). 

Suppose {x*a, e:} is another set of coordinates and 
tetrad satisfying the conditions of the last section. 
It has already been seen that ~* = <l>(~) and that e: is related to ea by Eq. (1.4), with y = 0 and 
A + iB given by Eq. (1.10). The defining equation for 
u, Eq. (1.11), gives 

£: = du* + 0* d~* + (2* d~* = l<I>d £4' (2.1) 
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The general solution of this equation is u* = 
l«I>eI (u + S), where S is a real function of (', ~). From 
Eq. (1.8), z* = l«I>eI z, and so, since v = Re (rl), 
we have v* = l«I>d-1 v. The transformation properties 
of nand p, can be computed from Eq. (2.1) and the 
invariance of C(3) = p,Z 3. Finally, e is the group of 
transformations x ~ x* with 

'* = «I>m, 

u* = 1 <1>" (u + S(" ~», 

The corresponding infinitesimal transformation, K = 
Kilo/axil, is given by 

If we define 

KIl- --[
ax*ll] 

- at t=o' 

IXm = atp I ' 
at t=o 

R(',~) = aT) , at t=o 

(3.4) 

v* = 1«1>,,-1 v, 

"t = (I «I>d/«l>D"1 , 
,,:=1«1>,,-1"3' 

(2.2) then the first part of the following lemma follows 
from Eqs. (3.3) and (3.4). 

": = I«I>{I "4' 

and the functions p" n, and ~ transform as follows: 

p,* = 1«1>,,-3 p" 

n* = (l«I>d/«I>{)[n - S~ - i(«I>{d<<l>,)(u + S»), (2.3) 

~* = l«I>d-l~. 

3. SYMMETRIES OF t 
Let S be the identity component of the group of 

symmetries of $. If we in.terpret these as coordinate 
transformations, rather than point transformations, 
then S is the set of transformations x ~ x* for which 

g:,(x*) = glll'(X*). (3.1) 

It is clear that any transformation of S must preserve 
the coordinate and tetrad conditions of Sec. 2, and 
so S must be a subgroup of e; but the converse is not 
true. 

Lemma 3.1: S is that subgroup of e for which 

n*(x*) = n(x*), 

p, "'(x*) = p,(x"'). (3.2) 

Proof' Since (dT)2 is given explicitly as a function of 
p" n, and their derivatives, those members of e which 
satisfy Eq. (3.2) belong to S. Conversely, g,v = n, 
and so the first of Eq. (3.2) follows from Eq. (3.1). 

It follows from this that t50, and therefore ~ and z, 
are invariant. The second of Eq. (3.2) now follows 
from the invariance of g uu • 

Let us suppose that x ~ x*(x, t) is a I-parameter 
group of motions, '* = tp('; t), 

u* = Itpd [u + Ta, t t»), (3.3) 
v* = Itpd-1V. 

Since x*(O) = x, the initial values of tp and Tare 

tpa; 0) = " T(',~; 0) = o. 

Lemma 3.2: A vector K is an infinitesimal trans
formation of the group S iff it can be written as 

K = lXa, + a.o{ + Re (1X,)(Uau - vav) + Rou , (3.5) 

where IX and R satisfy the equations 

(I) R, + iot"u + Kn + HIX~ - a.,)n = 0, (3.6a) 

(III) Kp, + 3 Re (1X,)p, = O. (3.6b) 

Proof' From Lemma 3.1, and the general theory 
of Killing vectors, K is a Killing vector iff it satisfies 

d 
dt [p,*(x*) - p,(x*)] = 0, (3.7a) 

.f{ [n*(x*) - n(x*)] = O. (3.7b) 
dt 

The lemma then follows from Eq. (2.2) by a straight
forward calculation. For instance, from Eq. (3.7a), 

o = :t [ltpd-3 p,(x) - p,(x*»)/t=o 

ox*' ap, 
= -3 Re (IX~) . P, - Tt ox' 

= -3 Re (IX~) . P, - Kp,. 

If Eq. (3.6a) is differentiated with respect to u and 
R = eX. = 0 used, we have 

(II) (3.6a') 

which may then be substituted back into Eq. (3.6a). 
In order to reduce the Killing equations to a standard 
form, let f3 = IX~, so that the unknowns are yA = 
(IX, ~, fJ, PR)o From Eqs. (3.6a) and (3.6a'), the 
KiIling equations are equivalent to 

IX, = fJ, fJ, = -2(K!) + fJ!), Rr; = Q(y""\ x), 

IXt = 0, f3t = 0, R{ = (2, 

lXu = 0, f3u = 0, Ru = 0, 
(3.8) 

Q = K(uO - n) + t(fJ - P)(uO - .Q) - RO. 
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Since the yA, and 0 and ft, are independent of v, the 
Killing equations are essentially 3 dimensional, and 
Eqs. (3.6a) and (3.6a') are equivalent to 

allyA = QAiyB; x), 

subject to the linear constraint (3.6b). The QAIl are 
given in Eq. (3.8), and are linear in the yA. These 
equations are then in standard form, and their first 
integrability conditions are given by 

QA - ° [".v] - . (3.9) 

The higher-order equations follow by differentiating 
Eqs. (3.6b) and (3.9) and substituting for allyA from 
Eq. (3.8). In order to compute these, the following 
commutation relations are used: 

[au, K] = Re (oc,)au , 

[~, K] = oc,~ + ( .. ·)av , (3.10) 

where the coefficient of av is irrelevant, since all 
functions considered are independent of v. The 
Killing equations and first integrability conditions are 

(I) R, + K(O - uO) + Hoc> - ii~)(O - uO) 

+ RO = 0, (3.11) 

(II) oc,' + 2KO + oc,O = 0, (3.12) 

(III) Kft + 3 Re (oc,)ft = 0, (3.l3) 

(IVa) K,u + 4 Re (oc,),u = 0, (3.14a) 

(IVb) K(~O) + 2 Re (oc,)t50 = 0, (3.14b) 

(IVc) Kd + Re (oc,)d = 0, (3.14c) 

(IVd) Kn + H3oc, + ii~)n = 0. (3.14d) 

The dimension of the group 8 is (5 - s) where 5 is 
the number of yA and s is the number of independent 
integrability conditions [including (3.l3)]. A partial 
result is 

Lemma 3.3: The dimension of the group 8 satisfies 
the inequality 

dim (8) ~ 5 - (number of known 
integrability conditions). 

In particular, dim (8) = 5 iff the first-order integra
bility conditions are identically zero, i.e., 

dim (8) = 5<:> 0= ~O = fJ = d = O. 

This gives 0 = p(~)u + ()'(~, ~), and so 

ou~O = (p, - p2)('). 

Comparing this with Eq. (1.17), we see that the 

space is fiat, which contradicts the assumption about 
t. 

Lemma 3.4: If $ is a nonfiat, algebraically special 
empty Einstein space with diverging Debever con
gruence, then 

dim (8) ~ 4. 

We need the transformation properties of K under 
an element of e, henceforth called a (<I>, S)-trans
formation. If (oc*, R*) are the transformed (oc, R) for 
K, then Eqs. (2.1) and (3.5) give 

DC * = <l>coc, 

R* = l<I>d [R - Re (oc,)· S + KS]. (3.15) 

We observe that, if K is a particular Killing vector, 
then the differential equations R* = ° and oc* = 1 
can be solved for (<I>, S) if oc '¢ 0. If oc = 0, then the 
Killing vector has the simple form K = Ro", 

Lemma 3.5: If K is a particular Killing vector,then 
the coordinate system can be chosen so that it has one 
of the following two canonical forms: 

(i)K=o,+o~ or (ii)K=Rou . 

Furthermore, a vector of one type cannot be trans
formed to the other. 

4. KILLING VECTORS OF THE TYPE R ilu 

Let us prove the following theorem. 

Lemma 4.1: t admits a Killing vector of the type 
K = e-Pou iff 

n = A =,u = O. (4.1) 

Furthermore, p = pC"~ ~). 

Proof' If e-Pou is a Killing vector, then Eqs. (3.12), 
(3.13), and (3.14c) give Eq. (4.1). Conversely, if Eq. 
(4.1) is satisfied, then (3.11) and (3.13), with K = 
e-Pou , reduce to 

p, = n, p = 0, 

whose integrability conditions are just 

n =0, 

~n - ~n = p,~ - p~, = 0; 

(4.2) 

that is, Ii = A = 0, and so $ admits a Killing vector 
of the required type. 

If e-Pou is a Killing vector of t, then it is convenient 
to introduce a slightly different coordinate system. 
We define 

(4.3) 
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and then the metric reduces to the simpler form 

HdT)2 = (r2 + d2)(e21' d~ d~) 

where 

+ [dr + i(d~ d, - d, dm(K) 

+ {R(2) + Re (ml(r + id)]}K2, 

K = e1'€4 = ds + Ad, + X d" 

A = eP(Q - p,u), 

d = -i!1"rP = e-2p 1m (A~), 
m = fte-3p, 

(4.4) 

(4.5) 

and R(2) is the 2-curvature of the metric tensor 

e2P dC d" 
R(2) = e-2Pp,~. 

From Eq. (4.2), A (and therefore the metric) is inde
pendent of s, and so is invariant under the Killing 
vector as = e-pau , as it should be. We can now 
tighten the allowed coordinate transformations e 
so that this independence with respect to s is pre
served. If e is the group of transformations (s, r, ') -+ 

(s*, r*, '*) preserving all coordinate' conditions, 
then 

e-P·(ds* + A * d,* + X * d,*) 

= l<I>d e-p(ds + Ad, + X d,), (4.6) 

with '* = <I> a). Since A * = A = 0, this equation 
can be integrated to give s* = CoCs + A), where Co 
is a constant and A = Aa, ,). Hence, from Eq. (4.6), 

A eP
• = I Co<I>,l/ eP

, (4.7) 
and e is given by 

" e: s* = Co(s + A), (4.8) 

The functions m and A transform as 

m* = C;3m, A * = Co<I>,\A - A,). (4.9) 

As in Sec. 3, if K is a Killing vector, then it must be 
the tangent vector to a I-parameter subgroup of e. 
We prove the following lemma exactly as we proved 
Lemma 3.2. 

Lemma 4.2: If the manifold t admits a Killing 
vector of the type e-Pou , then coordinates (t ~, s, r) 
can be introduced so that the metric is given by Eq. 
(4.4). Furthermore, K is a Killing vector iff it has the 
form 

K = oca, + ria, + ao(sas - rar) + Ta., (4.l0) 

where ao is a constant and T = ePR, and if it satisfies 

the following Killing equations: 

(II') Kp + Re (oc,) = ao, (4.11) 

(I) T, + KA + (-ao + oc,)A = 0, (4.12) 

(III) Km + 3aom = 0. (4.13) 

Proof' It is easily seen that g:v(x*) = gfl.{X*) gives 
p*(x*) = p(x*) and similar equations for A and m. 
If we differentiate these with respect to the parameter 
t and let ao = a tCO' then the theorem follows. 

Lemma 4.2 can be derived directly from Lemma 
3.2, using (4.11) as a first integral of (3.6a'). From 
Eq. (4.10), we have 

[as, K] = aoa., 

[a" K] = oc,a, + T,as, 

which is a commutation relation between two Killing 
vectors. 

We need the field equations for this metric. Sub
stituting A and minto Eq. (1.15), we reduce them to 

a~m = 0, (4.14a) 

(e-2Pp,~)" = 0, (4.14b) 

1m (m) = e-2p d,~ - 2e-2PPa d. (4.14c) 

From Eq. (4.l4a), m is an analytic function of, alone, 
and, from Eq. (4.14b), the 2-curvature R(2) is a har
monic function. The last field equation can be solved 
for d and, therefore, for A. 

We now come to the fundamental theorem of this 
paper. This is needed to find all $ with high-dimen
sional symmetry groups. 

Theorem 4.1: If dim (8) > 2, then t admits a 
special Killing vector of type e-pau ' 

Proof (by interminable contradiction!): Let us 
suppose that dim (S) ~ 3 and so 

number of independent integrability conditions S 2, 

(4.15) 

but that t does not satisfy Eq. (4.1) and so does not 
admit a Killing vector of the required type. Consider 
the set of integrability conditions obtained from Eq. 
(3.l4d) by successive differentiation with respect to u: 

Kw + [oc, + Re (oc,)]w = 0, 

K£O + [oc, + 2 Re (0(,)]£0 = 0, (4.16) 

Kw + [oc, + 3 Re (oc,)]w = 0, 

where w = n. We constantly need to consider equa
tions of this type as linear constraints on the unknowns 
fR + u Re (oc,), IX, a, 0(" rid. From Eq. (4.15), the 
rank of the matrix of the coefficients of these unknowns 
in Eqs. (4.16) must be less than three. From the 
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coefficients of (R + u Re (oc,), oc,' ii~), we have 

cO w ° 
W cO cO = 0. 

w W 2w 

This can be rewritten as 

(a) cO = 0 or (b) ~(~) = 0. (4.17) ou2 cO 

We prove that, in fact, w = 0. First, consider the 
case where cO = 0, so that the Eq. (4.16) becomes 

ocw, + iiw{ + (fix, + !ii{)w = 0, 

ocw, + ocw~ + (toc, + %ii~)w = O. (4.18) 

Differentiating the first of these with respect to , 
and using Eq. (3.6a'), we have 

w2R + (function of n, oc, oc,) = O. (4.19) 

Since the integrability conditions (4.18) and (4.19) 
must be dependent, the determinant of the coeffi
cients of (R, oc" ii{) is zero, and so wsw = 0, i.e., 
w = O. Now, let us suppose that cO =;C 0 so that 
(4.l7b) is satisfied: 

w = n = y(u + fJt, (4.20) 

where fJ, 1', and a are functions of a, ').and 

I' =;C 0, a =;C O. (4.21) 

Let fJ = a + ib and perform an (<I>, S)-transforma

tion with (<1la), S) = a, a). From Eq. (2.2), n* = n, 
and so w*(x*) = w(x) = Cy(u* + ib)'7. Consequently, 
we can assume that fJ is pure imaginary, and w = 
y(u + ib)'7. By equating to zero the various powers of 
u in the first of Eq. (4.16), this equation splits into 

R = 0, (4.22a) 

Ka = 0, (4.22b) 

Kb - Re (oc,)b = 0, (4. 22c) 

Ky + roc, + Re (oc,)(a + 1)]1' = 0. (4. 22d) 

For the coefficients of (R, oc" ii~) in Eqs. (4.22a) and 
(4.22d) and its complex conjugate, we have 

by =0, 

and so, since y =;C 0, b = a + 2 = 0. Hence, 

n = yu-2 , n = -1'(1 + log u) + KU + 2. (4.23) 

Substituting R = ° into (3.11) gives 

K(n - un) + Hoc, - ii[)(Q - un) = o. (4.24) 

Since Q - un = y log u + T, this reduces to 

Ky + Hoc, - iit)y = 0, 

KT + Hoc, - ii~)T + Re (OCt)Y = o. (4.25) 

The dependence ofEqs. (4.22a) and (4.25) immediately 
gives I' = 0, and so we have w = O. Hence, dim (8) > 
2 gives 

Q = KU + T. 

We now prove that /l = O. Contrariwise, assume 
that /l =;C 0. Equations (3.12) and (3.l4d) become 

KK + OC,K = -!oc", (4.26) 

KK~ + 2 Re (OC,)K~ = 0. (4.27) 

Taking the {-derivative of Eq. (4.27) and using Eq. 
(4.26), we obtain 

KK,~ - 2K~KK + 2oc,(K,r - KK~) + ii~KU = O. (4.28) 

Since the determinant of the coefficients of 

[R + u Re (oc,), oc" iid 
in Eqs. (3.l4c), (4.24), and (4.25) is zero, 

/l(K,~ - 2KK{)K{ = 0, 

where 2/l = ~{ - R,. Hence, since /l =;C 0, then 

(4.29) 

Similarly, from the dependence of Eqs. (3.l4c), (4.25), 
and its complex conjugate, we have 

KtRU = RCK,{ 
so that 

(log Kt){ = (log R,){. 

From this equation and Eq. (4.29), 

21C~ = (log K{)m = (log R,){( = 2R" 

and so /l = ° and 

2/l = K, - i<, = O. 

This is the necessary and sufficient condition for the 
existence of a real p({, ~) such that K = p, and 

n = p,u + T. 

The field equation (U5c) reduces to 

r 2Pit = (r2Pp,~),~, (4.30) 

and so i1 = 0. The u-derivative of Eq. (U5a) then 
gives 

itt = 4hit· (4.31) 

Setting the determinant of the coefficients of 

(R + U Re (oc,), oc" Ii,) 

to zero in Eqs. (3.13) and (3.14), setting the ,
derivative ofEq. (3.14) equal to zero, and using i1 = 0, 
we get 
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and so 
fJ" = 4p,fJ,. (4.32) 

Substituting Eqs. (4.31) and (4.32) into Eq. (3.14) 
gives 

(4.33) 

provided that fJ, '1f 0. From the dependence of Eqs. 
(3.l3), (4.27), and (4.33) with K = p" we have 

jt(Pm - 2p,,-p,) = 0, 
and so 

fJ,[r2PP,eh = 0. 

From Eq. (4.30) this gives fJ, = 0, and so we have 

finally proved that, if dim (8) > 2, then n = ft = 
A = ° and therefore, from Lemma 4.1, $ admits a 
Killing vector of the type e-pou ' 

S. SPACES WITH dim (8) = 3,4 

From Theorem 4.1, these spaces must admit a 
special Killing vector of the type rPo" = as. The 
metric is given by Eq. (4.4) and the Killing equations 
are given in Lemma 4.2. Differentiating Eq. (4.1 1) 
with respect to { and using dao = ° giye Eq. (3.12). 
We list the equations to be satisfied by K, together 
with their first integrability conditions: 

(I) T, + KA + (-ao + oc,)A = 0, (5.1) 

(II) ioc,{ + Kp, + oc,p, = 0, (5.2) 

(II') Kp + Re (oc{) = ao, (5.3) 

(III) Km + 3aom = 0, (5.4) 

(IVb) K(r2Pp,,) + 2ao(e-2Pp{t) = 0, (5.5) 

(IVc) Kd + aod = 0. (5.6) 

This is a complete set of differential equations in the 
six unknowns (T, oc, a, oc" a" ao), since dao == 0, 
and so, since we have assumed that dim (8) > 2, there 
can be at most two more conditions independent of 
(5.3). 

From the field equation (4.14a), m is an analytic 
function of {, and so Eq. (5.4) becomes ocm, + 3aom = 
0. If m, '1f 0, this can be solved for oc as a function of 
ao, and so the number of Killing vectors is at most 
two (corresponding to the initial values of T and ao 
at a given point). This means that 

dim (8) > 2 => m = mo = const. (5.7) 

We shaH consider three separate cases, depending 
on the character of the 2-curvature R(2). This curva
ture transforms as follows under an element of e 
[see Eq. (4.7)]: 

(5.8) 

Since Co is a nonzero constant and since R(2) satisfies 
Eq. (4.14b) and therefore is a harmonic function, the 
Killing problem separates into three cases, 

R(2) = 0, 

dR(2) = 0, R(2) '1f 0, 

and 

dR(2) '1f 0. (5.9) 

We shall treat them separately. 

Case 1: R(2) = 0, and so Pa = 0, that is, 2p = 
Re [am], where a is an analytic function of {. From 
Eq. (4.7), eP* = Co la/<1>,I, and so p can be trans
formed to ° by choosing <1>, = Coam. We shall 
suppose this done. From Eq. (4.5), n = Aa, ~), 
and so ouon = 0. From Eq. (1.17) this means that 
m (= mo) is a nonzero constant. Equation (5.4) now 
gives 

ao = 0, 

and so (5.3) becomes Re (oc,) = 0. The complete 
solution of this equation is oc = ibo{ + oco, where OCo 

and bo are both constants, bo being real. If we differ
entiate the remaining first integrability condition (5.6) 
with respect to {, we have 

Kd, + oc,d, = 0. 

This, together with its complex conjugate and Eq. 
(5.6) itself, gives three independent constraints on 
the five independent variables (ao = OJ), and so 
dim (8) < 3, unless d, = O. Hence d = do (a constant), 
and the last of the field equations (4.14c) gives 
mo = _mo· From Eq. (4.5), A = ido~ + A, where 
A({, ~) is real and can be eliminated by the trans
formation s -+- s* = s + A. [See Eq. (4.9).] Finally, 
since p = 0, 

p, = mo, n = Mot ~n = o. 
The last of these equations implies that $ is a Kerr
Schild metric.5 If we introduce new coordinates 
('1), ij, w, r) given by 

1} = ~(r + ido), w = s - ar, 

then the metric reduces to 

(d-r)2 = 2(d1} dij + dw dr) 

+ 2(~) (dW + rJ dij 
r2 + d~ r + ido 

ij drJ rJijr )2 + -- - . (5.10) 
r - ido r2 + d~ 
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The constants rno and do are not invariants and, in 
fact, can be transformed to one of the following two 
cases: 

do = 0, rno = I, 

do = 1, rno ¥: 0 (an invariant). 

The dimension of 8 is 4. 

(5.1la) 

(5.1lb) 

Case /I: dR(2) = 0, R(2) :;6 0: From Eq. (5.8) we see 
that we can transform R(2) to ± 1 : 

R(2) = Ro = ±l. (5.12) 

The 2-metric (e2P d, dt) is that for a sphere or pseudo
sphere and so the coordinates ~ can be chosen so that 

(5.13) 

From Eq. (5.5) we see that ao = O. Equation (5.3) 
can now be solved completely for 0(, giving 

0( = O(o~2 + ibo' - ~oRo, 

where 0(0 and bo are constants, bo being real. Also 
Eq. (5.6) and its derivatives with respect to ~ and ~ 
give three independent integrability conditions, unless 
d = do (a constant). The last field equation (4.14c) 
then gives 

1m (rno) = - 2Rodo . 

The remaining field variable A can be found from 
Eq. (4.5). Using the coordinate freedom of Eq. (4.8), 
in particular, that s* = s + A, we can reduce A to 
-idoDRo(a, - Ro). Finally, the metrics with four 
Killing vectors (KV) reduce to 

i(dr)2 = (r2 + d~)(~' - Ro)-2 d~ d, + dr(K) 

+ (Ro + Re (~))(K)2, (5.14) 
r + Ido 

where K = ds + [ido/Ro(" - Ro)](' d, - ~ d,), 

1m (mo) = -2Rodo· 

There are two classes of metrics here: 

mo is real => Schwarzschild,6 

mo is complex => NUT.7 

(5.1Sa) 

(5.1Sb) 

Both of these are known to have four Killing vectors. 

Case Ill: dR(2) ¥: 0: From Eq. (4.I4b) this gives 

e-2PPa = 2 Re [FW). 

If we transform the' coordinate, '* = Fa), and then 
drop the asterisk, the 2-curvature reduces to 

(5.16) 

The complete solution of Eq. (5.5) is 

0( = -2ao' + ibo, (5.17) 

where ao and bo are real constants. Equation (5.1) and 
its complex conjugate can now be solved for T. Since 
this can only introduce one further constant of 
integration, in addition to ao and bo, we see that 
dim (8) S 3. In order for the dimension to be 3, 
none of the remaining integrability conditions can 
be independent of Eq. (5.5). Since Eq. (5.4) is 
independent of Eq. (5.5), the complex mass must be 
zero unless m = rnW = O. Also, if Eq. (5.17) is 
substituted into Eq. (5.2) and the coefficients of ao 
and bo equated to zero, the resultant equations can be 
solved for e-P , giving e-P = Aa + ~)!. Substituting 
this into Eq. (5.16), we find A = m! and 

e-P = m!a + ~)!. (5.18) 

Since Eq. (5.6) cannot be independent of Eq. (5.5) 
d2 must be proportional to R(2), i.e., d = do(~ + ~)!, 
where do is a real constant. Substituting this into the 
last of the field equations (4.l4c), we have do = 0 and 
so d = O. From Eq. (4.5) A = A" where A is a real 
function of (', ~). It can be eliminated by a trans-

"-
formation of e with (<P, A, Co) = a, A, 1), and so 
we have 

m = A = 0 = d= O. 

Finally, if we substitute ~ = -Hx + ry), then 

(dr)2 = r2x-3(dx2 + dy2) + 2 dr ds + tX(dS)2. 

(5.19) 

This is a Robinson-TrautmanS metric of Petrov type 
III with a 3-dimensional symmetry group. 

6. SPACES WITH 2-DIMENSIONAL 
SYMMETRY GROUPS 

From Lemma 3.5 there are two distinct possibilities 
for dim (8) = 2: 

Case I: 3 a KV of the form Kl = e-Pou , 

Case /I: ~ a KV of the form Kl = e-pou ' (6.1) 

Since there are only two independent KV, it will be 
convenient to consider all possible Lie groups 
separately. 

Case I: We shall write Kl = e-Pou = Os and use 
the form of the metric in Eqs. (4.4) and (4.5). From 
Lemma 4.2, any other KV (K2' say) is given by Eq. 
(4.10), 

Kl = a., K2 = 0(0, + iiOe + ao(sos - rOr) + To., 
(6.2) 
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and the group structure constants can be computed 
directly, using Eq. (5.3), 

(6.3) 

There are four distinct possibilities, according to 
whether the commutator is zero, or not, 

[Kl' K2] = 0, 

[Kl' K2] = (l )Kl 

(6.4a) 

(6.4b) 

and whether the two-metric e+2p d, d~ has constant 
curvature, or not, 

e-2Pp~~ = Ro (constant), (6.5a) 

e-2Pp~~ = 2 Re [FW], F~:rf 0. (6.5b) 

We shall consider these separately. 

Case 1: Eqs. (6.4a) and (6.5a). K2 can be reduced to 
the following form by a transformation of coordinates 
[see Eq. (4.8)]: 

(6.6) 

The allowed coordinate transformation left for' is 

(6.7) 

where 130 and Yo are complex constants. Using Lemma 
4.2, we reduce the Killing equations to 

K2P = 0, 

K 2m = 0, 

T~ + K2A + iA = 0. 

The first of these gives 

p = peR), R = I", 

(6.8) 

(6.9) 

while the second, together with the field equation 
(4.14a), gives m = /ho (a constant). Using Eqs. (6.5a) 
and (6.9), we can show that 

e-P = aoR"o - RoR2-"0/ao(cxo - 1)2. 

Using Eq. (6.7) with '* = ao(cxo - 1),"0-1, we may 
transform this to 

e-P = a - Ro = R2 - Ro, 

where we have removed all asterisks after the trans
formation. Equation (5.6) now reduces to K2d = 0, 
and so d = d(R). Substituting this into Eq. (4.5) 
gives A = i~B(R) + Aa, ~)~, where A and Bare 
both real functions. The first of these functions can be 
transformed to zero by replacing s by (s + A), and so, 
without loss of generality, 

A = i~B(R), B = E. 
The last field equation (4.14c) can be reduced to 

(R -.£..)2 (R3e
p -.£.. (e- 2PB») = 8e3p 

1m (ft ). 
dR dR 0 

The complete solution to this is 

A = i~e2p[ -! 1m (/ho)R 2 + C1 

+ C2(2 log R + RoR-2) + C3(R
2 + R~R-2)], 

e- P = ,~ - Ro, (6.10) 

m = /ho' 

A simple calculation shows that 

01l t5Q = Pt;t; - P~ = 0, 

and so, from Eq. (1.17), the space is flat unless 
/ho :rf 0. If A is substituted into Eq. (4.4), this gives a 
6-parametric solution as a function of /ho (complex), 
the {Ci}r=l' and Ro. These constants are not inde
pendent invariants. If Ro :rf 0, then it can be trans
formed to ± 1 by the transformation 

'* = IRol-i" s* = IRolls, r* = IRol-lr. 

In the second case where Ro = 0, /ho can be trans
formed to C;;3/ho = /h * :rf ° and so either Re (/ho) or 
1m (/ho) can be taken to be + I, leaving four inde
pendent parameters. 

Case 2: Eqs. (6.4a) and (6.5b). If we let '* = FW, 
then Eq. (6.5b) can be transformed to 

e-2Pp~~='+~, (6.11) 

and so, from Eq. (5.5), the second Killing vector 
must be 

K2 = i(at; - at). 

From Eq. (5.3), p = p(x), where x = , + ~, and so 
Eq. (6.11) gives 

(6.12) 

Unfortunately, the only known solution of this equa
tion is 

(6.13) 

From the Killing equations and Eq. (4.14a), A = A(x) 
and m = mo (a constant). The real part of A can be ... 
eliminated by a e transformation with A = A(x). 
Equations (4.5) and (4.14) can then be solved for A: 

-iA = aox-i sinh !(13)!(x - xo) + ! 1m (mo)x-3 , 

(6.14) 

where ao is an arbitrary real constant. There is a 
further solution A = ibo , with bo a real constant 
which can be added to Eq. (6.14); but this can be 

eliminated by a C transformation with s':' = s + 
ibo(' - ~). This is not the complete solution for 
Eqs. (6.4a) and (6.5b), but Eq. (6.13) is the only 
known solution to Eq. (6.12). 
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Case 3: Eqs. (6.4b) and (6.5a). Eq. (3.14b), together 
with ao = 1 gives R(2) = 0, and so p,~ = 0, that is, 
p = Re [tpg)]. From Eqs. (4.7) and (4.8), there is a 
e transformation with <P, = tp for which p* = 0, 
and so we shall take p = 0. From Eq. (5.3), 
Re (oc,) = I, and so oc = ocog - Po), where OCo and 
Po are constants and Re (oco) = 1. If we remember 
that Kl and K2 are not invariantly defined vectors, 
then it can be seen that the residual group of trans
formations is 

Ki = a: = ColKl' Ki = K2 + eOKl , 

~* = <l>m, r* = Colr, s* = Cots + A). (6.15a) 

From Eq. (4.7) and p = p* = 0, we see that 
l<Pd = ICol, and so 

~* = <l>g) = eidoCog - ~o). (6.15b) 

The functions oc and T transform as follows: 

which have as complete solutions 

a = 2yo~ + AO~-l/.o, 
P = Yo + mo~-3/("o+l), 

where Yo, ,,1,0' and rno are aU complex constants. The 
first of these can be eliminated be letting s* = s + 
2 Re (YoC2{), and so 

A = Ao,{-l/ao + mo,2~-3/("o+l), 
m = 2mo(1 - 3/0C0)~-3/"o, (6.16) 

P = 0, Re (0C0) = 1. 

The remaining coordinate freedom can be used to 
reduce rno to a real constant. The complete metric 
for type (6.4b) and (6.5a) is given by Eq. (4.4) with 
the above A, m, and p. It is a function of four real 
constants, with a symmetry group given by 

s* = Cots + so), r* = Colr, 

~* = qo~, 

oc* = eidoCooc, T* = Co(T + ocA, + ocA~ + aos); where Co and So are real. 

so, by choosing '0 correctly, Po can be transformed Case 4: Eqs. (6.4b) and (6.5b). Just as for case 2, 
to zero, Eq. (6.5b) can be transformed to 

where OCo is invariant. 
From the field equations (4.14a) and (4. 14c), 

m = 2pc' where p = pC'), and so 

1m (A~),~ = 21m (p,) = 21m ('p),{. 

This is immediately integrable, giving 

1m (A{ - 2{p - a) = 0, 

where a = ag). This can be rewritten as 

1m (A - {2p - 'a), = 0 

so that A = {2p + {a + A" where A is a real func
tion of g, {). This can be eliminated by letting 
s* = s + A, and so we shall assume 

A = ~2p + ~a. 
Of the basic Killing equations (5.1)-(5.4), Eq. 
(5.2) is already satisfied and Eq. (5.1) can be solved 
for T provided that its integrability condition (5.6) 
is satisfied. This means that 4 admits a 2-parameter 
group (at least), provided that Eqs. (5.4) and (5.6) 
are satisfied, i.e., 

tXo~p" + 3p, = 0, 

1m [~(2oco~p, + 2ocoP + 2p) + (oco~a, + a)] = 0, 

(6.17) 

and so, from Eq. (5.5) with ao = 1, oc = -2g + teo). 
The constant eo can be eliminated by '* = , + teo, 
and so, without loss of generality, 

From Eq. (5.3), 

e-2p = e-2P(~ + C?, 
where P is a function of the angle 0, 

P = P«(J), ,= ReilJ
• 

Substituting this into Eq. (6.17) 

e-2P cos2 
() - + - = 1. ( 

d2P 3) 
d(J2 2 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

Again, the only known solution to this equation is 
that of Eq. (6.12), e-2P = j, 

e-2p = H{ + ,)3. (6.22) 

From Eq. (5.6), d = g + {)tD«(J), where D is a 
real function. From Eq. (4.5) 

A = i({ + ~)-lL«(J), 
where an additional term of the type A~ has been 
eliminated by the transformation s* = s + A. The 
functions Land D are related by 

t sin 20t - L = e2:pD. (6.23) 



                                                                                                                                    

EINSTEIN SPACES WITH SYMMETRY GROUPS 2817 

From Eg. (5.4) and (4.14a), 

m = ,uo(!, (6.24) 

where ,uo is a complex constant. Finally, the last field 
equation (4.14c) reduces to 

1m [,uo(1 + e-2i8)-!] 

We do not have any solutions to these equations. 

Case II: These metrics do not admit a Killing 

vector of the type e-7Jou and so not all of {n, ~, ,ti} 
can be zero. There are two distinct possibilities for 
the symmetry group. 

Case 1: Eq. (6.4a). [K1 ,K2] = 0: By means of the 
transformation (3.15) one of these Killing vectors, 
Kl say, can be reduced to 0, + 0,. Since it is assumed 
to commute with any other Killing vector K2 [with 
corresponding (1X2, R2)], it follows that (0, + O,)1X2 = 
(0, + o,)R2 = 0, and so 1X2 is a constant, which 
without loss of generality can be taken to be i. R2 
can be transformed to zero by (3.15) without dis
turbing the canonical form for Kl and so the Killing 
vectors reduce to Re (0,) and 1m (0,). The metric is 
independent of ((, ~) and so can only be a function 
of (u, v). The field equations (1.15) reduce to 

,u = ,uofj-a, 

Ou{4,uoO-:i + 21.1 ~[O ~ (02)]} = I ~ (02) 12, 
du du 2 du 2 

(6.26) 

1m {4,uoo-a + 20 ~(fi ~ (02»)} = O. 
du du 2 

Since $ is assumed to be nonflat, either flo or 
(tf2/du2)(02) is nonzero. We do not know any solu
tions to these equations. 

Case 2: Eq. (6.4b). [Kb K2] = K1 : Again, we take 
Kl = 0, + 0,. If we take K2 to be a second Killing 
vector [with corresponding (1X2 , R2)], then we must 
have 

(6.27) 

so that IX = ( + iso, where So is a real constant which 
can be eliminated by (* = ( + iso without affecting 
the canonical form for K1• Similarly, the second of 
Egs. (6.27) allows R2 to be eliminated by Eq. (3.15), 
and so the Killing vectors can be reduced to 

Kl = 0, + o~, K2 = '0, + ~o, + uou - vov' 

From Lemma 3.2, the Killing equations can be 
integrated immediately to give 

0= OCt), 

,u = u3v(t), 

where t = u/lm m. The field equations (4.14) reduce 
to ordinary differential equations in OCt) and vet). 
However, these are even worse than the equations for 
case 1, and we do not have any solutions for them. 

7. SPACES WITH I-DIMENSIONAL 
SYMMETRY GROUPS 

As with some of the 2-dimensional groups, there is 
not much that can be said about this case. It is always 
possible to put the single Killing vector into one of 
the following canonical forms, 

K = e-Pou , 

K = 0, + 0" 

as we saw in Lemma 3.5. We have already investigated 
case I in Sec. 4 and found that the field equations 
reduce to Eqs. (4.14). In case II the metric is inde
pendent of Re «(), but this does not simplify the field 
equations to any appreciable degree. 

8. CONCLUSION 

In this paper we have been able to construct all 
possible groups of motions for empty Einstein spaces 
admitting a diverging, geodesic, and shear-free ray 
congruence. However, we have been unable to 
solve the field equations (1.15) completely when the 
dimension of the group of motions is one or two. 
The spaces with 4-dimensional groups are those of 
Scharzschild and NUT (Newman, Dnti, and Tam
burino), and the metric of Eq. (5.10). The only 
metric with dim (8) = 3 is that of Eq. (5.19). The 
main results of the section on 2-dimensional sym
metry groups are the metrics given in Eq. (6.10), 
(6.13), (6.14), and (6.16). 
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In this part variational tec~niques are used to ,generate the differential equations determining the static 
fields ?f a charged mass dlstnb~~lon. The equatIOns are sol ved external to the source by the Hamilton
Jac~bl method ~nder the co~dltIons of sphencal symmetry. Solutions for a charged mass shell are in
~estlgated, the ngorous solution for t~e electron in general relativity is given and, by limit arguments, it 
IS shown that the same external solutIOn anses for the electron in the scalar-tensor theory. 

1. INTRODUCTION 

In Paper I variational arguments were used to dis
cuss the self-energy of the electron in the scalar
tensor theory of gravity.1 The model chosen for the 
electron was that of a o-function source with charge e 
and bare mass mo. By casting the scalar-tensor theory 
into canonical form,there arose the true Hamiltonian 
of the system. By solving the constraint equations, 
one could then obtain the energy of the system for the 
configuration of static fields characteristic of the 
electron. However, it was also true that the static 
configuration was not simply given by setting all inde
pendent excitations of the fields present equal to zero 
because of the scalar nature of the scalar field. No 
gauge condition exists on the scalar, and thus no 
constraints arise to suggest a decomposition of the 
field into that describing waves and that part relating 
directly to the source. Although gravity and electro
magnetic waves can be excluded from the system by 
setting the independent excitations of the metric field 
and the electromagnetic field equal to zero, the scalar 
field that corresponds to the static configuration of the 
system must be included. 

The static configuration of the electron is most 
properly defined by the minimization of the energy of 
the system with respect to all independent excitations. 
This corresponds to a minimization of the true Hamil
tonian. But, with all waves eliminated, we are left 
with a minimization of the energy with respect to the 
scalar field alone. The following calculations show 
this minimization procedure for a charged mass dis
tribution. Exact solutions are then obtained for a 
spherically symmetric distribution, the solutions being 
given outside the mass. 

2. ENERGY MINIMIZATION CONDITIONS 

According to the choice of coordinates for the ca
nonical form of the scalar-tensor theory of Paper I 
and with a desire for the static solution, the momen-

tum constraints are identically satisfied, and the 
energy constraint becomes l 

g! 3R = -8Xy2X 

= G + W)X2(V In cp)2 + (£r.)2 + Pm(X), (I) 
2X2 cp* 

where cp is as yet an unspecified function of position, 
Pm is the mass density, £L is the longitudinal part of 
the electric field and is determined by solving 

£:~ = Pe(x) (the charge density), (2) 

and where X is related to the metric through gij = X4oij' 
The energy of a system can be written2 

m = f dSi(g;j,j - gjj,i) (3) 

which, because of the particular form of our metric, 
can be further written3 

m = -8 J dSX3X ,= -8 J dSX . J t ,7 J 1,1 

= -8 f d3xY2X· (4) 

Here we have used the boundary condition that space 
becomes Minkowskian at infinity. M is a functional 
of the scalar cp because of the dependence of X on cp in 
Eq. (1). The maintenance of this constraint through
out the variation implies the necessity of a Lagrange 
multiplier. We thus prepare m for variation in the 
following manner. 

If the constraint equation is divided by X and multi
plied by an arbitrary function A(X), an integration 
over all space yields 

-8 f d3xAy2X 

=fd3X(G + w)XA(V In cp)2 + }.,(£1.)2 + A~m). (5) 
2X3 cp X 

2818 
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An identity can be written as 

J d3x( -8},,\72X) 

= I d3x(8x\72}" - 8},,\72X) - 8 I d3xx\72}", (6) 

which by Gauss' theorem yields 

I d3x( -8},,\72X) 

= 8 I ds· (xv)" - }"VX) - 8 I d3xx\72A, (7) 

the surface integral being taken at infinity. With the 
assumption that },,(x) assumes the nonzero value Ao at 
infinity and with the requirement that, in every case, 
X assumes the value unity at infinity, Eq. (7) can be 
written 

I d3x( - 8A\72x ) 

= 8 I ds· VA - 8AoI ds· Vx - 8 I d3xx\72A. (8) 

By Gauss' theorem 

IdS' \7x = Jd 3x\72X = -im. 

Thus from (8) we find 

Aom = I d3x( -8A\72X + 8X\72A) - 8 I ds· VA. (9) 

Finally, if we substitute for \72X obtained from the 
constraint relation (1), Eq. (9) becomes 

Aom = I d3X( 8X\72A + (i + W)XA(V In ~)2 

(EI')2A APm) +--+-
2l ~!x 

- IdS, VA. (10) 

The first variation of m is thus given by 

Ao~m = J d3X[ (8\72A + (t + W)A(V In ~)2 

3A(EL)2 APm) 
2l - ~!X2 ~X 

( 
3 APm)~~J + -2(2 + W)V • (XAV In ~) - ~!X -;;; . 

(11) 

If the Lagrange multiplier is adjusted at every point in 
space so that the coefficient of ~X is zero, then, 
because ~~ is arbitrary, the condition of extremized 
mass gives us 

V . (XAV In ~) + Apm/(3 + 2w)~!X = 0, (12a) 

where A is determined from 

(t2b) 

and the constraint is rewritten 

A solution of these coupled nonlinear differential 
equations will then give us the static minimum-energy 
configuration for a charged mass distribution. 

3. SOLUTION OUTSIDE A SPHERICALLY 
SYMMETRIC CHARGED MASS 

DISTRIBUTION 

Outside the charged mass distribution exhibiting 
spherical symmetry, it is possible to obtain exact 
solutions of Eqs. (12). In this region the mass density 
is zero and the solution of the electric constraint [Eq. 
(2)] is such that (EL)2 = et:2r-4, where et:2 = (e/4n)2. The 
three equations can then be written 

~(r2XA d In ~) = 0, (13a) 
dr dr 

~ ~(r2 dA) + (i + W)(d In ~)2 _ 3et:
2 

= ° (13b) 
r2A dr dr dr 2r4x4 ' 

~ ~(r2 dX) + (i + W)(d In ~)2 + ~ = 0. (13c) 
r2x dr dr dr 2r4x4 

The solution of (13a) can be written, owing to the 
positive behavior of (! + w), 

d In ~ -A 

dr = (i + w)!r2XA . 
(14) 

When Eq. (13a) is substituted into Egs. (l3b) and 
(l3c), we are left to solve 

~ ~(r2 dA) + ~ _ 3et:
2 

_ ° 
r2A dr dr r4lA2 2r4x4 - , 

(15a) 

8 d ( 2 dx) A2 et:
2 

r2x dr r dr + r4x2A2 + 2r4l = O. (I5b) 

The particular behavior of the electric field in r 
allows us to take special advantage of the substitution 
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r = Z-I. For, then, Eqs. (15) become 

8d2). A2 31X2 
--+---=0, 
). dz2 X2

).2 2X4 
(16a) 

8 d2X A2 1X2 
--+-+-=0. 
X dz2 li.2 2l 

(16b) 

These coupled equations are of second order, and 
the independent argument z appears nowhere ex
plicitly. Because of this it is possible to employ the 
device of considering these equations to be dynamical 
Lagrangian equations for some mechanical system. 
The variables X and ). are interpreted as the coordi
nates of the system; z is taken as the time. Once a 
Lagrangian is obtained, the corresponding Hamilto
nian can be found. I t is quite likely that the Lagrangian 
will not depend on z so that the Hamiltonian will 
represent a first integral of Eqs. (16). But, more 
importantly, the Hamilton-Jacobi equation formed 
from it is, in fact, separable; full solutions can thus be 
immediately generated for Eqs. (16). 

A Lagrangian which effects this is 

d)'dX A2 1X2i. 
1:=8--+---. 

dz dz X). 2l 
(17) 

By defining Px = ol:/OX' and p;. = 01:/0).', we find 
that Px = 8),' and PA = 8X'. By the standard methods 
of constructing a Hamiltonian from a Lagrangian, 
we thus find 

According to the Hamilton-Jacobi theory, if a 
generator of canonical transformations of the form 
S(qi' Pi' t) is introduced in such a way that it satisfies 
the equation 

(19a) 

where 

oS 
Pi =;-, 

uqi 
(19b) 

then S generates transformations to new variables, the 
P; and the Qi (= oS/oP;), which are constant in time 
since the new Hamiltonian-the right-hand side of 
Eq. (19a)-is identically zero. The fact that the Qi and 
Pi are constants allow us to invert these relations to 
obtain the qi as functions of time. 

Corresponding to Eq. (18), we find the Hamilton
Jacobi equation to be 

It is standard to assume that S can be written in the 
form S = W(X, ).) - {Jz, where (J is an arbitrary 
constant. The characteristic equation is then 

oW oW _ 8A
2 + 41X2). = 8{J. (21) 

oX 0). X). X3 

This equation becomes more transparent when ex
pressed in terms of two new variables u and v, where 
u = X). and v = AlX. Then (21) becomes, by trans
posing terms, 

This equation can be separated into two ordinary 
differential equations on the assumption that W = 
F(u) + G(v) for, then, the left side of (22) depends on 
u alone and the right side on valone. Calling the 
separation constant k 2 , we can write the solutions as 

F(u) = f ~ (k 2 + 8A 2 + 8{Ju)t du, (23a) 

(23b) 

In practice, there is an arbitrariness in the generat
ing function, owing to the possibility of minus signs 
when extracting the square root to achieve (23). This 
arbitrariness, if it leads to a multiplicity of sets of 
solutions {X(z), i.(z)}, can be eliminated by choosing 
the one that leads to physically admissible solutions. 
At this stage, therefore, we write the full generator as 

S = eF(x),) + tJG(i./X) - {Jz, (24) 

where e = ±1 and tJ = ±1. 
Two constants of integration appear in S. These 

quantities, both {J and k 2 , constitute the new momenta; 
differentiation of S with respect to them define the new 
coordinates which are themselves constants. Thus 

oS of oG 
-=Q =e-+tJ-=z 
0{J /l 0{J 0{J , 

(2Sa) 

as of oG 
ok2 = Qk2 = e (}k 2 + b (}k 2 • (2Sb) 

These two relations allow us to solve for X and), as 
functions of z. 

Consider Eq. (2Sa). G is independent of {J; from the 
definition of F, 
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When inserted into (25a), it becomes 

Q = ~ (k2 + 8A2 + 8,8XA)! - z. (27) 
,8 

It is convenient to introduce the boundary conditions 
X -+ 1 and A -+ 1 as r -+ 00, i.e., as z -+ O. This is just 
the requirement that space become Minkowskian 
infinitely far from the localized mass distribution.4 

With a rearrangement of terms, Eq. (27) becomes 

XA = 1 + te(k2 + 8A2 + 8,8)!z + i,8Z2. (28) 

It will also prove to be convenient to introduce two 
new constants in place of A and ,8, a = (P + 
8A2 + 8,8)! and b = (k2 + 8A2)!. In terms of these 
(28) becomes 

XA = 1 + !eaz + 6~(a2 - b2)Z2. (29) 

Consider the second relation (25b). According to 
the definitions of F and G, 

of =! f .! (b2 + 8,8u)-t du 
Ok2 2 u 

_ .lIn I (b + 8,8u)! - b I 
- 2b (b + 8,8u)! + b ' 

oG = ! f! (k2 + 4ocV)-! dv 
ok2 2 v 

1 I (k2 + 4OC
2
V
2
)! - k I - -In 

- 4k (k2 + 4OC2V2)! + k ' 

(30a) 

(30b) 

k being the positive root of k 2• By substituting these 
expressions into (25b), combining the logarithms, and 
exponentiating, we can obtain 

(k2 + 4ocV)! - k , I (b 2 + 8{Ju)! + b \2kE
Mb 

1 = Bo 1 • (31) 
(k2 + 4OC2V2)~ + k (b2 + 8,8u? - b 

Because of tHe relationship (29), this can be rewritten 
by absorbing a constant into B~: 

(k2 + 4ocV)! - k 11 + te(a - b)z \2k'~/b 
! = Bo . (32) 

(k2 + 4OC2V2) + k 1 + !e(a + b)z 

At this stage Bo can readily be evaluated by recogniz
ing that, at z = 0, v (= AlX) = 1: 

(k2 + 4r(2)! - k 
Bo = (k 2 + 4r(2)! + k . (33) 

It is here worth noting that the left side of Eq. (32) is 
always greater than or equal to zero, but is also al
ways less than unity for any value of v. This is not, in 
general, true for the right-hand side. Consistency can, 
however, be guaranteed by the choice E = t5 = + I. 

For then 1 + !(a + b)z is always a positive number 
and appears in the denominator while I + lea - b)z 
appears in the numerator and is always less than the 
denominator. 

If we define B(z) according to 

1

1 + i(a - b)z 12k/U 
B(z) - B 

- 0 1 + Hz + b)z ' 

then Eq. (32) can be inverted to yield 

v = A/X = (k/oc)Bl(z)[l - B(zW\ 

where oc is the positive root of oc2
• 

(34) 

(35) 

The scalar field can be determined from the differ
ential Eq. (14): 

din 4> A 64A(t + w)-t 

dz = (t + W)!XA = 64 + 16az + (a2 - b2)Z2 . 

(36) 

The second relation arises because of Eq. (29). An 
immediate integration yields 

= 11 + tea + b)z \4A/b(!+W) \ 

4> 4>0 1 + Ha - b)z . 
(37) 

Here 4>0 is an integration constant which can be 
taken to be the boundary value of 4> as r -+ 00, i.e., 
at z = O. 

A word on the sign of A is necessary. Consider the 
full differential equation for 4>, 

V • (XAV In 4» + APm(x)/(3 + 2w)4>!X = O. (38) 

An integration over all space yields by Gauss' theorem 

f
dS • XAV In 4> = -fd3X APm(X) , (39) 

(3 + 2OJ)4>!X 

the surface integral being taken at infinity. Because 
(36) is true outside the source, Eq. (39) implies that 

A = 1 fd3x APm(X) (40) 
87T(i + OJ)! 4>!X . 

Since each of the quantities appearing in the integrand 
is positive, so is A. 

Finally, a comparison of Eqs. (29) and (35) enables 
us to write the solutions for X and A: 

X(z) = [1 + !az + s14(a2 - b2)Z2]t 

X (oc/k)tB-!(z)[l - B(z)]t, (41a) 

A(Z) = [1 + taz + o\{a2 
- b2)Z2]t 

X (k/oc)tB!(z)[l - B(z)r!. (4lh) 

Equations (37) and (41a, b) comprise the general 
exterior solution to the spherically symmetric charged 
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mass distribution. The boundary conditions X --+ 1, 
A --+ 1 as r --+ 00 have been imposed to ensure Min
kowskian space at infinity while ep --+ epo as r --+ 00. 
The arbitrary constants a, b, and k are determined 
by the actual distribution of charge and mass con
stituting the source. 

4. THE MASS IN TERMS OF THE PARAM
ETERS a, b, AND k 

According to Eq. (4) the energy or mass ofa system 
can be recognized in the coefficient of r-1 in an asymp
totic expansion of X - x(r),......" 1 + mj327Tr. Consider, 
therefore, an expansion of X in z about z = 0, X being 
given by (4Ia). To first order in z, the first factor in X 
can be written 

[l + !az + s\(a2 - b2)Z2]! c::=. 1 + taz. (42) 

A first-order expansion of B(z) yields 

B(z) c::=. Bo(l - tkz). (43) 

Inserting each of these expressions into X(z) and 
retaining terms to first order, we find 

X(z) = 1 + tz[a + k(l + Bo)j(1 - Bo)]. (44) 
According to the definition of Bo [Eq. (33)J, simple 
algebraic manipulations reveal that 

(l + Bo)j(l - Bo) = (ljk)(k2 + ex2)!. (45) 

The expansion (44) thus shows that the mass of the 
system is expressed as 

m = 47T[a + (k2 + 4ex2)!]. (46) 

5. THE CHARGED SYSTEM IN THE ABSENCE 
OF THE SCALAR FIELD 

The general solution for a charged system reduces 
to a particularly simple form in the absence of the 
scalar field. In the above equations a constant scalar 
field can be mathematically achieved by demanding 
that A equal zero. A glance at Eq. (37) then shows 
that the scalar field everywhere assumes its value 
given at r --+ 00. Furthermore, B(z) can be written 

B(z) = Bo(l + t(a - k)Z)2, (47) 
1 + t(a + k)z 

since b = k when A = 0. The first factor in X(z) can 
always be factored according to 

[1 + !az + s14(a 2 - b2)Z2]! 

= [1 + tea - b)z]![1 + tea + b)z]!. (48) 

By employing each of these expressions in x(z) , 
an algebraic reduction allows us to write 

X2(z) = {1 + -Ha + (k2 + 4ex2)!]Z}2 - T\;CX2Z2. (49) 

Thus, with Eq. (46) and the fact that cx = lelj47T, we 
find that X2(z) can be written 

X2(z) = (1 + mzj327T)2 - (ezjI67T)2, (50) 

where e is the total charge of the system.5 

6. THE CHARGED MASS SHELL 

The mass shell is characterized by essentially re
placing Pm(x) by mo~(r - E)j47Tr2 where mo is the bare 
mass and E is the radius of the shell. It is further char
acterized by the absence of an electric field in its 
interior, since the charge is assumed to be distributed 
uniformly over the surface of the shell. The general 
solutions for x, A, and ep, valid for the region exterior 
to the shell, are the solutions given by Eqs. (37) and 
(41); the interior solutions can be obtained from the 
Hamilton-Jacobi equation in which ex is taken to be 
zero, for this effectively imposes the requirement of 
zero electric field in the interior region. A glance at 
Eq. (23a) shows that F(u) is unmodified by this re
quirement; an equation of the form XA = A + Bz + 
CZ2 will thus be obtained. Because the interior of the 
shell is matter-free, all interior solutions must be well 
behaved. In particular, the fields must remain finite as 
r --+ 0, i.e., as z --+ 00. The product XA is then constant 
and reference to Eq. (36) shows that ep diverges ex
ponentially as z --+ 00 unless it, too, is a constant. 
Equations (l2b) and (l2c) then show that both X and A 
satisfy Laplace's equation everywhere within the shell. 
The only admissible solutions are X, A, and ep being 
constants in the interior; the requirement of continuity 
of the fields thus demands that 

X(r) = X(E), r 5; E, 

A(r) = A(E), r 5; E, 
ep(r) = ep(E), r 5; E. 

(5Ia) 
(51 b) 
(5Ic) 

The undetermined constants appearing in the ex
terior solutions for X, A, and ep can now be evaluated 
by demanding that these solutions and (51) constitute 
the complete solution of the full differential equations 
(12) for the shell. Specifically, the presence of the ~ 
function enables us to evaluate by how much the deriv
ative of each field must change as the surface of the 
shell is crossed. If each of the source equations is 
integrated across r = E, we find 

8r2 dX(~: E) L.- 8r2 _dX_(_~_r<_E_) L. 
(52a) 

mo = + --,....---"'----
47Tept(E-1)X(E-1) , 

(52b) 

r2XA d In ep (r > E) I _ 8r2XA dIn ep (r < 10) I 
dr r~' dr r~€ 

moA(E-1) 
(52c) 
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Here F(e-I ) means F (z = e- I ). Because the derivative 
of the scalar field and the electric field change by only 
a finite amount across r = e, the corresponding terms 
make no contribution to the discontinuity of the 
derivatives of X and It. 

These relations can be written in a simple form, 
first, by recognizing that the second terms of each of 
the equations vanish because of the constancy of the 
fields in the interior and, secondly, by means of the 
transformation r = Z-I. We find the three relations 
for determining the three unknown constants to be 

7. THE ELECTRON IN GENERAL RELATIVITY 

To restore general relativity, it is necessary to 
eliminate the effects of the scalar field. By choosing the 
constant A equal to zero, we force the scalar field to 
assume the constant value given by the boundary 
value ~o [see Eq. (37)]. To be compatible with Eqs. 
(53), we see that this simultaneously entails choosing 
OJ to be infinity. Equation (53c) is then identically 
satisfied; Eq. (53a) can be written 

din x21 mo 
~ .=.-1 = 167T~tl(e-l) 

(54) 

or 

dll mo - =--1' 

dz z=' -1 16 7T~~ 
(55) 

Referring to Eq. (50), we find that 

- = 2- 1 + - - 2 - -dX21 m ( m) (e )2 1 
dz .-1 327T 327Te 167T e' 

(56) 

Combining (55) and (56) enables us to express the 
mass of the charged shell as 

m = 167T{ -e + [e2 + (e/87T)2 + moe/87T~t]k}. (57) 

The electron in general relativity is characterized by 
a point charge source and thus instead of a shell t5 
function a point t5 function should be used. In the 
limit e becomes zero, the solution of the static fields 
for the electron is obtained where m = 2 lei from 
(57) and from (50): 

(58) 

while 

X2 (r = 0) = X2(C I ) = [1 + m(e)j327Te]2 

- (ejI67T)2e-2 (59) 

and diverges as c 1 as e approaches zero. This is just 
the solution of the self-energy problem as found by 
Arnowitt, Deser, and Misner. 5 

8. THE ELECTRON IN THE SCALAR-TENSOR 
THEORY 

The relations (53) do not reduce to a tractable set of 
equations for the unknown constants appearing in the 
general solutions. However, some arguments can be 
made which support the idea of Paper I that the solu
tion to the self-energy problem of the electron in the 
scalar-tensor theory is the same as in general relativity; 
that is, the function X is unchanged from the general 
relativity form, the mass of the system is 2 lei, and the 
scalar field is constant everywhere outside the source. 

For our purposes it is more convenient to cast the 
relations (53) into different forms by use of the func
tional forms of X, It, and ~. Note, first, that Eqs. 
(34) and (37) allow us to write 

(60) 

and that, in terms of the definitions of a and b, A is 
written as HHb2 - k 2)]k. B is thus a functional of ~, 
and a reference to Eqs. (41a,b) shows that X and It can 
be written 

where 

X(z) = U!(z) V!(z) , 

It(z) = U!(z) V-!(z) , 

U(z) = I + iaz + h(a2 - b2)z2, 

V(z) = (rx/k)B-!(1 - B). 

(6Ia) 

(6Ib) 

(62a) 

(62b) 

Because of (6Ia, b) we can write the derivatives of the 
logarithms of X and It as 

d In X = 1. d In U + 1. d In V (63a) 
dz 2 dz 2 dz 

d In It 1 d In U 1 d In V 
-- = - -- - --- (63b) 

dz 2 dz 2 dz 

The addition of Eqs. (53a) and (53b) gives us the 
requirement that 

din Xlt I = O. 
dz .-1 

(64) 

Equations (63) show, then, that the derivative of U 
must vanish at z = c i or 

(65) 
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This shows that b is greater than a for the charged 
shell. We assume that in the limit of E approaching 
zero (characterizing the electron) a does not vanish; 
b must then approach a as E approaches zero. 

We next consider Eqs. (53a) and (53c). From them 
we see that we can write 

d In X I = (t + co) d In 4> I 
dz .-1 4 dz .-1' 

(66) 

Because the derivative of U vanishes at c I , this state
ment is equivalent to the condition 

1. d In V I = G + co) d In 4> I (67) 
2 dz .-1 4 dz .-1 

or 

_ (1 + B) din BI = (t + co) d In 4> I . (68) 
4(1 - B) dz .-1 4 dz .-1 

Because of Eq. (60) it is true that 

din B I = _ G + co)ik d In 4> I. (69) 
dz .-1 2A dz .-1 

Thus, by (68), 

[~ (1 + B) _ 2(t + CO)!] din 4> I = O. (70) 
A (1 - B) .-1 dz .-1 

The derivative of the logarithm of 4> cannot vanish at 
Z = E-I . Straightforward differentiation of 4> given by 
Eq. (37) yields 

din 4> I 16E
2
b 4A (71) 

dz .-1= (8E + a)2 - b2 bG + co)!' 

The bracketed term must therefore vanish. Solving for 
B(E-I ), we obtain 

2A(!!. + co)i - k 
B(E- I

) = 2 • (72) 
2A(t + co)i + k 

B(E-I ) can be written, by use of Eq. (65), 

-1 \ 8Ea + a2 - ab \21c/b _ I b - a \2k/b 
B(E ) = B - Bo , 

o 8a + a2 + ab b + a 

(73) 

and thus the second constraint on the three unknown 
constants can be written, instead of (72), as 

b - a _ \ (k 2 + 4oc2)i + k 2A(i + co)i - k \b/21c. 

b + a - (k2 + 4oc2)! - k 2A(i + co)! + k 
(74) 

According to the assumption that a approaches a 
nonzero limit as E approaches zero, we have shown that 

b must approach the limit of a. The left-hand side of 
Eq. (74) is less than unity and must also approach zero 
as E approaches zero. This gives us the behavior of k. In 
order for the fraction on the right-hand side to vanish, 
k must satisfy in the limit 

2A(t + co)i = k 
or 

k = b[(7 + 2co)/(3 + 2co)]!. (75) 

On first sight, the thought occurs that the limit 
of k approaching zero will also satisfy the limit of 
Eq. (74), for then the fraction on the right side is 
raised to higherpowersask approaches zero. However, 
for small k, the interior fraction becomes 

(k 2 + 4oc2)i + k 2AG + co)i - k 

(k2 + 4oc2)! - k 2A(t + co)! + k 

,...., 1 - k( 4 _ 1.) 
- (3 + 2co)ib oc' 

(76) 

and the limit is 

and is not zero, as the left side of (74) must be. 
We thus see that, on the assumption that a ap

proaches a nonzero limit as E approaches zero, b 
approaches the same limit and k approaches the limit 
given by (75). Is this compatible with the last con
straint to be extracted from Eqs. (53)? 

Consider Eq. (53a) alone. We have already shown 
that the derivative of the logarithm of X satisfies the 
following equation at Z = E-I : 

d In X I = _ (1 + B) din B I . 
dz .-1 4(1 - B) dz .-1 

According to (60) and (71), we can write 

din B I = _ (t + co)!k d In 4> I = _ 32ka
2
E2 

2 2 2' dz .-1 2A dz ._1 b (b - a ) 
(78) 

Relation (65) was used to simplify the result in this 
equation. 

Referring to Eqs. (6Ia) and (62), we find 

'(E-I) = b
2

(b
2 

- a2)(~)B-!(E-I)[1 _ B(E-I)], (79) 
X 64E2a2 k 

again by simple algebraic reduction. 
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By substitution of these expressions into the relation 
(53a), we see that a number of cancellations arise with 
the result 

[1 + B(e-1 )]cPi (e-1
) = mo 

Bt( e-1) 47TCl 
(80) 

Equation (73) shows that B( e 1) approaches zero; 
the ratio of k to b must be a finite constant in the limit 
according to (75). If (80) is to be compatible with the 
initial assumption that a does not approach zero, then 
cPtC e 1) must approach zero as fast as Bl( £-1). But, 
according to (60) and (75), 

(81) 

and, in fact, diverges as e approaches zero, since B 
approaches zero. This contradiction shows that a must 
approach zero in the limit. Equation (65) then shows 
that b must also approach zero and, because A is a 
positive quantity by (40) and 2A = [Hb2 - k2)]t, k 
must also approach zero. 

These arguments do not tell us the rates at which 
these quantities reach their limits, but the limits do 
tell us something about the exterior solutions for the 
electron in the scalar-tensor theory. According to 
Eq. (46), the mass of the charged shell is written 

m = 47T[a + (k2 + 4oc2)t]. 

The above limits show that the mass of the electron is 
m = 87TCl = 21el as is true in general relativity. Also, 
the external scalar field (37) 

1

1 + t(a + b)z 1[2/(3+2W)~](l-k'/b.)t 
cP = cPo 

1 + !(a - b)z 

approaches cPo for any z ~ e-1 because a and b ap
proach zero and because k must always be less than b. 

Note that the arbitrariness of the boundary value of 
the scalar field, the charge and bare mass, and Eq. 
(80) demand that the limit of alb be nonzero. If the 
converse were true, the following would occur. The 
limit of zero k would demand that Bo approach unity. 
At z = e 1 we have shown (73) that 

B(e-1) = Bo 11 - alb 1
2k

/

b

• 

1 - alb 

Since k must always be less than b, if the limit of alb 
were zero, the limit of B(el ) would be unity also. In 
like manner, cPt (e-1) is written, from (37) and (65), as 

t -1 ill + alb 1[(I-k2
/b')/(3+2

W)]t 
cP (e ) = cPo (82) 

1 - alb 

and would approach cPt in the limit. Equation (80) 
would then demand in the limit that 

2cP! = mo/47Toc, 

which is, in general, not true. 
We see, then, that the rigorous solution to the self

energy problem for the electron in the scalar-tensor 
theory consists of a constant scalar field equal to the 
boundary value at infinity everywhere outside the 
electron and that an essential singularity in the scalar 
develops at the electron itself; Eq. (82) shows that 
cP( e-1

) is always greater than cPo. The mass of the elec
tron is 21el or, in more usual units, G;l(e2/47T)t and, 
for a constant external scalar field, the function X 
must of necessity be given by (58), exactly as in 
general relativity. 
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In !he context of the formal t~eory of scattering. the scattering amplitude on the energy-momentum 
~,hell IS ~ho~n to be hyperplane Illdepend~nt even III the pres~nce of hyperplane-dependent interaction 

potentials. Also, a formal field-theoretic example of consistent hyperplane-dependent potentials is 
presented. 

1. INTRODUCTION 

In this paper, the hyperplane independence! of the 
scattering amplitude in the context of the formal 
theory of scattering is established. One motivation for 
this study is the apparently widespread notion that 
the explicit introduction of a timelike vector or similar 
device to characterize the conditions surrounding 
measurements must destroy the relativistic invariance 
of the theory regardless of how manifestly covariant 
the resulting formalism may appear. 2 This view is 
erroneous, and it occurs to one that the demonstration 
of the hyperplane independence of the scattering 
amplitude when the interaction is hyperplane depend
ent would do more to still the critics than the general, 
somewhat philosophical, arguments already in print. 

Beyond this, a formal solution of the relations that 
must hold between the interaction parts of the Poin
care generators, and which playa crucial role in the 
aforementioned demonstration, is obtained, which is 
considerably more general than the solution provided 
by conventional local quantum field theory. 

A source of confusion about hyperplane dependence 
is the question of the hypothetical status of the hyper
plane dependence of the interaction parts of the Poin
care generators. On one hand, the quantitative details 
of the hyperplane dependence of the interaction parts 
are model dependent and, therefore, hypothetical to 
the extent that the model of the interactions being 
employed is hypothetical. On the other hand, the mere 
existence of hyperplane dependence is not hypothetical, 
for it is a consequence of the fact that the decomposi
tion of the Poincare generators into free and inter
action parts is always carried out on, or with reference 
to, a particular spacelike hyperplane.3 The more con
ventional view that such decomposition is carried out 
in, or with reference to, a particular inertial reference 
frame gives undue emphasis to processes, events, and 
analytical procedures referring to definite instants of 
time and ignores the equivalence of describing the 
instantaneous of any frame as the hyperplane-asso
ciated of a given frame. 

2. PARTS OF THE HYPERPLANE-DEPENDENT 
INTERACTION 

In an earlier paper,s it has been shown that, if the 
Poincare generators Pit and Mltv are separated into 

free parts P~O)('YJ, T) and M~~)('YJ, T) and interaction 
parts on the ('YJ, T) hyperplane, then the interaction 
parts have the form 

Pit - p~O)('YJ, T) = 'YJltV('YJ, T), (2.1) 

M/lv - M~o;('YJ,T) = 'YJ/lUv('YJ,T) - 'YJvU/l('YJ,T). (2.2) 

The operators V and U/l are scalar and vector oper
ators, respectively, and, therefore,4 

(2.3a) 

[M/lv, V('YJ, T)] = ifi('YJv~1t - 'YJ/l~v)V('YJ, T), (2.3b) 

[P /l' Uv('YJ, T)] = ili( (g/lV - 'YJ/l'YJv)V('YJ, T) 

aUi'YJ, T)) 
- 'YJ/l aT ' (2.3c) 

[M/lv, Ui'YJ,T)] = ili[gv;.Ui'YJ,T) - g/l;.Ui'YJ,T) 

+ ('YJ/5/l - 'YJ/lbv)Ui'YJ, T)]. (2.3d) 

Furthermore, the "potentials" V and U/l cannot be 
chosen independently, but, rather, must satisfy the 
nonlinear coupled equations5 

(2.4a) 

and 

[U/l' Uv] = ili[(b/l - 'YJ/l)Uv - (~v - 'YJv)U/l]' (2.4b) 

where the hyperplane dependence of the potentials is 
suppressed for convenience. 

If a V and a U/l can be found which satisfy all of the 
foregoing relations, then the free generators P~O) and 
M~~), as well as the total generators P/l and M/lv, 
satisfy the Lie algebra of the Poincare group and to
gether provide a description of interactions between 
the stable particles defined by the free generators in a 
relativistically covariant manner. 

3. HYPERPLANE DEPENDENCE OF INITIAL 
AND FINAL STATES 

Consider the asymptotically free incoming and out
going states of scattering theory with asymptotic 
configurations IX. Under a Poincare transformation 
{A, a}, implemented by the unitary operator U(A, a), 
we have 

IIX'(±) == U(A, a) IIX(±) = 'U,~(A, a) IfJ(±), (3.1) 

2826 



                                                                                                                                    

HYPERPLANE INDEPENDENCE OF SCATTERING AMPLITUDE 2827 

where the repeated f3 symbol indicates a sum-integral 
over a complete set. In the specific case in which the 
vectors IIX(±» are momentum-spin eigenvectors with 
the spin components or state indicated by tensor and/ 
or spinor indices, we have 

U(A, a) IPIIXI' P21X2' ... ,P nlXn(±» 

= e(ifn)(Pl'+'" +Pn')a'\1!~::: !;(A) IP{f3I' ... , P~f3n(±»' 

(3.2) 

where P; = APi and the matrix '\1 belongs to a finite
dimensional representation of the homogeneous 
Lorentz group. The lXi here indicate the set of tensor 
and/or spin or indices used to denote the spin state of 
particle i. The important consideration is that, with 
the use of such indices, the transformation matrix is 
independent of the momenta Pi .6 As is well known, 
eigenvectors of the z components of the particle spins 
or helicity eigenvectors do not share this feature. 

Now, in the formal theory of scattering, one employs 
not only the asymptotic momentum-spin eigenvectors 
(or scattering states, as they are sometimes called) but 
the momentum-spin eigenvectors of the free gener
awrs as well. Since the free generators are defined on 
spacelike hyperplanes a ld differ from hyperplane to 
hyperplane in the presence of interactions, it follows 
that the corresponding momentum-spin eigenvectors 
will also be hyperplane dependent in the presence of 
interactions. In fact, if one does not employ the 
tensor-spinor formalism for spins but introduces 
helicity states, say, then hyperplane dependence of the 
states is present even for free systems. 7 For our pur
pose, it is desirable to keep the hyperplane dependence 
of the initial and final states of a collision entirely 
dynamical in origin. Only in that case is the scattering 
amplitude hyperplane independent. 

Under the free Poincare group, i.e., the group of 
operators U(O)(A, a; 1]0) formed from the free gener
ators P~O)(1], 0) and M~~)(1], 0), the momentum-spin 
eigenvectors satisfy 

U(O)(A, a; 1]) IPIIXI' ... , P nlXn; 1]0) 

= e(iIMI\(Pl+' .. +Pn)a '\1!~(A) ... '\1~~(A) 

X IAPI , f31' ... ,AP nf3n ; nO). (3.3) 

Under the full Poincare group generated by the P /l and 
M/lv, the corresponding equation is 

U(A, a) IPIIXI" ", PnlXn; nT) 

= exp ({i/Ii)[A(PI + ... + Pn) 

- A1](PI + .. , + Pn)1]]"a/l} 

X '\1~:(A) ... '\1~: (A) 

X IAPIf3I' ... ,AP nf3n; A1], T + aA1]). (3.4) 

Combining (3.3) and (3.4) and considering infinitesimal 

transformations, one finally obtains 

V(1], T) IPIIXI' ... ,P nlXn; 1]1') 

= -(1](PI + ... + Pn) + ili:
T

) IPIIXI"", PnlXn; 1]T) 

(3.5) 
and 

U i1], T) IPIIXI, ... , P nlXn; 1]T) 

= [iM/l + T(P/l -1]/l1]P)] IPIIXI,"', PnlXn; n1'). 

(3.6) 
4. THE SCATTERING AMPLITUDE 

Denoting the initial state by A = (PIIXI , ... , 
P nlXn) and the final state by 

we see that the relation between the S matrix and the 
scattering amplitude in the conventional instantaneous 
formalism is 

(B(+) I A(-» = b(B, A) 

- 27rib(PBO - PAO) (BI T(PAO) IA), (4.1) 

T(PAO) == V + V(PAO - Po - iO)-IV, (4.2) 

and the states (BI and IA) refer to the time t = O. The 
generalization to arbitrary hyperplane orientation isl 

(B(+) I A(-» = b(B, A) 

- 27rib(1]PB - 1]PA) (B; 1]1 T(1]PA , 1]) IA; 1]), (4.3) 

where 

T(1]PA , 1]) = V(1]) + V(1])(1]PA - 1]P - iO)-IV(1]), 

(4.4) 

V(1]) = V(1], 0), and IA; 1]) = IA; 1]0). The validity 
of (4.1) clearly requires that 

b/l[b(1]PB - 1]PA) (B; 1]1 T(1]PA , 1]) IA; 1])] = O. 

(4.5) 
Now4 

b/lb(1]PB - 1]PA) = [(PB - PA)/l 

- 1]/l1](PB - PA)]b'(1]PB - 1]PLl), (4.6) 
and, since 

(B,1]1 T(1]PA , 1]) lA, 1]) oc b:(PB - PA), (4.7) 
where 

b4(PB - PA) == b(1]PB -1]PA)b~(PB - PA), (4.8) 

it follows that the contribution to (4.5) from differ
entiating the b function vanishes by itself. Hence, (4.5) 
is replaced by 

b(1]PB - 1]PA)b/l (B, 1]1 T(1]PA , 1]) lA, 1]) = O. (4.9) 

For the rest of the calculation, it is convenient to 
introduce an arbitrary complex 4-momentum argu
ment Pinto T( 1]P, 1]), with P B ~ P ~ P A , in general. 
To distinguish between the c number 1]P and the 
operator 1]P, the symbol H(1]) == 1]P is introduced for 
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the latter. Thus, 

T('YJP, 'YJ) = V('YJ) + V('YJ)['YJP - H('YJ)]-IV(1'). (4.10) 

From (3.6), 

CJ/l (B, 'YJI T('YJP, 'YJ) lA, 'YJ) = (B, 'YJI CJ/lT('YJP , 'YJ) 
+ (ili)-I[T('YJP, 'YJ), U/l('YJ)] lA, 'YJ), (4.11) 

and applying (2.3) and (2.4) to 

CJ/lT = CJ/lV + CJ/lV('YJP - H)-IV + V('YJP - H)-ICJ/lV 

- V('YJP - H)-I(P/l - 'YJ/l'YJP - K/l) 
x ('YJP - H)-IV (4.12) 

yields 

ilitJ/JT = ([H, U/J] - [V, U/J]) 
+ ([H, U/l] - [V, U/J])('YJP - H)-IV 

+ V('YJP - H)-I([H, U/J] - [V, U/J]) 

- V('YJP - H)-I(P/J - 'YJ/J'YJP - K/J) 
X ('YJP - H)-IV 

= - [T, U/J] + [H, U/l] + [H, U/J]( 'YJP - H)-l V 
+ V('YJP - H)-I[H, U/J] 

+ V[('YJP - H)-I, U/J]V 

- V('YJP - H)-I(P/J - 'YJ/J'YJP - K/J) 
X ('YJP - H)-IV 

= - [T, U/l] + [H, U/J] + [H, U/J]( 'YJP - H)-l V 

+ V('YJP - H)-I[H, U/J] 

+ V('YJP - H)-I[H, U/J]('YJP - H)-IV 

- V('YJP - H)-I(P/J - 'YJ/J'YJP - K/J) 
X ('YJP - H)-IV 

= - [T, U/J] + ('YJP - HCO»( 'YJP - H)-l 

X [H, U/l]('YJP - H)-I('YJP - H(O» 

- V('YJP - H)-I(P/l - 'YJ/l'YJP - K/l) 
X ('YJP - H)-IV, (4.13) 

where K/l is the operator P/J - 'YJ/J'YJP and H(O) == 'YJPCO). 
Substituting this into (4.11) yields 

ilitJ/J (B, 'YJI T('YJp, 'YJ) lA, 'YJ) 

= ('YJP - 'YJPB) (B, 'YJI [('YJP - H)-I, U/J] lA, 'YJ) 

X ('YJP - 'YJPA) - [(P - PA)/J - 'YJ/l'YJ(P - PA)] 

X (B, 'YJI V('YJP - H)-2V lA, 'YJ). (4.14) 

Now put 

Then 

CJ('YJPB - 'YJPA)CJ/J (B, 'YJI T('YJPA - i'YJE, 'YJ) lA, 'YJ) 

= CJ('YJPB - 'YJPA){ -('YJE)2 

X (B, 'YJI [('YJPA - H - i'YJE)-I, U/J] lA, 'YJ) 

(4.1S) 

+ i(E/J - 'YJ/J'YJE) (B, 'YJI V(1'/PA - H - i'YJE)-2V lA, 1'/)}. 

(4.16) 

The limits inside the matrix elements as 1'/E ---+ 0+ 
yield well-defined generalized functions in momentum 

space. Thus, 

(B, 'YJI [('YJPA - H - i'YJE)-l, U/J] lA, 'YJ) 

---+ (B, 'YJI ['J'/('YJPA - H) + i1TCJ('YJPA - H), U/J] lA, 'YJ), 

(4.17) 
and, from (2.3a) and (2.3c), is proportional to 

OCJ~(PA - PB)/OPA/J' 
Similarly, 

(B, 'YJI V('YJP A - H - i'YJE)-2V lA, 'YJ) 

= -(B, 'YJI V(~ (y - H - i'YJE)-I) V lA, 'YJ) 
dy lI~~PA 

---+ (B, 'YJI V[ -'J'/('YJP A - H)2 

+ i1TCJ'('YJP A - H)] V lA, 'YJ), (4.18) 

which is proportional to CJ~(PA - PB)' Hence, in the 
limit 'YJE ---+ 0+, Eq. (4.16) vanishes and (4.9) and 
(4.S) are satisfied. 

5. SOLUTION OF THE COMMUTATION 
RELATIONS 

Unless one can find examples of hyperplane-depend
ent potentials beyond the familiar cases provided by 
local quantum field theory, the foregoing considera
tions are academic, since one knows that conventional 
field theory does not lead to hyperplane dependence 
of the S matrix.8 The difficulty, of course, is in satis
fying all the commutation relations, involving the 
potentials, which occur in Sec. 2, i.e., Eqs. (2.3) and 
(2.4). These equations are special cases of commuta
tion relations that were studied in an earlier paper3 
and a formal expression for their most general solution 
was then presented. This general solution, however, is 
sufficiently complicated to be of questionable practical 
value so that one is motivated to look for less general 
but simpler solutions. 

A simple solution of a field-theoretic character 
exists which allows for bona fide hyperplane depend
ence at the field-theoretic level. The solution retains a 
formal character in that the problem is merely reduced 
to that of finding a single scalar hyperplane-dependent 
Hermitian field operator with a particular equal
hyperplane commutation relation satisfied. 

Thus, consider an Hermitian field operator '1J(x, 1]) 
satisfying 

U-I(A, a)'1J(Ax + a, An)U(A, a) = '1J(x, 1'/), (S.1) 

or 
[P/J' '1J(x, 1'/)] = -iho/J'1J(x, 'YJ), (S.2a) 

[M/J" '1J(x, 'YJ)] = ih(x.o/J - x/Jo. + 1'/.CJ/J - 1'//JCJ.) 
X '1J(x, 1'/). (S.2b) 

In other words, the field is a scalar field. If the po
tentials V and U/J are constructed from '1J via 

V(1'/, T) == J d4x CJ(1'/X - T)'1J(X, 1'/) (S.3a) 
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and 

Ui'f}, T) == J d4x d(nx - T)(X/l - 'f}/l'f}x)'lJ(x, 'Y), 

(5.3b) 

then Eqs. (2.3) are automatically satisfied, provided 
only that 'U(x, 'Y) "vanishes" sufficiently rapidly in the 
spacelike directions orthogonal to 'f}, so that integra
tion by parts can be performed without regard to 
surface terms. 

With this construction, the solution of the non
linear relations (2.4) clearly requires a statement con
cerning the equal hyperplane commutation relation 
of'U with itself. A solution is provided by the relation9 

b('f}x' - 'f}x)['U(x', 'f}), 'U(x, 'f})] = ili[0/lb4(x' - x) 

X b/l'U(x', 'f}) - o'/lt54(x' - x)b/l'U(x, f)]. (5.4) 

Thus, 

b/l V('f}, T) = J d4xW('f}x - T)(X/l - 'f}/l'f}x)'U(x, 'f}) 

+ b('f}x - T)b/l 'U(x, 'f})] (5.5) 
and 

/l = _ d4x b ('f}X - T)(XI' - 'f}/lf)X)'U(X, 'f}), au (f),T) J ' 
aT 

(5.6) 
so that, from (2.4a), 

iii J d4x b('f}x - T)b/l 'U(x, 'f}) = [U/l('f}, T), V('f}, T»). 

(5.7) 
But 

[U i1], T), V('f}, T)) 

= J d4x'd4x t5('f}X' - T)b(1]x - T) 

X (x~ - 'f}/l'f}X')['U(x', 11), 'U{x, 'f})] 

= J d4x'd4x b('f}x' - T)(X~ -1]/l'f}X') 

X t5('f}X - 'f}X') ('U(x' ,1]), 'U(x, 1])] 

= iii f d4x' d4x b('f}x' - 7")(x~ - 'f}/lf)X') 

X (-o,·t54(x' - x)b.'U(x, '1])] 

= iii J d4x b('f}x - T)b/l'lJ(x, 'f}), (5.8) 

where the first term on the right-hand side of (5.4) 
makes no contribution here. Similarly, 

b/lU.('f},T) = J d4x{b'('f}x - T)(X" - 'f},,'f}x) 

X (x. - 'f}v'f}x)'U(x, 'T}) 

- b(1]x - T)[(g". - 'T},,'T}v)'T}x'U(x, 'I) 

+ 'f},(x/l - TJ/l'f}x)'U(x, 'T})] 

+ 15('T}x - T)(X. - 'T}.'T}x)b,,'U(x, 'f})}, 

(5.9) 

so that 

d/lUV('f},T) + 'f}vU,,('f},T) - d.Ui'f},T) -11I'U.(11,T) 

= J d4x d('f}x - T)[(Xv - 'f}v'f}x)d/l 

- (x" - 'f}"f)x)b.)'U(x, f). (5.10) 
But 

[U ,,(f), T), U if), T)] 

= J d4X'd4X(X~ - 'f}"f)X')(x. - f).'f}X) 

X b('f}x' - T)b('fJx - T)['U(X', "'), 'U(x, 'T}») 

= iii J d4x'd 4x d('f}x' - T)(X~ - 'T}1''f}X')(x. - 'f}.'f}x) 

X [dp 'U(x', 'f})oP - bp 'U(x, 'f})o,pW(x' - x) 

= iii f d4x b('f}x - T)[(X. - 'f}.'f}x)d" 

- (x" - 'f},,'f}x)b.)'U(x, 'f}) 

= ili[b/lU.('f},T) + 'f}.Up('f},T) 

- d.U,.('f},T) - 'f}/lU.('f},T»), 

as desired. 

(5.11) 

In the absence of derivative coupling, local La
grangian field theory provides the trivial special case 
in which 'U = rint and 

(5.12) 
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This paper presents an extension of Keller's ray method to problems involving two or more parallel 
plates. The approach used here is to solve a canonical problem (two staggered plates) in a rigorous 
?Ianner, and then extr~ct its dominant asymptotic terms so that the result admits ray interpretation. It 
I~ found that the couplmg effect between two plates may be accounted for by introducing two multiplica
tive factors G+(k cos 00 ) and G+(k cos 0) to the conventional half-plane diffraction coefficients, where 
(0 0 ,0) are the directions of incoming and outgoing rays at the edge. The function G+(a) is the "plus 
part" of the transformed Green's function G(a) = 1 - exp [-2b(a 2 - k 2)*] in the Wiener-Hopf 
technique, and b is the guide width. A table for G+(k cos 0) is provided so that the calculation of the 
modified field on the rays can be accomplished even with a slide rule. An application of the present ray 
method to the problem of radiation from an unflanged open-ended parallel-plate waveguide recovers the 
exact solution obtainable by the Wiener-Hopf teChnique. In Paper I of this series of papers, we present 
the main theory and discuss the field in waveguide, while in Paper II the field in free space, particularly 
that on the shadow boundary, will be examined. 

1. INTRODUCTION generalize the results so that they may be applied to a 
The edge-diffracted rays introduced by Kellerl in variety of other problems involving parallel plates or 

1957 together with the classical rays of geometrical wedges. The canonical problem considered is the 
optics have been used successfully in attacking a large diffraction of a plane wave by two parallel plates 
number of boundary value problems in free space. staggered a distance I (Fig. 2). By following a standard 
Recently, Yee, Felsen, and Keller2 extended the ray procedure, the problem can be formulated in terms of 
method to calculate the reflection coefficient from an two coupled Wiener-Hopf equations. For the special 
open-ended parallel-plate waveguide [Fig. I (a)] and case 1= 0, these two Wiener-Hopf equations can be 
obtained good numerical results for examples where decoupled by considering separately the symmetrical 
the guide width (2b) is as small as one-third of a wave- and asymmetrical field components [Fig. 1 (b) and (c)), 
length. In view of the fact that only a few waveguide and the resultant equations are exactly solvable.3 How
discontinuity problems can be analytically solved, the ever, if I> 0, the problem becomes much more com
extention of the ray method by Yee-Felsen-Keller plicated. In the present paper, we accomplish the 
(YFK) is indeed very significant. decoupling of the two Wiener-Hopf equations by 

In the YFK method, the solution to the waveguide asymptotically expanding certain integrals in inverse 
problem in Fig. 1 (a) is, as usual, "built up" from that powers of (ka). As in the conventional ray method, 
of a single half-plane (i.e., Sommerfeld solution). The we retain only the terms of O(ka)-i, and the results so 
interaction between the two plates is then partially obtained can be conveniently identified with rays of 
[the terms of o (kb)-l and higher are neglected] cylindrical waves emanating from the two edges. 
accounted for by considering the multiple reflections The present work consists of two parts. In Paper I, 
along the shadow boundary at z = 0. In this connec- we give the main results and examine the field in the 
tion, one may raise the possibility of deriving a set of waveguide. Owing to the existence of various shadow 
diffraction coefficients which takes care of the coupling boundaries, the field outside the waveguide is quite 
along the shadow boundary automatically (without involved and will be presented in Paper II, in the near 
resorting to multiple reflections) and, therefore, can be future. There is no difficulty in obtaining analytical 
used conveniently in diffraction problems involving expressions for the field in the neighborhood of the 
open-ended waveguides. The present paper is an shadow boundaries. However, extracting the dominant 
attempt to do this and to suggest a simple method of term and giving appropriate ray interpretations cannot 
modifying the ray amplitude derived from a single be accomplished without considerable effort. 
half-plane so that it includes the coupling effect From Secs. 2-5 in Paper I, the solution of the canon-
between two plates. ical problem is presented for incident TM waves. 

The approach used here is first to solve a canonical The main results are then summarized in Sec. 6, 
problem in a rigorous manner, arrange its solution in which also includes generalizations to other polariza
a form which admits ray interpretation, and finally tions and configurations. In Sec. 7, we give a few 

2830 
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FIG. 1. Radiation from an open-ended parallel-plate waveguide: (a) geometry, (b) equivalent problem for an incident TMno or TEno 
with n even, (c) equivalent problem for an incident TMno or TEno with n odd. 

examples to illustrate the applications of the ray 
method developed in previous sections to some typical 
problems. For those readers who are primarily inter
ested in how to make use of the results in this paper, 
they may choose to bypass Secs. 2-5 and start with 
Sec. 6, which is self-contained. 

2. FORMULATION 

To develop a system of diffraction coefficients 
suitable for parallel-plate waveguide problems, one 
needs to consider all the four cases in Fig. 3 for differ
ent combinations of electric or magnetic walls, and 
polarizations. In Secs. 2-5, we consider only case (A), 
and give some detailed manipulations. Solutions to 
other cases can be found in a similar manner, and we 
present only their final results in Sec. 6. 

The geometry of case (A) in Fig. 3 is enlarged in 
Fig. 2. The incident plane wave is given by 

H~i) = e-ik(sin 80",+ cos 801/). (2.1) 

The angle eo and all the other angles e, e', etc., to be 
introduced later, are defined to take values between TT 

and (-TT). This is designed to avoid the ambiguity in 
the double-valued functions such as sin leo' 

The Wiener-Hopf formulation of the present prob
lem varies slightly depending on whether leol < (iTT) 
or leol > (iTT). In applying the Wiener-Hopf tech
nique, it is desirable to define the scattered field so that 
it attenuates as Izl -+ roo For the definition used in 
(2.2), the scattered field in the shadow region does not 
satisfy this criterion if leol > (iTT). In Secs. 2-5, we will 
further restrict ourselves to the case leol < (iTT). Again, 
this restriction will be relaxed in the final results to be 
presented in Sec. 6. For leol < (!TT), we define the 
scattered field Hy as 

Hy{x, z) = H~tota})(x, z) - H~i)(X, z) (2.2) 

everywhere. The scattered field satisfies the wave 
equation 

(2.3) 

where k = kl + ik2' and k2 -+ 0+ is the loss factor of 
the medium. It may be shown thatHy = o [exp (-k2Z)] 

x 

(p,O ) 

FIG. 2. Geometry of two 
electrically perfectly con
ducting parallel plates. 
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FIG. 3. Geometry of two parallel plates. The lower plate is either a semi-infinite electrically or an infinite magnetically perfectly 

conducting wall. The incident field is either TM or TE. 

as z ~ + 00 and Hy""; O[exp (k2 cos 60z)] as z ~ 
- 00. If we introduce the Fourier transform 

<r(x,~) = ~ [00 H.y(x, z)eiaZ dz, 
(217) Loo 

where IX = a + iT, (2.4) 

then it follows from the asymptotic behavior of Hy 
that <rex, IX) is regular in the strip defined by 

k2 cos ()o > T > -k2· (2.5) 

The transformed wave equation (2.3) reads 

(::2 - y2) <rex, ~) = 0, (2.6) 

where y = (ot2 - k2)t. The branch cuts in the com
plex IX plane are shown in Fig. 4 as wiggled lines, and 
the proper sheet of y is chosen such that Re y > 0. 

The solution of (2.6), satisfying the radiation con
dition, can be formally written as 

x> 0, 

= B(ot)e-Y'" + C(~)e1"', -b < x < 0, 

x < -b, (2.7) 

where A, B, C, and D are unknowns. Applying the 
boundary condition that Ez(x, z) is continuous across 
x = ° and x = -b, we obtain 

A = B - C, D = _Be21b + C. (2.8) 

The next step is to match H,y{x, z) [or <rex, IX)] at 
x = ° and x = -b. . 

First consider the matching at x = O. Introduce the 
standard half-range transforms 

1 10 
. <r_(x, IX) = --t Hy(x, z)e,az dz, 

(217) -00 
(2.9a) 

1 foo ( iaz d <r+(x, IX) = --t HlI x, z)e z, 
(217) 0 

(2.9b) 

where the subscripts .. - ," and .. +" indicate that 
<r-(x, IX) is regular in the lower-half ~ plane defined by 
'T < k2 cos ()o, and <r+(x, IX) is regular in the upper
half ~ plane defined by 'T > -k2' respectively. In 
terms of these notations, the values of <rex, IX) at the 
two sides of x = 0 are 

<r-(o+, IX) + <r+(O+,~) = B(IX) - C(IX), (2. lOa) 

IP-<O-, IX) + <r+(o-, IX) = B(ot) + C(IX), (2. lOb) 
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FIG. 4. Contours in complex 
g plane (for 100 I < l7T)· 

where we have made use of (2.8). Since gJ+(O+, ex) = 
gJ+(O-, ex), the difference of (2.10a) and (2.10b) gives 

(2.11) 

where 1_(0, ex) = 1[gJ_(O+, ex) - gJ_(O-, ex)] is pro
portional to the current on the plate at x = O. 

In order to match the field at x = -b, it is conven
ient to introduce the "shifted" half-range transforms 

- () 1 J! H ( ) ia(.-!l d gJ- x, ex = --l II x, z e z, 
(27T) -00 

(2.12a) 

- () 1 i ooH ( ) ia(.-!l d gJ+ x, ex = --l 11 x, z e z. 
(27T) ! 

(2.12b) 

With these, we may derive in a similar manner 

Im~ 

+k 

k coseo 

formed E.(x, z) at x = 0 and -b are 

gJ~(O, ex) + gJ~(O, ex) = y( -B + C), (2.14a) 

ia![gl~(-b,ex) + gl~(-b,ex)] = y(-Be7b + Ce-7b) , 

(2. 14b) 

where the prime on, for example, gJ~(x, ex) means the 
derivative of gJ_(x, ex) with respect to x. The condition 
that E?otal)(x, z) vanishes at (x = 0, z < 0), and 
(x = -b, z < /) implies 

gJ~(O, ex) = _ gJ,(i)(O, ex) = k sin eo , 
(27T)l(ex - k cos eo) 

eia!gl~( -b, ex) = _eia!gl,(i)( -b, ex) 
(2.15a) 

= 
k sin eo exp [-ika cos (eo + O)]eia

! 

ex - k cos eo 
(2.15b) 

where the angle 0 is shown in Fig. 2. Substituting 
(2.13) (2.11), (2.13), and (2.15a) into (2.14a) gives 

where i_( -b, ex) = 1[gl-( -b+, ex) - gl( -b-, ex)] is 
proportional to the current at the plate at x = -b. 

Finally, we apply the boundary condition at the 
two conducting plates. Written explicitly, the trans-
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Substituting (2.11), (2.13), and (2.15b) into (2.14b) 
gives 

k sin 00 exp [- ika cos (00 + .0) ]eial ial-, ( 
! +e CjJ+-b,lX) 

(217) (IX - k cos ( 0) 

= -yio:lL( -b, IX) - ye-YbJ_(O, IX), 

-k2 < 'T < k2 cos °0 , (2.17) 

Equations (2.16) and (2.17) are the desired Wiener
Hopf equations to be solved for the unknown currents 
J_(O, IX) and j _( -b, IX). Their solution is carried out in 
the next section. 

3. SIMPLIFICATION OF WIENER-HOPF 
EQUATIONS 

Let us concentrate first on the solution of (2.17). 
Rewrite it as 

k sin 00 exp [-ika cos (00 + .0)] 

(217i(1X - k cos ( 0) 

X (IX: k)! - (k cos:o + k)!) 

+ rp~(-b,lX) + T+(IX) 
(IX + k)! 
. !-= -(IX - k) J_( -b, IX) 

k sin 00 exp [- ika cos (00 + .0)] 

(217)!(1X - k cos Oo)(k cos 00 + k)! 

- [(IX + k)!e-Ybe-ialJ_(O, IX) - T+(IX)] , 

-k2 < 'T < k2 cos °0 , (3.1) 

Here T+( IX) is the" +" part of 

T(IX) = (IX + k)!e-Ybe-ialJ_(O, IX) (3.2) 

and is given bt 
T+(x) 
= _1 r (~- k)!J_(O,~) exp [-(e - k2)!b]e-iSI d~. 

217i )Pa ~ - IX 
(3.3) 

The contour P2 is indicated in Fig. 4. We will evaluate 
T+(IX) later. Returning to (3.1), we note that all the 
terms on the lhs are "+" functions, while all the 
terms on the rhs are "-" functions. With the help of 
the edge condition, it may be shown that both sides of 
(3.1) are equal to zero and the resultant equations are 
valid for all IX. In particular, equating the rhs of (3.1) 
to zero gives 
_ T+(IX) 
J_( -b, IX) = t 

(IX - k) 

_ (~)t sin t80 exp [- ika cos (80 + Q)] 

17 (IX - k)t(1X - k cos ( 0) 

- e-ybe-ialJ _(0, IX). (3.4) 

This is the desired equation which expresses i_( -b, IX) 
in terms of J_(O, IX). 

Next, substitution of (3.4) into the Wiener-Hopf 
equation (2.16) gives 

k sin 00 , (0 ) 
t + CjJ+ ,IX 

(217) (IX - k cos ( 0) 

_ k sin 00 exp [- ika cos (00 + .o)]eiO:1e-Yb(1X + k)t 

- 2(k17)t(1X - k cos ( 0) cos tOo 

- T+(IX)eiale-Yb(1X + k)! - yJ_(O, IX)G(IX), 

-k2 < 'T < k2 cos °0 , (3.5) 
where G(IX) is given by 

G(IX) = 1 - e-2yb. (3.6a) 

G(IX) may be factored as 

G(IX) = G+(IX)G_(IX) = G+(IX)G+( -IX), (3.6b) 
where 

G+(IX) = (2bi(k + lX)te-i(h>(sin (kb)/kb)t 

X exp [i:b(l - C + In !; + ti17)] 

X exp (ibY In IX - y) fr (1 + ~)eiab/n7r. 
17 k n=l Yn 

(3.7) 
In the above expression 

Yn = [(n17/b)2 - k2]! = (-i)W - (n17/b)2]! 

and C = 0.57721 .... 

Other forms of G+(IX) suitable for certain special 
situations are given in Appendix A. Dividing (3.5) by 
(IX + k)tG+(IX) gives 

k sin 00 CjJ~(O, IX) --;--------"----;---- + -"'-'----';--'--
(217)!(1X - k cos Oo)(1X + k)!G+(IX) (IX + k)tG+(IX) 

k sin 00 exp [- ika cos (00 + .o)]eiale-Yb 
= 

2(k17)t(1X - k cos ( 0) cos tOoG+(IX) 

_ T+~:::~-Yb _ (IX _ k)!G_(IX)J_(O, IX), 

-k2 < 'T < k2 cos °0 , (3.8) 

Once again it may be shown the" +" and" -" parts 
of (3.8) are zero, respectively, and the resultant 
equations are valid for all IX. In particular, equating 
the" -" part of (3.8) to zero gives 

(-l)(k)! sin lOo 
J _(0, IX) = ~t~~---"---" 

(17) G+(k cos ( 0) 

1 
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Here Ujoc) is the "-" part of the first term on the rhs of (3.8) and is given by 

-1 i k sin eo exp [-ika cos (eo + Q)]iSlexp [-(e - k2)tb] 
=- d~, 

U_(oc) 27Ti PI 2(k7T)t(~ - k cos eo) cos teoG+(~)(~ - oc) 
(3.10) 

where P l is indicated in Fig. 4, and V_(oc) is the "-" 
part of the second term on the rhs of (3.8) and is given 

by 
-1 i T+(~)eiSlexp [-Ce - k2)tb] 

V_(oc) = -. d~. 
2m P1 G+(~)(~ - oc) 

C3.11) 

We also postpone the evaluation of U_Coc) and V_(oc) 
to the next section. 

Summarizing the results obtained so far, we see that 
the formal solutions of J_CO, oc) and J_( -b, oc) are 
given in (3.9) and (3.4), respectively. Note that, since 
V_(oc) contains the unknownJ_(O, oc) in T+(oc), we have 
not yet obtained the explicit solution of J_(O, oc). As 
will be shown later, the explicit result of J_(O, oc) [also 
of J_( -b, oc)] is obtained in the present paper through 
the asymptotic evaluations of T+(oc), U_(oc), and V_(oc) 
for large ka = k(b2 + [2)t. 

4. ASYMPTOTIC EVALUATION OF U_(rt.) , 
V_(rt.), AND T+(oc) 

As will become clear later, the final solution of the 
present problem depends on the values of U_(oc) , 
V_(oc) , and T+(oc) for oc in the range of (-k, k). 
Therefore, it is convenient to write oc as 

oc = -k cos w, where Iwl S 7T. (4.1) 

Now first consider the evaluation of U_(ol = 
- k cos w) in (3.10). A change of variable ~ - - ~ 

gives 

U_(-kcosw) 

(-l)(k)! sin leo exp [-ika cos (eo + Q)] 
= 

27Ti( 7T)t 

i exp [_(~2 - k2)tb ]e-iSl d~ 
x . ~~ 

P2 (~ + k cos eo)(~ - k cos w)G_C~) 

In order to express U_( -k cos w) in terms of Fresnel 
integrals at a later stage, we shift the contour P2 in 
(4.2) across the pole at ~ = -k cos eo to P s (Fig. 4). 
This gives 

U (k ) 
(-l)sinteoexp [ikb(sin00 +sinleoD] 

- cosw = 
- (k7T)t(COS w + cos Oo)G+(k cos eo) 

+ V_( -k cos w), (4.3a) 
where 

V_(-k cos w) 

(-l)(k)t sin tOo exp [- ika cos (eo + Q)] 
= 

27Ti( 7T)t 

xf exp[-(~2-k2)tb-i~1] d~. (4.3b) 
Jp3 (~ + k cos eo)(~ - k cos w)G-(~) 

The integral in (4.3b) can not be evaluated explicitly. 
In the present paper we evaluate V_C -k cos w) asymp
totically by dropping terms higher than (ka)-t. As a 
preparatory step for using the saddle-point method, 
the poles at ~ = -k cos 00 and k cos w in (4.3b) 
should first be isolated. To this end, rewrite C4.3b) as 

The integrands in the first two terms in (4.4) are smooth functions in the neighborhood of 

~= -kcosOo 

and ~ = k cos w, respectively, and can be asymptotically evaluated by the saddle-point method in a 
standard manner. The third and fourth integrals may be identified with the Sommerfeld half-plane solutions. 
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Omitting the details, we give here only the final result: 

tJ_C -k cos w) 

= 
(-1)2i sin t.o sin tOo exp [- ika cos (00 + .0)] 

(217)!(COS w + cos ( 0) 

exp [i(ka - !17)][ 1 
x (217ka)! k(cos 00 _ cos .0) 

x (k + k cos n)! _ (k + k cos Oo)!) 
G+(k cos .0) G+(k cos ( 0) 

+ 1 
k(cos w + cos .0) 

x (k + k cos n)! _ (k - k cos W)!)] 
G+(k cos .0) G+( -k cos w) 

sin tOo exp [- ika cos (00 + .0)] + --=-...;'--.:::-.::-----'-''-----''-=-

(k17)!(COS w + cos ( 0) 

x (Q[a,.o 117 - 1001] _ sgn wQ[a, .0 1 W]). (4.5) 
G+(k cos ( 0) G+(-k cos w) 

The notation used in (4.5) is explained as 

sgn w = + I , if w > 0, 

= -I, ifw < 0, (4.6) 

and Q[p, (J I (Jo] is the Sommerfeld half-plane solution 
given by 

Q[p, (J I (Jo] 
= _ e-ikP cos (6-60) 

-li .. + ~ {e-ikP cos (6+90)F[ +(2kp)! cos HO + (0)] 
( 17) 

+ e-ikPCOS(0-00)F[_(2kp)1- cos t(O - 0o)]}, (4.7) 

where F(x) is the (complex) Fresnel integral 

F(x) = LOO eit2 dt. (4.8) 

Physically, Q [p, 0 I 00] may be identified as the scat
tered (not total) field observed at (p, 0) by a half
plane (the half-plane is located at 0 < p < 00 and 
o = 17) due to an incident plane wave propagating in 
the direction 00 [see (2.1)]. For large kp, we may use 
the asymptotic formula for the Fresnel integral and 
obtain the leading terms of Q[p, 0 1 00]. Dropping the 
terms higher than (kp)-!, we obtain the result 

Q[p, 0 1 00] = sgn (OOo)e-ikP coB (101+1 001> 

+ Q(d)[p, 0 100]' 17 < 101 + 1001, 
= Q(d)(p, 0 \ 00], elsewhere, (4.9a) 

i(kp-f,,) 2· . 10 . 10 
(d) (J 1 0 ] _ e I SIO ~ 0 SIO ~ 

Q [p, 0 -! ' 
(217kp) cos 00 + cos 0 

if 101 + 1001 ~ 17, (4.9b) 

where Q(d) is the well-known field on the rays diffracted 
at the edge of a single half-plane. For 101 + 1001 R:! 17, 
i.e., in the neighborhood of shadow boundaries, the 
value of Q[p, 0 I 00] has to be evaluated from the 
exact formula given in (4.7). In particular, for 
the scattered field exactly on the shadow boundaries, 
one has 

Q[p, 0 I 00] 
-Ii .. 

= teikP - e( t eikp COS2110F[(2kp)! sin 1001], 
17) 

if 0 = sgn 00 [17 - 1001], 

{ 
-!~ } = (-1) teikP 

- ~ eikP 
008290F[(2kp)t sin IOo/] , 

( 17) 

if 0 = -sgn 00[17 - IOoll. (4.10) 

A simplified version of tJ_(rx.) can be obtained by 
making use of (4.9) in (4.5). The result is 

0_( -k cos w) 

ei(ka-! .. ) exp [-ika cos (00 + .o)J 

= (217ka)/s (17k)tG+(k cos .0) . 

-2i sin t.o cos to. sin tOo 
x------~--~----~~ 

(cos w + cos o.)(cos 00 - cos .0) 

+ exp [ikb(sin 00 + sin 100/)] 
(k17)tG+(k cos ( 0) 

X sin tOo C (0 < 10
0
1 < 0.) 

cos 00 + cos w 

exp [-ika cos (00 + 0.) - ika cos (0. + Iwl)] 

(k17)!G+C -k cos w) 

X sin tOo C (0 < 17 - Iwl < .0), (4.11) 
cos 00 + cos w 

where C (01 < 0 < (2) is the usual Heaviside function 
for an angular section and is defined by 

C(Ol < 0 < (2) = 1, if 01 < 0 < O2 , 

= 0, elsewhere. (4.12) 

In the derivation of (4.11), we have made use of the 
following approximations: 

0' R:! 0, (4.13a) 

p' R:! p, in amplitude factors, 

~ p - a cos (.0 + 0), in phase factors, (4.13b) 

which is valid for the case kp» ka» I. Apparently, 
the simplified result in (4.11) is not valid whenever the 
value of tJ-C -k cos w) blows up (corresponding to 
various shadow boundaries). Such a situation occurs, 
for example, when Iwl R:! 17 - .0, 1001 = .0, etc. For 
those cases, the expression of tJ_C -k cos w) given in 
(4.5) must be used. 
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In a similar manner, we can evaluate V_ (IX = -k cos w) and T+ (IX = -k cos w) from (3.11) and (3.3) 
by the saddle-point method. The final results, if we drop the terms higher than (ka)-t, are 

( k 
i(2k)1 sin!O ei(ka-i") (T+(k cos O)(k + k cos O)! T+( -k cos w)(k - k cos W)!) 

V - cos w) = - ---'-'-----..:.....:...---~ 

- k(cos w + cos 0) (2'ITka)1 G+(k cos 0) G+( -k cos w) 

+ (sgn w)T+( -k cos w)Q[a, 0 I w], (4.14) 
G+(-k cos w) 

T+( -k cos w) = (~)l sin !OoG(k cos ( 0 ) C (0
0

) 0) 
'IT G+(k cos ( 0) 

{ 
-1 (sgn Oo)Q[a, 0 1°0] Q[a, 0 I 'IT - IWIJ) i sin iO ei(ka-!tr) 

X k(cos w + cos ( 0) G_(k cos ( 0) - G_( -k cos w) - k(cos w + cos 00) (2'ITka)1 

x [( 2 cos 10 _ 2 sin 100 )/(COS 0 + cos (
0

) 

G+(k cos 0) G_(k cos 00) 

( 
2k cos iO (2k)1(k + k cos W)t)/k(" ]} - - cos .l.t. - cos w) 

G4-(k cos 0) G_( -k cos w) 

__ Ck)t sin to ei(ka-i") (-i)(k + k cos O)t [0'_( -k cos 0) - V_( -k cos 0)] 

k(c,)s 0 - cos w) (2'ITka)* G+(k cos 0) 

+ i(k + k cos w)t [O'j -k cos w) - V_( -k cos W)]) 
G+(kcos w) 

+ (0'_( -k cos w) - V_( -k cos W»)Q[a, 0 I 'IT - Iwl]. (4.15) 
G+(k cos w) 

It should be noted that (4.14) and (4.15) are two 
coupled linear algebraic equations for V+( -k cos w) 
and T+( -k cos w), and may be solved without diffi
culty. [Note that T+(k cos 0), etc., are not considered 
as unknowns. They may be obtained by setting 
w = ('IT - Q) into the solution of T+(-k cos w) 
once the latter is known.] However, the result is too 
lengthy to be useful. In the following analysis, we will 
compute V_( -k cos w) from (4.14) by using 

T+( -k cos w) = T+( -k cos w)1 V_(-k cos w) .... o (4.16) 

instead of T+( -k cos w) itself. If this approximation 
and the formula (4.9) are used in (4.14) and (4.15), the 
simplified versions of V_( -k cos w) and T+( -kcos w) 
may be obtained. The results are 

V_(-k cos w) 
ei(ka;tr) i sin o.T (k cos 0.) 

- + 
- C2'ITka)1 G+(k cos o.)[cos w + cos 0.] 

+ T+( -k cos w) exp [-ika cos (0. + w)] 

G+(-kcos w) 
x C (0 < 'IT - Iwl < 0), (4.17) 

T+(-k cos w) 

= (-1) sin !OoG_(k cos ( 0 ) C (0 > 0) 
(k'IT)t 0 

x [ei(ka-iO') 2i sin (-to.) cos to. 

(2'ITka)t G+(k cos 0.) 

1 
X ----------------

(cos 0 + cos Oo)(cos w - cos 0) 

+ 1 
cos 00 + cos w 

x (exp [-ika cos (00 + Q)] C(O 'IT _ ° Q 
G_(k cos 00) < 0 < ) 

_ exp [ika cos (0. - Iwl)J C (0 < Iwl < 0»)] 
G_(-kcos w) 

e'(ka-t..) i sin 0 
+ ----: -------

(2'ITka)t cos 0 - cos w 

x (O'j-kCOS 0) - V_(-kcos 0») 
G+(k cos 0) 

+ (0'_( - k cos w) - V ( - k cos W») 

G_(-k cos w) 

x exp [ika cos (0 - Iwl)]C (0 < Iwl < 0.). 
(4.18) 

Once again, the simplified results in (4.17) and (4.18) 
are not valid whenever the values of V_C-k cos w) 
and T+( -k cos w) blow up. In those situations, we 
have to use the expressions in (4.14) and (4.15). 

S. FIELD IN WAVEGUIDE 

In the previous section, we have obtained the ex
plicit asymptotic results for U_(IX), V_(IX), and T+(IX). 
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Then (3.4) and (3.9) give the solutions of the induced 
currents on the two plates. Substituting (3.4) and (3.9) 
into (2.8), (2.11), and (2.13), we may determine the 
coefficients A(oc), B(oc), C(oc), and D(oc) and the com
plete field solution. The results are given as follows: 

cp(x, oc) 

= [(!5.)t (-1) sin teoG+(oc)G_Ck cos eo) c (eo> 0) 
7T (IX - k)!-(oc - k cos eo) 

+ [V_(oc) - V_(oc)JG+(oc) + T+(IX)eia!e-Yb _ (~)t 
(IX - k)!- (oc - k)!- 7T 

sin teo exp [- ika cos (0 + eo)]iaZe-YbJ -yx 
x t e , 

(oc - k) (oc - k cos eo) 

for x > b, (5.1) 
cp(x, IX) 

= [ T+CIX) _ (~)!-
(IX - k)!- 7T 

X sin leo exp [-ika cos (eo + 0)]] 
(IX - k)t(oc - k cos eo) 

x eiale-rlX+b) - 2J_(0, oc)e-rl> cosh y(x + b), 

for ° > x > (-b), (5.2) 
cp(x, oc) 

= [(!:)! sin leo exp [- ika cos (eo + 0)] 
7T (oc - k)!(IX - k cos eo) 

- T+(oc) ]eia!eY(X+b), for x < (-b). (5.3) 
(IX - k)!-

To obtain the explicit solution in the space domain, 
i.e., Hy{x, z), the inverse Fourier transform of ljJ(x, IX) 
needs to be taken. For the field in various shadow 
boundaries outside the waveguide, the asymptotic 
evaluation of the inverse transform in order to obtain 
simple expressions suitable for ray interpretation is 
quite involved and will be dealt with in Paper II. At 
the present, . we will consider only the field in the 
waveguide which, for ° > x > -b, is given by 

HI/(x, z) 

1 foo
+

iT 
[T+Ca.) (k)! 

= (27T)! -oo+iT (oc - k)!- - ~ 
x sin tOo exp [-ika cos (eo + 0)]] 

(a. - k)t(a. - k cos ()o) 
x e-y(xHl-ia(z-1l dlX 

_ ~ ('Xl+i
T 
2L(0, oc)e-r·cosh y(x + b)e-iaz doc, 

(27T) J-OO+iT 

-k2 < T < k2 cos ()o. (5.4) 

For z < 0, we may deform the integral path to the 
upper-half oc plane to enclose the following singulari-

ties: (i) the branch cut at IX = k; (ii) the pole at oc = 
k cos eo; and (iii) the infinite poles at IX = k and 
oc = {iYm} in the factor [(oc - k)tG_(oc)]. {Recalling 
(3.7), the factor [(oc - k)!G_(IX)] has a simple zero, not 
a branch point, at IX = k.} It may be shown that, for 
the integral along the branch cut starting at oc = k, the 
contributions from the first and second integrals in 
(5.4) cancel each other and therefore the result is zero, 
as may be expected from physical intuition. Thus, the 
field in the waveguide region is all contributed from 
discrete poles in the transform domain, which corre
sponds to normal modes of the waveguide in the 
spatial domain. 

The evaluation of (5.4) due to the pole contribution 
is quite straightforward. The result is 

Hix, z) = H~inC) + H~mode). (5.5) 

The first term is due to the pole at oc = k cos eo and is 
given by 

H~inc) = _e-ikp c08(8-80 ), (5.6) 

which cancels exactly the incident field as expected. 
The second term in (5.5) is due to the poles at oc = k 
and oc = {iYm}, and may be expressed as 

00 m7T 
H(mode) = ~ 2c cos - xeYmz (5.7) 

" m=om b ' 

where (2cm) is the mode coefficient of the TMmo mode 
and is given by 

Cm = -i(27T)!- Res J-<O, iYm) 

= -i(27T)!-(iYm + k}iG+(iYm)[!£ YG(IX)]-l 
doc a=iYm 

X ( -l)(k)t sin !eoG_(k cos ( 0) c (eo> 0) 

(7T)!(iYm - k cos eo) 

+ V-(iYm) - V-(iYm»). (5.8) 

It should be remarked that even though all the analysis 
so far was based on the fact that I()ol < !7T, the result 
in (5.S) as a matter of fact is valid for all 1001 < 7T. 
Usually, we are interested in those {em} corresponding 
to propagating modes. For propagating modes, (5.8) 
can be simplified, and admits ray interpretations. This 
will be detailed below. 

First, introduce IjJm such that 

sin IjJm = (~7T) / k, 0 ~ IjJm < !7T. (5.9) 

The angle IjJm may be identified with the direction of 
propagation of the two superimposed plane waves 
associated with TMmo mode.· Using the simplified 
version of V( -k cos w) and V_( -k cos w) (with 
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W = 1T - gYm) given in (4.11) and (4.17), we can 
simplify the expression for em in (7.6) to yield the 
following results: 

The first term is 

4 

e - ~e(n) 
m-4-,m· 

n=l 

e~) = (2i sin leo sin H gYm - 1T») 
cos eo + cos (gYm - 1T) 

X (G_[k cos (gYm - 1T)] 

G+(k cos eo) 

(5.10) 

x [C (-0 < eo) - ei2kb sin 9oC (0 < eo)]) 

X - [yG(cx)] . ({ 
d }-l) 

dcx a=k cos 'Pm 
(5.11) 

Some interpretations of (5.11) are in order: 
(i) The factor in the first term is the ray amplitude 

due to the diffraction at the upper edge [Fig. 5(a)], as 
if the lower plate had not existed. [Compare it with 
(4.9b) , and note that the factor exp i(kp - i1T)/ 
(21Tkp)! is regarded as the spreading factor of the 
cylindrical wave.] The scattered ray is in the direction 
of the plane wave associated with TMmo mode. 

(A) 

(e) 

(ii) The second factor is the modification introduced 
by the lower plate. For eo < -0, the factor is zero, as 
the ray is blocked by the lower plate. For leol < 0, the 
factor becomes 

G_[k cos (gYm - 1T)] 

G+(k cos eo) 
(5.12) 

which may be interpreted as the contribution of the 
coupling along the shadow boundary at z = 0 (Fig. 2). 
As b -+ 00, while retaining a small loss, G(cx) and thus 
G+(rx) and G_(rx) approach one. Hence, the factor in 
(5.12) becomes unity as expected. In the region 
o < eo < t1T, this factor becomes 

G [k cos (gYm - 1T)] (1 _ ei2kbSin9o). (5.13) 
G+(k cos eo) 

The second term in (5.13) is due to the specular re
flection at the lower plate before the ray strikes at the 
upper edge. Finally, in the region t1T < eo < 1T, this 
becomes 

which is again due to the coupling between the two 
plates. [In arriving at (5.14), we made use of the factor 
G_(rx) = G(rx)!G+(rx).] 

I--l-I 
(8) 

(~) 

FIG. S. Ray contributions to the modal coefficients as given in (5.10). 
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(iii) The third bracket in (5.11) may be interpreted 
as the conversion factor from ray to mode. Explicitly, it 
is given by 

({~ [YG(CX)]}-l) = (2Emkb cos CPm)-\ (5.15) 
dcx a=k cos 'I'm 

where Em = 2, if m = 0, and Em = 1, if m ;I: O. This 
factor was previously derived by Vee, Felsen, and 
Keller2 through image consideration and by Des
champs4 from the energy point of view. 

The second term in (5.10) is given by 

C~) = (e- ika cos (8o+{l) 2; sin lOo sin t( 'IT - CPm») 
cos 00 + cos ('IT - CPm) 

X (eika cos (fi-q>m»(2€mkb cos CPm)-l 

X C [-'IT < 00 < ('IT - .o)]C(O < CPm < n). 
(5.16) 

This is due to the ray diffracted at the lower edge [Fig. 
5(b)] Since there is no shadow boundary formed due 
to the presence of the upper plate, the ray amplitude is 
not modified. This particular ray can get into the 
waveguide only if 0 < CPm < n, which explains the 
factor C (0 < CPm < n) in (5.16). The additional phase 
factor 

eika cos <n-IPm) = (_l)meHk cos IPmlt (5.17) 

may be associated with the additional path length 
from the lower edge to the waveguide aperture. From 
(x = -b, z = /) to (x = -b, Z = 0), the distance is 
I, and the propagation constant is k cos fPm' This 
results in the phase delayexp Ukl cos CPm). To account 
for the factor (-l)m in (5.17), we rewrite (5.7) as 

H~mode) = .f cm(eilm7l1bla: + e-i(m1lIb)a:)e-i[k-(m1Tlb)2]tz• 

m=O 

(5.18) 

Observe that, at (x = -b, Z = 0), the ray traveling in 
the direction ('IT - CPm) has an amplitude (-1 )mcm . 
Hence, the (-l)m in (5.17) is a normalization factor. 

The third and fourth terms in (5.10) are given by 

c~) = e-ika cos (8o+1l) e I sm yVO SIn y 'IT - u 
( 

i(ka-!u) 2' . ~ll • ~( r\») 
(2'ITka)! cos 00 + cos ('IT - .0) 

X (2i sin ( - in) sin t( CPm - 'IT) 

cos n + cos (CPm - 'IT) 

G_[k cos (CPm - 'IT)])(2 kb )-1 
X Em COS CPm 

G+(kcos n) 
X C (-'IT < 00 < 'IT - .0), (5.19) 

c~) = {eHka-l1T) 2i sin iOo sin (-in) 
(2'ITka)t cos 00 + cos n 

1 x ----------------
G+(k cos Oo)G+(k cos .0) 

X [C (-.0 < (0) - ei2kbsin8o (n < Oo)]} 

x (2i sin t( 'IT - .0) sin t( CPm - 'IT) 

cos ('IT - n) + cos (CPm - 'IT) 
(_l)meikICOSIPm ) 

X C (0 < CPm < n) , 
2€mkb cos CPm 

(5.20) 

which are the contributions from the rays bouncing 
between the edges once before emanating from their 
respective edges [Fig. 5(c) and (d)]. 

Before concluding this section, let us consider a 
special case 1001 = cPq for a particular q. This occurs 
when the incident wave is in the same direction as one 
of the plane waves associated with TMao mode in the 
waveguide. Under this condition, C~l) and C~2) blow up 
individually. This is because of the fact that we have 
used the simplified versions of 0_( -k cos w) and 
V_( -k cos w) in (5.8), which are not valid whenever 
their values approach infinity. [Mathematically, this 
corresponds to double pole at ~ = -k cos CPa for 
O_(k cos cPq) as given in (4.3b).] Instead, in computing 
(5.8), we should use 0_( -k cos w) in (4.5) and 
V_( -k cos w) in (4.14). For this particular case, how
ever, we can obtain an equivalent result by simply 
combining C~l) and C~2) as a single term. For n < 00 < 
i'IT, we have 

(ll (2) [2" ~ . ~( )]( 1 ) (1 - exp (i2kb sin ( 0») cq + cq = I sm 2 cPq sm 2 cPq - 'IT 
2Eqkb cos CPq cos 00 - cos CPq (JO->'PQ 

1 

For IBol < .0, we have 

(1) (2) ±sin CPq 
c" + cq = ----.:....:!..

iEq2kb cos CPq 

if Bo = CPq' (5.21) 

X ([G+(k cos CfJm)/G+(k cos Bo)] - exp [+ ika cos (.0 - CfJm) - ika cos (eo + 0)]\ 

cos eo - cos CPq JOO-> (±IPq) 

= (iEQ2kb cos cpqr 1 
Q + q + ika sm (n ± CP,J exp [ikb(sm CPm)(l + sgn eo)] , (

±kSin CfJ G'(kcos CfJ). . ) 

G+(k cos CPQ) 
if eo = ±CPQ' (5.22) 
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where G~(IX.) is the derivative of G+(IX.) with respect to 
its argument. Making use of the relation G( IX.) = 
G+ (IX.)G+ ( -IX.), we easily show that 

G~(IX.) = (2IX.b/y)e-
2yO 

(5.23) 
G+( -IX.) - G+(IX.) 

Thus, G~(IX.) can be expressed in terms of G+(IX) [a 
short table for G+(IX) will be given later]. 

6. SUMMARY OF MAIN RESULTS AND 
GENERALIZATION 

A study of the results in the previous section, as 
well as the field outside the waveguide (which is to be 
presented in Paper II), we may state the following two 
main conclusions relating to the diffraction of an 
incident TM plane wave given in (2.1) by the parallel
plate structure shown in Fig. 2: 

Modified Ray Amplitude. For the special case 
b -+ ro, the field on the ray diffracted at the edge of 
the upper plate is the well-known expression 

HlI = I sm"2" 0 sm"2" e , . if b -+ ro, (6.1) (2 ' . 1() • 18) i(kp-tlTl 

cos ()o + cos 8 (21T'kp)~ 

where ()o is the direction of the incident wave plane, 
and (p, () is the observation point. Both ()o and () are 
counted such that 180 1, I()I ~ 1T'. For finite b, this field 
should be modified due to the coupling between the 
two plates with the results 

HlI = (2i[J«()o) sin !()o][g«() sin t()]) i(kP-tlTl 
, 

cos eo + cos (J (21T'kp)~ 
for upper edge. (6.2) 

The factor/C()o) is the modification associated with the 
incoming ray 

f(eo) = G_(k cos (Jo), !1T' < 80 < 1T', 

= 1 ,-.0 < ()o < i1T', (6.3) 
G+(k cos ()o) 

where G+(IX) = G_( -IX) is given in (3.7). The factor 
g«() in (6.2) is the modification associated with the 
outgoing ray 

g(O) = G_(k cos e), 181 > .0 and 0 =F- .0, 
t 

= , 101 <.Q and ° ~ n. (6.4) 
G+(k cos () 

{Alternatively, the function gee) may be made identical 
to /«()o) if we do not count the ray which is specularly 
reflected from the lower plate before striking at the 
upper edge [cf. Eq. (5.13»).} 

For () :::::; n, the result is quite involved and will be 
presented in Paper II. (In computing field in the wave-

guide, the case () ~ .0 does not arise.) The modifica
tion for the field on the diffracted ray introduced in 
(6.2) may be regarded as the consequence of multiple 
reflections and diffractions along the shadow boundary 
at z = O. Thus, for diffraction at the lower edge, no 
such shadow boundary exists, and the ray amplitude is 
computed as if the upper plate were absent. 

Ray-to-Mode Conversion. Let us express the field 
in the waveguide as 

Hy{x, z) = ! 2cm cos m1T' xe±Ymz. (6.5) 
m a 

For propagating modes, the contribution to Cm due to 
each ray is equal to the amplitude [the first factor in 
(6.2)] multiplied by the conversion factor 

({
d }4) 1 - [yG(IX.)] = , (6.6) 

dlX. «=k COS<1'm 2Emkb cos ({Jm 

where cos ({Jm = [l - (m1T'/kb)]!, Em = 2 if m = 0, 
and Em = 1 if m =F- O. In calculating rays from the 
lower edge, there is an additional multiplying factor 

(6.7) 

The exponential factor is due to the phase delay from 
(x = -b, z = /) to (x = -b, z = 0). The presence of 
( _I)m follows from the fact that the ray traveling in 
the direction (1T' - ({Jm) as given in (6.5) has an ampli
tude (-I)mcm at (x = -b, z = 0). 

With the above rules, it is now a simple matter to 
write down the expressions for some diffraction prob
lems of parallel-plate waveguides. Several illustrating 
examples will be given in the next section. For numeri
cal computations, we need the values of G+(kx) for 
Ixl < 1 and a given kb. The numerical data presented 
in Table I is prepared for this purpose. For clarity, we 
plot the value of G+(kx) for certain kb in Fig. 6. Note 
that IG+(kx)1 is far from being unity for negative x but 
approaches to unity as x -+ 1. [The value of G+(kx) for 
negative x will be used for computing the field outside 
the waveguide.] With the help of Table I, the calcu
lation of the various rays to obtain the solution of a 
diffraction problem can be accomplished even with a 
slide rule! 

So far we have discussed only the TM case. A 
similar analysis has been carried out for the TE case. 
We will omit the details and simply summarize the 
final results as below [Fig. 3(b)]: 

Modified Ray Amplitude. For finite b, the diffrac
tion ray at the upper edge is given by 

Ell = (-2i[f(Oo) cos iOoJ[g«(J} cos to]) ei1kp
-!1T) , 

cos ()o + cos () (21T'kpl 
for upper edge, (6.8) 
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TABLE I. Value of G+(kx). 

Values of G+(kx) for kb = t.oa Values of G+(kx) for kb = 3.0 

x G+(kx) x G+(kx) x G+(kx) x G+(kx) 

-1.00 (0.00, 0.0) 0.00 (1.30, -16.4) -1.00 (0.00, 0,0) 0.00 (0.53, 40.9) 
-0.95 (0.50, -67.6) 0.05 (1.30, -15.3) -0.95 (2.11, -35.2) 0.05 (0.51, 34.6) 
-0.90 (0.69, -60.2) 0.10 (1.30, -14.3) -0.90 (2.56, -14.1) 0.10 (0.51, 28.5) 
-0.85 (0.82, -54.7) 0.15 (1.29, -13.4) -0.85 (2.70, 1.3) 0.15 (0.51, 23.0) 
-0.80 (0.92, -50.1) 0.20 (1.29, -12.5) -0.80 (2.67, 13.7) 0.20 (0.52, 18.2) 
-0.75 (0.99, -46.2) 0.25 (1.29, -11.7) -0.75 (2.56, 23.9) 0.25 (0.53, 14.2) 
-0.70 (1.05, -42.8) 0.30 (1.28, -10.9) -0.70 (2.40, 32.5) 0.30 (0.55, 11.0) 
-0.65 (1.10, -39.7) 0.35 (1.28, -10.2) -0.65 (2.22, 39.9) 0.35 (0.57, 8.4) 
-0.60 (1.14, -36.9) 0.40 (1.27, -9.6) -0.60 (2.02, 46.1) 0.40 (0.59, 6.3) 
-0.55 (1.18, -34.4) 0.45 (1.27. -8.9) -0.55 (1.82, 51.3) 0.45 (0.61, 4.6) 
-0.50 (1.20, -32.0) 0.50 (1.27, -8.3) -0.50 (1.64, 55.6) 0.50 (0.63, 3.3) 
-0.45 (1.23, -29.9) 0.55 (1.26, -7.8) -0.45 (1.46, 58.9) 0.55 (0.65, 2.2) 
-0.40 (1.24, -27.9) 0.60 (1.25, -7.3) -0.40 (1.29, 61.3) 0.60 (0.67, 1.4) 
-0.35 (1.26, -26.1) 0.65 (1.25, -6.8) -0.35 (1.14, 62.7) 0.65 (0.68, 0.7) 
-0.30 (1.27, -24.4) 0.70 (1.24, -6.3) -0.30 (1.00, 63.0) 0.70 (0.70, 0.2) 
-0.25 (1.28, -22.8) 0.75 (1.24, -5.9) -0.25 (0.88, 62.2) 0.75 (0.71, -0.2) 
-0.20 (1.29, -21.3) 0.80 (1.23, -5.5) -0.20 (0.77, 60.2) 0.80 (0.73, -0.5) 
-0.15 (1.29, -20.0) 0.85 (1.23, -5.1) -0.15 (0.69, 57.0) 0.85 (0.74, -0.8) 
-0.10 (1.29, -18.7) 0.90 (1.22, -4.8) -0.10 (0.62, 52.5) 0.90 (0.75, -1.0) 
-0.05 (1.30, -17.5) 0.95 (1.22, -4.5) -0.05 (0.57, 47.1) 0.95 (0.76, -1.1) 

1.00 (1.21, -4.2) 1.00 (0.77, -1.3) 

Zeros of G+{kx): None Zeros of G+(kx): None 

Values of G+(kx) for kb = 2.0 Values of G+(kx) for kb = 3.1416 

x G+(kx) x G+(kx) x G+(kx) x G+(kx) 

-1.00 (0.00, 0.0) 0.00 (1.35, 12.3) -1.00 (0.00, 0,0) 0.00 (0.00, 135.0) 
-0.95 (1.12, -63.1) 0.05 (1.32, 12.6) -0.95 (1.96, 162.7) 0.05 (0.08, 137.7) 
-0.90 (1.46, -49.3) 0.10 (1.29, 12.9) -0.90 (2.35, -174.3) 0.10 (0.14, 140.3) 
-0.85 0.64, -39.2) 0.15 (1.26, 13.0) -0.85 (2.44, -157.2) 0.15 (0.20, 142.6) 
-0.80 (1.75, -31.1) 0.20 (1.23, 13.0) -0.80 (2.39, -143.2) 0.20 (0.25, 144.8) 
-0.75 (1.81, -24.4) 0.25 (1.21, 12.9) -0.75 (2.25, -131.3) 0.25 (0.30, 146.8) 
-0.70 (1.84, -18.7) 0.30 (1.19, 12.8) -0.70 (2.08, -120.8) 0.30 (0.34, 148.7) 
-0.65 (1.84, -13.8) 0.35 (1.17, 12.6) -0.65 (1.88, -111.6) 0.35 (0.38, 150.4) 
-0.60 (1.82, -9.5) 0.40 (1.15, 12.4) -0.60 (1.68, -103.3) 0.40 (0.41, 152.0) 
-0.55 (1.79, -5.8) 0.45 (1.14, 12.1) -0.55 (1.48, -95.8) 0.45 (0.44, 153.5) 
-0.50 (1.76, -2.6) 0.50 (1.12, 11.8) -0.50 (1.28, -88.9) 0.50 (0.47, 154.8) 
-0.45 (1.72, 0.2) 0.55 (1.11, 11.5) -0.45 (1.10, -82.7) 0.55 (0.49, 156.1) 
-0.40 (1.68, 2.6) 0.60 (1.10, 11.2) -0.40 (0.93, -77.0) 0.60 (0.51, 157.3) 
-0.35 (1.63, 4.7) 0.65 (1.09, 10.9) -0.35 (0.77, -71.8) 0.65 (0.53, 158.4) 
-0.30 (1.59, 6.5) 0.70 (1.08, 10.5) -0.30 (0.63, -67.0) 0.70 (0.55, 159.4) 
-0.25 (1.54, 8.0) 0.75 (1.07, 10.2) -0.25 (0.49, -62.5) 0.75 (0.57, 160.3) 
-0.20 (1.50, 9.3) 0.80 (1.06, 9.9) -0.20 (0.37, -58.4) 0.80 (0.58, 161.2) 
-0.15 (1.46, 10.3) 0.85 (1.06, 9.5) -0.15 (0.26, -54.7) 0.85 (0.60, 162.0) 
-0.10 (1.42, 11.2) 0.90 (1.05, 9.2) -0.10 (0.16, -51.2) 0.90 (0.61, 162.8) 
-0.05 (1.38, 11.8) 0.95 (1.04, 8.9) -0.05 (0.08, -48.0) 0.95 (0.62, 163.5) 

1.00 (1.04, 8.6) 1.00 (0.63, 164.1) 

Zeros of G+(kx): None Zeros of G+(kx):x = -0.003, 
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TABLE I (continued). 

Values of G+(kx) for kb = 3.2 Values of G+(kx) for kb = 5.0 

x G+(kx) x G+(kx) x G+(kx) x G+(kx) 

-1.00 (0.00, 0.0) 0.00 (0.34, 136.7) -1.00 (0.00, 0.0) 0.00 (1.38, -171.8) 
-0.95 (1.93, 162.7) 0.05 (0.41, 139.4) -0.95 0·92, 174.0) 0.05 (1.34, -171.0) 
-0.90 (2.29, -173.9) 0.10 (0.47, 141.9) -0.90 (1.57, -150.8) 0.10 (1.30, -170.5) 
-0.85 (2.33, -156.6) 0.15 (0.52, 144.2) -0.85 (0.93, -125.0) 0.15 (1.26, -170.2) 
-0.80 (2.23, -142.4) 0.20 (0.57, 146.4) -0.80 (0.27, -104.3) 0.20 (1.22, -170.2) 
-0.75 (2.06, -130.2) 0.25 (0.61, 148.4) -0.75 (0.31, 93.0) 0.25 (1.19, -170.3) 
-0.70 (1.85, -119.7) 0.30 (0.64, 150.2) -0.70 (0.78, 107.8) 0.30 (1.17, -170.4) 
-0.65 (1.62, -110.3) 0.35 (0.68, 151.9) -0.65 (1.14, 120.5) 0.35 (1.15, -170.7) 
-0.60 (1.39, -101.9) 0040 (0.70, 153.4) -0.60 (lAO, 131.7) 0040 (1.13, -171.0) 
-0.55 (1.17, -94.3) 0045 (0.73, 154.9) -0.55 (1.58, 141.4) 0.45 (Lll, -171.4) 
-0.50 (0.96, -87.4) 0.50 (0.75, 156.2) -0.50 (1.68, 149.9) 0.50 (1.10, -171.8) 
-0.45 (0.77, -81.2) 0.55 (0.77, 157.4) -0.45 (1.74, 157'2) 0.55 (1.09, -172.1) 
-0.40 (0.59, -75.4) 0.60 (0.79, 158.6) -0.40 (1.75, 163.6) 0.60 (1.08, -172.5) 
-0.35 (0.42, -70.1) 0.65 (0.80, 159.6) -0.35 (1.74, 169.1) 0.65 (1.07, -172.8) 
-0.30 (0.28, -65.3) 0.70 (0.82, 160.6) -0.30 (1.71, 173.7) 0.70 0.06, -173.2) 
-0.25 (0.14, -60.8) 0.75 (0.83, 161.5) -0.25 (1.66, 177.6) 0.75 (1.06, -173.5) 
-0.20 (0.02, -56.8) 0.80 (0.84, 162.4) -0.20 (1.61, -179.1) 0.80 (1.05, -173.8) 
-0.15 (0.D9, 127.0) 0.85 (0.85, 163.1) -0.15 (1.55, - 176.5) 0.85 (1.05, -174.1) 
-0.10 (0.18, 130.5) 0.90 (0.86, 163.9) -0.10 (1.49, -174.5) 0.90 0.04, -174.3) 
-0.05 (0.27, 133.7) 0.95 (0.87, 164.5) -0.05 (1.44, -172.9) 0.95 (1.04, -174.6) 

1.00 (0.87, 165.2) 1.00 (1.04, -174.8) 

Zeros ofG+(kx): x = -0.190, Zeros of G+(kx): x = -0.778, 

Values of G+(kx) for kb = 4.0 Values of G+(kx) for kb = 6.0 

x G+(kx) x G+(kx) x G+(kx) x G+(kx) 

-1.00 (0.00, 0.0) 0.00 (1.23, 159.6) -1.00 (0.00, 0.0) 0.00 (0.75, -143.1) 
-0.95 (1.69, 164.7) 0.05 (1.23, 161.9) -0.95 (2.22, -164.6) 0.05 (0.71, -148.1) 
-0.90 (1.75, -166.7) 0.10 (1.24, 163.9) -0.90 (1.18, -122.3) 0.10 (0.69, -153.1) 
-0.85 (1.52, -145.6) 0.15 (1.23, 165.6) -0.85 (0.05, 88.7) 0.15 (0.68, -157.7) 
-0.80 (1.19, -128.6) 0.20 (1.23, 167.2) -0.80 (1.06, 113.6) 0.20 (0.68, -161.7) 
-0.75 (0.83, -114.2) 0.25 (1.22, 168.5) -0.75 (1.78, 134.4) 0.25 (0.69, -165.0) 
-0.70 (0.49, -101.7) 0.30 (1.21, 169.8) -0.70 (2.23, 152.2) 0.30 (0.71, -167.7) 
-0.65 (0.18, -90.8) 0.35 (1.21, 170.8) -0.65 (2.46, 167.4) 0.35 (0.72, -169.8) 
-0.60 (0.10, 98.9) 0.40 (1.20, 171.7) -0.60 (2.51, -179.4) 0.40 (0.74, -171.6) 
-0.55 (0.34, 107.5) 0.45 (1.19, 172.6) -0.55 (2.45, -168.0) 0045 (0.75, -172.9) 
-0.50 (0.54, 115.2) 0.50 (1.18, 173.3) -0.50 (2.31, -158.3) 0.50 (0.77, -174.0) 
-0.45 (0.70, 122.1) 0.55 (1.17, 173.9) -0,45 (2.12, -150.1) 0.55 (0.78, -174.9) 
-0.40 (0.84, 128.3) 0.60 (1.17, 174.5) -0.40 (1.92, -143.4) 0.60 (0.79, -175.6) 
-0.35 (0.94, 133.9) 0.65 (1.16, 174.9) -0.35 (1.71, -138.1) 0.65 (0.80, -176.2) 
-0.30 (1.03, 138.9) 0.70 (1.15, 175.4) -0.30 (1.50, -134.4) 0.70 (0.81, -176.7) 
-0.25 (1.09, 143.4) 0.75 (1.14, 175.7) -0.25 (1.32, -132.2) 0.75 (0.82, -177.0) 
-0.20 (1.14, 147.4) 0.80 (1.14, 176.1) -0.20 (1.15, -131.5) 0.80 (0.83, -177.4) 
-0.15 (1.18, 151.0) 0.85 (1.13, 176.4) -0.15 (1.01, -132.4) 0.85 (0.84, -177.6) 
-0.10 (1.20, 154.2) 0.90 (1.12, 176.6) -0.10 (0.90, -134.8) 0.90 (0.85, -177.8) 
-0.05 (1.22, 157.0) 0.95 (1.12, 176.9) -0.05 (0.81, -138.5) 0.95 (0.85, -178.0) 

1.00 (Lll, 177.1) 1.00 (0.86, -178.2) 

Zeros of G+(kx): x = -0.619, Zeros of G+(kx): x = -0.852, 
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TABLE I (continued). 

Values of G+(kx) for kb = 6.2832 Values of G+(kx) for kb = 7.0 

x G+(kx) x G+(kx) x G+(kx) x G+(kx) 

-1.00 (0.00, 0.0) 0.00 (0.01, 135.0) -1.00 (0.00, 0.0) 0.00 (1.15, 155.5) 
-0.95 (1.97, -145.5) 0.05 (0.10, 138.9) -0.95 (1.50, -141.2) 0.05 (1.16, 158.7) 
-0.90 (0.85, -100.4) 0.10 (0.19, 142.4) -0.90 (0.16, -91.4) 0.10 (1.17, 161.4) 
-0.85 (0.37, 113.0) 0.15 (0.26, 145.5) -0.85 (0.95, 125.4) 0.15 (1.18, 163.7) 
-0.80 (1.31, 140.1) 0.20 (0.33, 148.3) -0.80 (1.58, 155.0) 0.20 (1.17, 165.7) 
-0.75 (1.93, 163.0) 0.25 (0.38, 150.8) -0.75 (1.80, 180.0) 0.25 (1.17, 167.4) 
-0.70 (2.26, -177.2) 0.30 (0.43, 153.0) -0.70 (1. 72, -158.5) 0.30 (1.16, 168.9) 
-0.65 (2.38, -159.8) 0.35 (0.47, 155.0) -0.65 (1.47, -139.7) 0.35 (1.16, 170.1) 
-0.60 (2.33, -144.3) 0.40 (0.50, 156.8) -0.60 (1.12, -123.2) 0.40 (1.15, 171.1) 
-0.55 (2.18, -130.5) 0.45 (0.53, 158.4) -0.55 (0.75, -108.5) 0.45 (1.14, 172.0) 
-0.50 (1.97, -118.1) 0.50 (0.56, 159.8) -0.50 (0.39, -95.5) 0.50 (1.13, 172.8) 
-0.45 (1.72, -106.9) 0.55 (0.58, 161.1) -0.45 (0.06, -83.9) 0.55 (1.13, 173.5) 
-0.40 (1.47, -96.8) 0.60 (0.60, 162.3) -0.40 (0.23, 106.4) 0.60 (1.12, 174.0) 
-0.35 (1.22, -87.8) 0.65 (0.61, 163.3) -0.35 (0.47, 115.6) 0.65 (1.1 1, 174.5) 
-0.30 (0.98, -79.6) 0.70 (0.63, 164.3) -0.30 (0.66, 123.7) 0.70 (1.11, 174.9) 
-0.25 (0.77, -72.2) 0.75 (0.64, 165.1) -0.25 (0.81, 130.9) 0.75 (1.10, 175.3) 
-0.20 (0.57, -65.6) 0.80 (0.66, 165.9) -0.20 (0.93, 137.2) 0.80 (1.10 175.6) 
-0.15 (0.40, -59.6) 0.85 (0.67, 166.6) -0.15 (1.01, 142.8) 0.85 (1.09, 175.9) 
-0.10 (0.24, -54.2) 0.90 (0.68, 167.3) -0.10 (1.07, 147.7) 0.90 (1.09, 176.2) 
-0.05 (0.11, -49.3) 0.95 (0.68, 167.9) -0.05 (1.12, 151.9) 0.95 (1.08, 176.4) 

1.00 (0.69, 168.4) 1.00 (1.08, 176.6) 

Zeros of G+(kx): x = -0.866, -0.003, Zeros of G+(kx): x = -0.894, -0.441, 

Values of G+(kx) for kb = 6.4 Values of G+(kx) for kb = 9.4248 

x G+(kx) x G+(kx) x G+(kx) x G+(kx) 

-1.00 (0.00, 0.0) 0.00 (0.48, 138.3) -1.00 (0.00, 0.0) 0.00 (0.01, -45.0) 
-0.95 (1.91, -144.9) 0.05 (0.56, 142.1) -0.95 (0.40, 88.6) 0.05 (0.13, -40.3) 
-0.90 (0.73, -99.1) 0.10 (0.63, 145.5) -0.90 (1.69, -24.1) 0.10 (0.23, ~36.1) 

-0.85 (0.48, 114.9) 0.15 (0.69, 148.5) -0.85 (2.02, 25.6) 0.15 (0.31, -32.5) 
-0.80 (1.37, 142.3) 0.20 (0.73, 151.2) -0.80 (1.24, 65.7) 0.20 (0.38, -29.4) 
-0.75 (1.90, 165.6) 0.25 (0.77, 153.6) -0.75 (0.11, 99.6) 0.25 (0.43, -26.6) 
-0.70 (2.14, -174.3) 0.30 (0.80, 155.7) -0.70 (0.95, -51.2) 0.30 (0.48, -24.2) 
-0.65 (2.15, -156.7) 0.35 (0.83, 157.6) -0.65 (1.72, -25.6) 0.35 (0.52, -22.2) 
-0.60 (2.02, -141.0) 0.40 (0.85, 159.3) -0.60 (2.17, -3.0) 0.40 (0.55, -20.3) 
-0.55 (1.79, -127.0) 0.45 (0.87, 160.8) -0.55 (2.35, 17.1) 0.45 (0.58, -18.7) 
-0.50 (1.52, -114.5) 0.50 (0.88, 162.1) -0.50 (2.32, 35.0) 0.50 (0.60, -17.3) 
-0.45 (1.23, -103.3) 0.55 (0.90, 163.3) -0.45 (2.14, 51.0) 0.55 (0.62, -16.1) 
-0.40 (0.95, -93.2) 0.60 (0.91, 164.4) -0.40 (1.88, 65.3) 0.60 (0.64, -15.0) 
-0.35 (0.68, -84.1) 0.65 (0.92, 165.3) -0.35 (1.59, 78.0) 0.65 (0.65, -14.1) 
-0.30 (0.44, -75.9) 0.70 (0.92, 166.2) -0.30 (1.29, 89.4) 0.70 (0.67, -13.2) 
-0.25 (0.22, -68.5) 0.75 (0.93, 167.0) -0.25 (1.00, 99.5) 0.75 (0.68, -12.4) 
-0.20 (0.03, -61.9) 0.80 (0.93, 167.7) -0.20 (0.74, 108.5) 0.80 (0.69, -11.7) 
-0.15 (0.13, 124.0) 0.85 (0.94, 168.3) -0.15 (0.51, 116.4) 0.85 (0.70, -11.1) 
-0.10 (0.27, 129.3) 0.90 (0.94, 168.9) -0.10 (0.31, 123.4) 0.90 (0.70, -10.5) 
-0.05 (0.38, 134.1) 0.95 (0.95, 169.4) -0.05 (0.14, 129.6) 0.95 (0.71, -10.0) 

1.00 (0.95, 169.9) 1.00 (0.72, -9.5) 

Zeros of G+(kx): x = -0.871, -0.190, Zeros of G+(kx): x = -0.943, -0.745, -0.003, 

& Tabulated in the form of (magnitude, phase in degrees). 
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where/(()o) andg«() are again given in (6.3) and (6.4). 
For the diffraction ray at the lower edge, no modifica
tion from the corresponding half-plane solution is 
needed. 

Ray-to-Mode Conversion. Let us express the field 
in the waveguide as 

Ey = ~ 2iCm( ±sin :'IT x)e±rm.. (6.9) 

Note that,for the wave traveling in the -z direction, 
we have added -1 in the parenthesis. This is designed 
to normalize the amplitude of the ray traveling in the 
direction (CfJm - 'IT) (so that it becomes unity at x = 
Z = 0). With the above definition for the mode, the 
ray-to-mode conversion factor is again given by (6.6). 

Finally, consider a special case Q = i'lT (Fig. 2). 
The results given in (5.11) through (5.20) are not valid 
for this special case, since they were derived from the 
simplified versions of 0_( -k cos w), V-C -k cos w), 
and T+( -k cos w). Fortunately for this special case, 
we may reduce our problem into symmetrical and 
asymmetrical parts by introducing infinite~v large 
electric or magnetic ground planes. Hence, we need 
the solutions to the two configurations shown in Fig. 
3(c) and (d). Again, we will omit the details, and give 
only the final results: 

Modified Ray Amplitude. The field on a diffracted 
ray is modified in the same manner as (6.2) for the 
TM case and (6.8) for the TE case, except that, instead 
of (3.6) and (3.7), we have 

G«(1.) = 1 + e-2rb , (6.10) 

G+«(1.) = G_( -IX) = (2 cos kb)t 

x exp C:b[1 - C + In (2:b) + it'lTJ} 

(
ibY IX - Y) 

X exp --;; In -k-

x IT (1 + ~)eiab/(n-ij,T, (6.11) 
n=l zYn_! 

where Yn-! = {[en - !)'lTjb]2 - k 2}!. 
Ray-fa-Mode Conversion. Let us express the fields 

in the waveguide as 

(2m - 1)x 
TM: Hy = ! 2cm cos exp (±Ym_!z), 

m 2b 
(6.12) 

TE: E1/ = ! 2icm (±sin (2m - 1)X) exp(±Ym_!z), 
m 2b 

(6.13) 

Then the conversion factor is again in the form of (6.6) 
with G(IX) given in (6.10), i.e., 

(( 
d _ }-l) 1 - [yG(oc)] = , (6.14) 

doc a=k cos 'l'm-t 2kb cos CfJm-i 

where sin CfJm-! = (m - i)(kb, and 0 < g:'m-! < 1'lT. 

7. APPLICATION TO PROBLEMS 

As a first example, consider the problem of radiation 
from an open-ended waveguide, as shown in Fig. 1 (a). 
Let the incident wave from the left be either TM or 
TE mode: 

(i) Sym. TM: 

('J l'lT 
Hy' = 2 cos - x exp (-y1z); (7.1a) 

b 

(ii) Asym. TM: 

('J (l - i)'lT 
Hy' = 2 cos x exp (-YI_!Z); (7.1b) 

b 

(iii) Sym. TE: 

(i) .' (I - i)'lT 
E1/ = 2z sm b x exp (-Yl-i z ); (7.1c) 

(iv) Asym. TE: 

(7.1d) 

Then the configuration in Fig. 1 (a) can be reduced to 
that in Fig. 1 (b) for cases (i) and (iv) and to that in 
Fig. l(c) for cases (ii) and (iii). Let us denote the 
reflected fields as: 

(i) Sym. TM: 

m'lT 
Hy = ! 2cm cos - x exp (Ymz); (7.2a) 

m b 

(ii) Asym. TM: 

(m - i)'lT 
Hy = ~ 2cm cos x exp (Ym-iz); (7.2b) 

m b 

(iii) Sym. TE: 

Ell = ~ 2iCm( -sin (m ~ l)'lT x) exp (Ym-F); 

(7.2c) 
(iv) Asym. TE: 

Ey = ~ 2iCm( -sin ~'lT x) exp (Ymz). (7.2d) 

There is only a single ray diffracted at the edge. 
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According to the rules given in Sec. 6, the results can be written down immediately: 
(i) Sym. TM: 

2i{sin HIPI - 1T)G.,....[k cos (IPI - 1T)]}{sin t(lPm - 1T)G_[k cos (IPm - 1T)]} . 
(7.3a) ~= , 

2kbEm cos IPm[COS (IPI - 1T) + cos (IPm - 1T)] 
(ii) Asym. TM: 

2i{sin HIPI-! - 1T)G_[k cos (IPI-! - 1T)]}{sin HlPm-l - 1T)G_[k cos (IPm-l - 1T)]} 
~= ; (7.3b) 

2kb cos IPm-l[cos (IPI-! - 1T) + cos (IPm-l - 1T)] 
(iii) Sy. TE: 

-2i{cos H IPI-l - 1T)CL[k cos (IPI-! - 1T)]}{COS H IPm-! - 1T)G_[k cos (IPm-l - 1T)]} . 
~= , (7.3c) 

2kb cos IPm_![cos (IPI-! - 1T) + cos (IPm-l - 1T)] 
(iv) Asym. TE: 

-2i{cosHIPI- 1T)G_[kcos(lPl- 1T)]}{COS HlPm - 1T)G_[kcos(lPm - 1T)]} 
(7.3d) Cm = 

2kb cos IPm[COs (IPI - 1T) + cos (IPm - 1T)] 

The above results may be compared with the exact 
solution (by Wiener-Hopf technique) by Vajnshtejn5 

and Noble.3 They are identical. This is not surprising 
in view of the fact that ka ~ 00. An interesting feature 
of (7.3) is that, even though the ray method is de
veloped in the present paper for propagating modes, 
(7.3) is valid for evanescent mode (with IPm imaginary) 
as well. [This is because of the fact, in evaluating 
0_( - k cos w) in Sec. 4, we assume w to be real.] With 
the help of Table I, the computation of (7.3) is quite 
simple. 

As a second example, let us consider the problem 
of radiation from a flanged waveguide having an 
internal wedge angle (3, with an incident TMIO mode 
given in (7.1 a). For the special case b ~ 00, the ray 
amplitude is given by the well-known result2

: 

{ 
1T . 1T2 

H
1I

= SlO---
i(21T - (3) (21T - (3) 

[( 
1T«() - ()o) 1T2 )-1 

X cos - cos ---
(21T - (3) (21T - (3) 

+ (cos 1T(21T + () + ()o) _ cos 1T2 )-IJ} 
(21T - (3) (21T - (3) 

ei(kP-h) 

X !' b ~ 00, (7.4) 
(21Tkp) 

which reduces to (6.1) as the wedge angle (3 ~ O. For 
finite b, the ray method gives the solution for the re
flection coefficients: 

{ 
1T . 1T2 

Cm = SIn 
i(21T - (3) (21T - (3) 

X [(COS 1T( IPI - IPm) _ cos 1T2 )-1 
(21T - (3) (21T - fJ) 

+ (cos 1T( IPI + IPm) _ cos 1T2 )-IJ} 
(21T - fJ) (21T - (3) 

G_[k cos (IPI - 1T)]G_[k cos (IPm - 1T)] 
X . 

2Emkb cos IPm (7.5) 

For the special cases (3 = 0 and t1T, the self-reflection 
coefficient of TEM mode becomes 

Co = G!(k)/i4kb 

(unflanged waveguide, f3 = 0), (7.6) 

Co = G!(k)/i3~3 kb 

(flanged waveguide, f3 = 1T/2), (7.7) 

which show that the reflection coefficient for a flanged 
waveguide is simply 0.77 times (or 1.15 dB down) of 
that for an un flanged waveguide [recall that (7.6) is 
exact]. Note that there is no known exact solution to 
the flanged waveguide. In the past years, several 
approximate methods have been suggested. The 
analyses of these methods are generally quite involved, 
and the results are by no means as simple as the one 
given in (7.7). By making use of the table for G+{oc), 
(7.7) can be easily calculated, and an example of such 
calculations is given in Figs. 7 and 8. For comparison, 
we have also plotted the result obtained by YFK 
method.2 Note that the agreement between YFK 
method and our method is excellent except when b is 
very close to a multiple of half wavelength (at the onset 
of a new propagating mode). When b = nAl2, YFK 
method gives a smooth curve, while (7.7) yields a dip 
with discontinuous derivative. [From (Al), it is easy 
to show that the slope of I G+(oc) I approaches infinity as 
b ~ (nAl2) from the right-hand side.] It is known from 
problems with exact solutions [such as (7.6)] that a 
discontinuity in derivative should be expected at the 
on-set of a new propagating mode. 

In the final example, we compute the diffraction of 
an incident TM wave given in (2.1) by an array of 
three waveguides (Fig 9). Let us concentrate on the 
field in the middle waveguides and express it in the 
form of (7.2a). A straightforward ray tracing gives 
the following results: 

8 

Cm=!c~). 
n=1 

(7.8) 
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Pro. 7. Magnitude ofthe reflection coefficient ofTEM mode from a 
flanged waveguide. 
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FIG. 8. Phase of the reflection coefficient of TEM mode from a flanged waveguide. 
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The eight terms in (7.8) are due to eight different rays 
which are sketched in Fig. 9. From the ray paths and 
the rules in Sec. 6, it is quite straightforward to write 
down their explicit forms, except perhaps c!:) and c!:). 
In the case of ray 6, the outgoing ray at edge x = 0, 
z = 0 falls exactly on the shadow boundary of the 
incoming ray. Consequently, the simple formula in 
(6.2) fails to give a finite value. A remedy for this 
situation is to use (4.10), and the result becomes 

c~) = (eika COB (90+0) ei(ka-!") 2i sin tOo sin ( - !O) 

(2'ITka)t cos 00 + cos (-0) 

x c (-0 < (0) - exp (i2kb sin Oo)C (n < (0») 
G+(k cos Oo)G+[k cos (-0)] 

x (!eika + e-i
i 
.. eika COB 2( .. -0) 

('IT)t 

X F[(2ka)t sin ('IT _ 0)]) (G_[k cos ('IT - 0)]) 
G+[k cos (- 0)] 

X (2i sin !('IT - 0) sin !(<<Pm - 'IT) 

cos ('IT - 0) + cos (<<Pm - 'IT) 

X G_[k cos ('IT - O)]G_[k cos (<<Pm - 'IT)] 

X (_l)m exp (ikl cos «Pm) C (0 < «Pm < 0»). 
2€mkb cos «Pm 

(7.9) 

The same modification can be used to determine c!:). 
From the above examples, we note that the ray 

method for calculating the diffraction or radiation 
problems involving parallel-plate waveguides is just 
as straightforward as their counterparts in free space. 
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APPENDIX: OTHER FORMS OF G+{IX) 

In addition to the expression of G+(ex) given in (3.7), 
we will give three formulas suitable for certain special 
situations: 

(i) Magnitude ofG+(ex): 

IG+(k cos 0)1 = 2 cos !Oe-tkb COB9( sin (~b sin O»)t 
sm 0 

X IT (COS 0[1 - (n'IT/ kb)2]t) (At) 
n=l [sin20-(n'IT/kb)2]t ' 

where N is the number of propagating modes, i.e., 
{Yn} are real for n > N. 

(ii) Integral expression of G+(ex) for large kb: For 
large kb, the infinite product expression given in (3.7) 

(8) 

(C) (D) 
FIG. 9. Ray contributions to the modal coefficients in the middle waveguide as given in (7.6). 
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converges slowly. By making use of a new factoriza
tion formula,6 it may be shown that 

G+(IX) = (2 sin kb)!ei(!kb-llT) 

x exp L~i fp[ln (1 + [s(s ~~~kb)]!) ] 
i

2kb 
} X e8 _ ei2kb ds, (A2) 

where the path P goes from - 00 to 0+ below the real 
axis of s, circles around the origin, and then goes from 
0+ to + 00 above the real axis. Note that the integrand 
in the above integral decays exponentially as exp (-s) 
and therefore converges quite rapidly. For very large 
kb, the above integral can be evaluated asymptotically 
with the result 

G+(IX)""" e-lilT(27r15)!(l + IXb !) 
(2m5kb) 

x exp (-0.824 (1 - i);b), 
(2kb) 

kb » 1, IIXI «k, and 1151 < 0.25, (A3) 

where 15 is defined from the relation 

kb = 7T(q + 15), q = an integer. (A4) 

The formula in (A3) was also given by Vajnshtejn in a 
paper discussing the laser resonnator. 7 Recently,Bow
man gave an interesting expansion of G+(IX) for large 
ka, and showed its relation to the ray method used by 
YFK.8 
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In this paper, we present a self-contained exposition of ground-wave propagation over a smooth 
inhomogeneous earth model. A factorization procedure is used to obtain an exact solution for a 2-
dimensional cylindrical model which may have any number of homogeneous sections. It is demonstrated 
that, under most conditions in practice, the solution for the mode conversion coefficients can be simplified 
to a form which was derived earlier by an application of the compensation theorem. Formulas are given 
which permit the refinement of earlier approximate calculations if such accuracy is required. 

1. INTRODUCTION 

The theory of ground-wave propagation has been 
developed mainly for a homogeneous earth. While the 
results so developed are quite adequate for many 
purposes, there is a notable difficulty when one is 
confronted with predicting the field strength for 
propagation over a path which is partly land and 
partly sea. While some useful methods have been 
devised to deal with mixed paths, the theory is not in a 
particularly sound state. Also, experimental data 
taken under controlled conditions are scarce. For 
these reasons, it seems desirable to examine the 
theory with a view to providing confidence in some of 
the existing computational methods. Also, hopefully, 
we point the way to more accurate methods which 
may be needed in future engineering applications such 
as precise radio navigation. 

We choose a 2-dimensional cylindrical model of 
the earth. This can be justified for a spherical-earth 
model where one can show that the curvature trans
verse to the propagation path does not playa signi
ficant role. 1 Our task here is to compute the field for 
vertically polarized waves circulating in an azimuthal 
direction around an earth which is composed of any 
number of homogeneous segments. We will consider 
initially a path of two segments in order to obtain 
certain transmission and reflection coefficients. Then 
we indicate, by considering a three-section path, how 
the theory may be generalized. Unlike most previous 
developments, we allow for the existence of waves 
which are reflected at discontinuities such as coast 
lines. 

coordinates (r, e, z) with the surface of the earth at 
r = a. The source of vertically polarized waves is a 
z-directed uniform magnetic line source of strength K 
volts. For a time factor exp (iwt), the primary mag
netic field of the line source has only a z component 
H: which, at a distance R, is given by 

H: = KH~2)(kR) '" K[(2i)/( 7TkR)]l exp ( - ikR), (1) 

where k = 27T/(wavelength) and where H~2) is a 
Hankel function with its indicated asymptotic 
approximation. We are now interested in the expres
sion H: in a contour integral form which is suitable 
for matching boundary conditions at r = a. The latter 
are exemplified by the statement that the resultant 
tangential fields E8 and Hz are related by the specified 
surface impedance Z. Explicitly, 

(2) 

This, in turn, is equivalent to oHz/ox = i!llHz' 
where x = kr is set equal to ka. Here, !l1 = Zl/'YJO' 
'YJo = 1207T. 

Using a standard addition theorem for Bessel 
functions, we can write 

+00 
H: = K 1: H~2)(kro)JJJ(kr)e-iP8 for r < ro (3) 

or in the equivalent integral form 

for r < ro, (4) 

where p and q, in the above, are integers. In (3) and 
(4) above, we merely exchange rand ro if the results 
are to apply to the condition r > ro. 2. CONCISE TREATMENT FOR THE 

HOMOGENEOUS PATH We now construct a suitable integral form for Hz 
We, first of all, consider a fully homogeneous path which behaves like H: as R --+ 0 and, at the same time, 

as indicated in Fig. 1. Here we have chosen cylindrical it satisfies the boundary condition at r = a. Without 

2851 
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FIG. 1. Homogeneous earth model. 

difficulty, we find, for, < '0, that! 

00 

X e-iv8 I e-i27TQV d'l', (5) 
Q=-OO 

where 

R _ H~ll'(ka) - id1mll(ka) 
1 y - - H~2)'(ka) _ idlH~2)(ka) , (6) 

and where 

H~l)·(2)'(ka) = [aH~I)·(2)(x)/aX]"'=ka. (7) 

While (5) is an exact solution for the homogeneous 
cylindrical surface, it is not useful for calculation. A 
more convenient form is obtained by deforming the 
contour about the singularities of the integrand. For 
the situation specified, these are poles at 'I' = ± 'I'm' 

where the 'I'm' m = 1,2,3, ... , in the fourth quad
rant, are solutions of 

l/hR.) = O. (8) 

Thus, if () > 0, we close the contour in (5) by an 
infinite semicircle in the lower half of the 'I' plane for 
terms containing q = 0, 1, 2, . .. and close the 
contour in the upper half-plane for terms containing 
q = -1, -2, -3,···. By Jordan's lemma, the 
contributions from the semicircles can be shown to be 
vanishingly small. Thus, by Cauchy's theorem, 

H. = -1TiK I H~~(kro)H~~(kr)[.E.- (_1 )J-1 

m=I.2.3.·.. a'l' lRy V=Vm 

X {[e-iVm8 + e-iVm(27T-8)]q=Ot,2 .... e-biavm}. (9) 

As indicated in (9), the summation includes all roots 
'I'm which are in the fourth quadrant of the complex 'I' 

plane. Clearly, H. can be interpreted as the sum of the 
"creeping wave" modes of order m which each 
propagate around the cylinder any number of times in 
both directions. For lossy surfaces (i.e., Re ~1 > 0) 
and for an electrically large cylinder (i.e, ka» 1), 
the curly bracket term in (9) can be replaced by its 
dominant term exp (-i'l'm() for () less than, but near, 
1T. In what follows, we will assume this is the case. 

Thus, for future reference, we write 

H. = I AmH~~(kr) exp (-i'l'm(), (10) 
m 

where 

Am = -1TiK[H~~(kro)]/[.E.- (..l.)J _ . (11) 
a'l' lRv V-Vm 

A more explicit and useful form of the coefficient Am is 
obtained by employing the Wronskian relation 

H~2)(x)H~1l'(x) - H~1l(x)H~2)'(X) = 4i/(1TX) (12) 

and the modal condition 

H~2)'(ka) - idlH~2)(ka) = 0 (13) 
to show that 

H(ll'(ka) - id H(I)(ka) = 4i [H(2)(ka)t1 (14) 
Vm 1 Vm 1Tka Vm • 

Thus, (11) is equivalent to 

A = _ 4K m~(kro) 
m ka H~~(ka) 

x (:'1' [H~2)'(ka) - idlH~2)(ka)]):vm' (15) 

In the special case where the observer is on the 
surface of the cylinder, we see that (10) has the 
explicit form 

4K H~~(kro) exp (-i'l'()m) 

H.]r=a = - ka ~ {a[H~2)'(ka) - idlH~2)(ka)]/a'l'}v=vm' 
(16) 

where again we have utilized (12). The contour 
integral representation equivalent to (16) is clearly 
given by 

2K f+oo H(2)(kr )e-iv6 
H] = -- v 0 d'l' (17) 

• r=a . k H(2)'(k)' A H(2)(k) . ITT a -00 v a - lUI v a 

3. FORMULATION FOR A TWO
SECTION PATH 

We now consider the extension to a two-section 
mixed path. We shall use the dual integral equation 
formulation used so successfully by Clemmow2 and 
Thompson.3 For the present type of problem, it seems 
to be more convenient than the more conventional 
Green's function formulation,'·5 which eventually 
requires solving an integral equation. The latter is 
equivalent to the dual integral equation mentioned 
above and, in both cases, the Wiener-Hopfmethod6 of 
factorization can be brought to bear. 

The situation is illustrated in Fig. 2. Now, the 
surface impedance of the lower boundary is sectionally 
uniform. For () < ()1, the surface impedance is ZI but, 
for () > ()1, the surface impedance is Z2' 
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K 

FIG. 2. Two-section mixed path. 

For the present situation we assume that the 
resultant magnetic field H; can be written 

H~ = Hz + 6Hz, 

where Hz is the field for a fully uniform situation (i.e. 
Z2 = ZI), while 6Hz is the modification resulting from 
the change of surface impedance from ZI to Z2 for ° > °1 • The assigned task is to find an expression 
for 6H •. 

Now, both H; and H. satisfy the wave equation in 
the region r > a. Thus, 6H. will also satisfy the same 
wave equation, and this leads us to construct the 
following integral representation: 

2K f+<Xl {3(v)H(2'(kr) 
DH. = -- ,Y e-iY

(8-8 1
' dv. (18) 

i7Tka -<Xl H~2) - ill.1H~2' 

Here the function {3(v) is yet to be determined, and the 
other factors in (18) are introduced for later con
venience. Also, for simplicity in (18) and in what 
follows, we use the convention for Hankel functions 
of argument ka indicated by 

H~i)(ka) = H~i', j = 1, 2, 

and 

(oH~i'(X») = HO)' . - 1 2 
::l Y , ] - , • 

uX il)=ka 

We note that the presence of the Hankel function 
H;2'(kr) in the integrand of (18) has the appropriate 
radial dependence for the free-space region r > a. 

The impedance boundary conditions at r = a are 
now written 

oH~ .A I a; = lU1Hz for ° < 01 

= ill.2H; for () > (}1' at x = ka. (19) 

But we know that 

Therefore, a compact statement of the boundary 

condition at r = a is 

[ (1. - ill.l) bH.J = 0 for () < (}1' (20) ax il)=ka 

[(.E.. - ill.2)6H.J = i(ll.2 -ll.I)[Hz]il)=ka ox ",=ka 

for ° > °1 • (21) 

Using the integral representations (17) and (18) 
and the boundary conditions (20) and (21), we find 
that 

f
+<Xl 

-<Xl {3(v)e-M8
-

81
' dv = 0 for ° < 01 (22) 

and 

f:: F(v){3(v)e-iY
(8-8

tl dv = i(ll.2 -ll.1) f:: G(v)e-i98 dv 

for () > (}1' (23) 
where 

H(2,' _ ill. H(2' 
F( ) Y 2 Y 

V = H(2" _ ·A H(2' 
v lUI v 

(24) 

and 
H(2'(kr) 

G( ) Y 0 
v = H(2" _ ·A H(2)· 

Y lUI Y 

(25) 

To reduce the dual integral equations to a simpler 
form, we use the integral representation 

f
+<Xl 

{3(v) = -<Xl {3(v, V) dv (26) 

in (22) and assume that the order of integration may 
be inverted. Then, the pair (21) and (22) are equivalent 
to 

f
+<Xl 

-<Xl {3(v, v)e-M8
-

8tl dv = 0 for ° < 01 (27) 

and 

f:: F(v){3(v, v)e-iY
(8-81

, dv = i(ll.2 - ll.I)G(v)e-i98 

for e > °1 • (28) 

We now follow the Wiener-Hopf procedures and 
introduce the factorization 

l/F(v) = M+(v)N-(v). (29) 

Here M+(v) is regular except for poles in the finite 
part of the complex v plane and has neither zeros or 
poles in the upper half-plane. Similarly, N-(v) is also 
regular except for poles in the finite part of the 
complex'll plane, but it has neither zeros or poles in the 
lower half-plane. 

With the split indicated by (29), we are now in a 
position to write the formal solution of (27) and (28) as 

{3( r.\ (ll.2 - ll.1) -.981 M+(v)N-(V) G(~ 
v, v, = - e v) (30) 

27T 'II - V 
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under the important provision that the contours of 
integration in (27) and (28) be indented above the 
pole at v = v. Thus, when the contour in (27) is 
closed by an infinite semicircle in the upper half-plane, 
there are no singularities of the integral enclosed by 
the contour, and the value of the integral is zero as it 
should be. Similarly, if the contour in (28) is closed by 
an infinite semicircle in the lower half-plane, the 
residue at the enclosed pole at v = v yields the right
hand side of (28). 

In carrying out the confirmation of the solution 
posed by (30), we have invoked Jordan's lemma which 
requires that M+(v) and N-(v) are bounded at infinity 
in the upper and lower half-planes, respectively. 

Using (26) and (30), we obtain the solution 

P(v) = _ A2 - Al M+(v)J+oo N-(i1~ G(v)e-iM1 dv, 
27T -00 V - v 

(31) 

where the integration contour is allowed to pass 
below the pole at v = v. Since (lr is essentially positive, 
a residue series representation for (31) is obtained by 
closing the integration contour in (31) in the lower 
half-plane. Thus, we find that 

P(v) = i(A2 - AI)M+(v) 
N-(vm) H~~(kro)e-iYm81 

X ~ (v _ '11m) [O(H~2)' - iAIH~2»IO'JIJv=vm 
(32) 

The summation here extends over the roots '11m , 

m=1,2,3,"',of 

was discussed by Clemmow2 and Thompson. 3 Instead, 
we consider only the residue series evaluation of (34) 
in the two cases where 0 < Ol and 0 > 01 , These 
representations are uniformly valid everywhere, al
though their convergence is poor when () is near ()l' An 
alternate method for handling this region is discussed 
later. 

4. TREATMENT OF REFLECTED WAVES 

In the case of the reflected waves (i.e., 0 - 01 < 0), 
we close the integration contour in (34) in the upper 
half-plane. The enclosed singularities are poles which 
occur at v = -'lip, where the vp,P = 1,2,3, ... ,are 
solutions of (33). This statement follows from the 
identity 

(35) 

To evaluate the residues of the poles at v = -'lip, we 
note that 

where we have utilized the condition 

(37) 

H (2)' - iA H(2) = 0 
v 1 v , 

(33) Then without difficulty we find, for 0 < ()l, that 

which is equivalent to (8). 
Using (32) and (18), we now write down the explicit 

form for the formal solution of the problem: . 

The integration contour in the v plane here is along 
the real axis which has no singularities on it. To obtain 
numerical results for () near ()l, it appears that (34) 
must be integrated numerically. If, on the other hand, 
kr is sufficiently large, a saddle-point method could be 
applied to effect the v integration. The latter approach 

Here we have used the property that M+( -'lip) = 
N-(v p ). We may also write (38) in the form 

bH - '" '" A R H(2)(kr)eiv.(1J-1J1)e-ivmIJ1 (40) 
z - £,., k, m p.m lip , 

m p 
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where Am is given by (15). The interpretation of 
Rp.m as a reflection factor follows on comparing (40) 
with (10). 

5. TREATMENT OF THE TRANSMITTED 
WAVES 

We consider the residue series evaluation of (34) 
for the transmitted waves (i.e., () - ()1 > 0). This 
requires closing the contour in the lower half-plane. 

In the denominator of the second series above, we 
observe that 

(43) 

by virtue of the relation 

H(2)' - i6.. H(2) = O. 
Vm 1 Vm 

(44) 

As a consequence, this series is identically equal to 
- Hz, which is confirmed by noting the form of (10). 
Thus, on using the identity bHz = H; - Hz, we 
obtain from (42) the following expression for the 
total field for the region () > ()1: 

H' __ 4K!! H~~(kro) 
z. - ka m n H~~(ka) 

x H~2~(kr)Tn.m e -illn (B-B1k -ivmBl (45) 
[a(H(2)' - i6.. H(2»la ] , 

v 1 v V Vm 

where 
i(6..2 - 6..1) N-(vm) H~~(ka) 

Tn •m = N-( ) [::l(H(2), 'A (2) l::l 
flon - Vm flon U v - lU2Hv ) UV]V=lln 

(46) 

We note that (45), for the transmitted modes, is 
expressible in the form 

which is analogous to (40) for the reflected modes. 

6. EXTENSION TO A THREE
SECTION PATH 

The series representations given by (40) and (47) 
constitute the exact solutions for the reflected and 
transmitted modes at the surface impedance dis
continuity at () = ()1' The form of these expressions 

From the definition (29), we see that 

M+(v) = 1 (41) m2)' - i6..1H~2) (H~2)' - i6..2H~2»N-(v) . 

This tells us that relevant poles occur at v = flon' 

n = 1,2, 3, .. " which are solutions of 

H!2)' - i6..2H~2) = 0 

in the lower half-plane. In addition, there is a set of 
poles at v = V m' Thus, (34) is equivalent to 

(42) 

is such that the results may be generalized to a 
multisection path. First of all, we consider a three
section path, and then we generalize the results to any 
number of homogeneous sections. 

A three-section path is illustrated in Fig. 3. Here 
the surface impedance is 21 for () < ()1, 22 for 
()1 < () < ()2' and 23 for () > ()2' The solution can 
be constructed by suitably superimposing the two
section solutions discussed in the preceding chapter. 
The idea is that a mode of order m incident at the 
discontinuity () = ()1 is reflected as a sum of p modes 
back to the source according to the reflection factor 
- R~~~, which is identically equal to (39). The super
imposed arrow pointed toward the left indicates the 
direction of the reflected modes, and the superscript 
(I) refers to the discontinuity at () = ()1' In addition, 
n modes are transmitted beyond the discontinuity at 
() = ()1, according to the transmission factor ~T(1) . n.m 
Each of these n modes now propagate toward the 
discontinuity at () = ()2, where they are converted 
into I modes and transmitted into the final region. 
Reflection also takes place at () = ()2' and these 
reflected modes of order q are in turn reflected at 
() = ()1, and so on. 

K 

FIG. 3. Three-section mixed path. 



                                                                                                                                    

2856 JAMES R. WAIT 

e-iVm81-+T:~~e-il'" (8z-81 ) e-iv",81-+T(l I e-il'" (81-81) 
... m 

X .... R;~!e-/I'.(81-81)-+ R!~~ H~"""'-! 

x e-i l'.(8-81)H(B)(kr) 
1', 

X C Ri~~e-il'.(81-81) X -+ R!~~e-iI'.(61-81)} 

X -+T,(Z)e-iU ,(8-81)H(I)(kr) 
I" u l 

....... ~~.---------------------------------------------------. 
e-iv .. 81-+ T~~~e-il' .. (8.-61 I C R!~~e-il'.(81-81 I 

X -+ R!~~e-il',(81-611}<-R~~:e-/I'.(8z-811-+ R~~~ 

X e-iI'h(8z-811}-+T,(Z) e-i l',(8-8z) H (21(kr) 
"~ u, 

FIG_ 4. Flow chart to illustrate modal interaction of the two impedance discontinuities. 

The physics of the reflection-conversion and 
transmission-conversion processes are illustrated in 
Fig. 4. In this flow chart, we see the mode structure 
of the field in each of the three regions for a single 
mode of order m incident from the left The total 
field in each region is obtained by summing over all 
converted modes of order n, I, q, p, S, g, h, etc. The 
arrows over the reflection and transmission (con
version) factors indicate the direction of flow and the 
superscripts (1) and (2) refer to the discontinuition a 
() = ()l and () = ()2, respectively. For example, <-T!~! 
is given by 

+-Tll) _ . «().l - ().2) N-(I-'q) H1~(ka) 
:p,q - Z N-( ) [:I(H (2)' 'A, H (2) 1:1 ] 

V:p - I-'q v:p V v - lUI v) v'll v~v~ 

(48) 

in analogy to (46), which IS -T!l~. In a similar 
fashion, we find that 

-+ T(2) = i (Lla - Ll1) N-(I-',.) 
Ion N-( ) U! - I-'n U z 

where Ll3 = Z31 'f}o -

In the flow chart depicted in Fig. 4, we show only 
the low-order interactions between the two dis
continuities. To express the results in a comprehensive 
fashion, we can use a matrix description. For example, 
if the incident mode from the left, in the region 

() < ()l> has the form 

A H(2)(kr)e-iVm8 
m Vm ' 

(50) 

then the modes transmitted into region () > ()2 have 
the form 

I AmTI,mH~/(kr)e-i"118-81), (51) 
I 

where Tl,m is the element in the Ith column and the 
nth row of a matrix [Tl- This matrix is to be obtained 
from the operation 

[T] = [-+T (2 )]([11 + r+R (1)][+-RI2)] + [-+RIl)][+-RI2)] 

x [-+R(1)][+-RI2)] + .. ')[D][-+T 1I )], (52) 

where [1] is the unity (diagonal) matrix. Here, the 
general reflection (conversion) factors are 

(53a) 

where 

(53b) 

is the product of a square matrix and a diagonal 
matrix (both of infinite size). Also, the general 
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transmission (conversion) factors are 

[~~;~ ~~~~ ~i:~.:::] 
[T<il] = 2.1 2.2 • 

T(j) ••••••••••••• 
a.l 

................. 

(54) 

Arrows are to be added to the elements in the square 
matrices in (53) and (54) as appropriate. Also, j = 1 
or 2 designates the discontinuity at () = ()1 or () = ()2' 

respectively, for the three-section path being con
sidered. 

An equivalent form of (52) is readily seen to be 

[T] = r"T(2)]([I] - [ .... R(l)H+-R(2)])-I[DH .... T(1)], (55) 

which involves a matrix inversion. Formally, this is an 
exact result for the three-section path but, in practice, 
only a finite number of modes is considered in indivi
dual cases. Thus, the matrices will be truncated so that 
the final results will be approximate; yet the error can 
be made arbitrarily small if sufficient computing effort 
is expended. 

7. MULTI SECTION PATH 

We now come to the final generalization to a 
multi section path with J homogeneous sections. The 
surface impedance is now ZI for () < ()1, Z2 for 
()l < () < ()2' Za for ()2 < () < ()a, and so on, until it is 
ZJ-l for ()J-2 < () < ()J-l and, finally, ZJ for () > 
()J-l' Then, again, if the incident field from the left is 
a mode of order m of the form 

Amm~(kr)e-ivm6, (56) 

the transmitted modes of order I in the region () > () J-l 

are of the form 

'" A T, H(2)(U r)e-iUI(6-6J-I) (57) k m l.m UI I • 
I 

Here T l •m is the element in the Ith row and the mth 
column of the matrix [T] given by the product 

[T] = 
;~J.J-l.·" .4.a 

which is to be used if J ~ 3. Here D(i-2) is the appro-

which holds for J ~ 3. Clearly, (59) accounts for 
forward mode conversions, but it neglects the mode 
reconversion which can occur if J ~ 3. 

8. REDUCTION OF THE SOLUTION 

The residue series solutions discussed in the preced
ing sections are in terms of cylindrical wavefunctions 
of complex order and large real argument. We now 
wish to reduce the results to a more useful form for 
computational work. For the time being, we restrict 
our discussion to the two-section mixed path with 
surface impedance ZI and Z2 on either side of a 
discontinuity at () = ()1' 

Using (10), (40), and (47), we can write the follow
ing expressions for the resultant field H; on either side 
of the impedance discontinuity: 

H~ = ~ ame-ivm6G~)(kr) 
m 

+ ~ ame-ivm61 ~ r,p.me-iV.(6I-ll)G~I)(kr), (60) 
m 

for () < ()1, and 

H' = '" a e-ivm61 '" S e-il'n(6-11I)G(2)(kr) (61) 
z £. m £., n,m n' 

m 

for () > ()1, where we have introduced the following 
new notation: 

G(1)(kr) = H(2)(kr)jH(2) (65) m 'Vm Vm' 

G(2)(kr) = H(2)(kr)jH(2) . 
n . Iln Iln (66) 

priate transmission matrix of the form given by (53b). and 
The presence of the inverse matrix here and in (55) 
results from the interaction of the modes between 
adjacent surface impedance discontinuities. In the case We now introduce the Airy approximations for the 

Hankel functions.? For present purposes, these take 
the form 

where the reflection (conversion) coefficients can be 
neglected, the inverse matrix can be replaced by [1]. 
In this case, we have the simple product formula 

[T] = II 
;=J .J-l.··· .4.3 

H~I)(X),-...J -(ij7T1)(2jx)iw2(T), (67) 

H~2)(X) ,-...J (ij7T1)(2jx)iw1(T), (68) 
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where T = (v - x)(2/x)1 and wl(r) and W2(T) are Airy 
functions. These representations are valid provided 
x» 1 and Iv - xl «xf , which means that the low
order modes of lowest attenuation are adequately 
described. Also, to within the same approximation, 
the derivatives of the Hankel functions can be rep
resented by the derivatives of the Airy functions. 
Thus, 

H~I)'(X) ~ (i/1T!)(2/x)fw~(T), (69) 

H~2)'(X) - -(i/1T!)(2/x)fw~(T). (70) 

It is useful to note that the Airy functions used here 
are simply related to the more conventional forms. 
Thus, 

Wl(T) = 1T![Bi (T) - i Ai (T)] (71) 
and 

W2(T) = 1T![Bi iT) + i Ai (T)], (72) 

where Ai (T) and Bi (T) have been tabulated exten
sively.8 

We now readily find that the desired roots Vm and 
ftn are obtained from 

)1m '" ka + (ka/2)lt~) (73) 
and 

ftn '" ka + (ka/2)lt~2), 
where t:;) and t~2) are roots of 

(74) 

w~(t) - QlWl(t) = 0 
and 

(75) 

(76) 

respectively. Here ql and q2 are normalized impedance 
parameters given by 

ql = -i(ka/2)tLlI' Lli = Zl/'YJO, 
and 

We note that (75) and (76) are the Airy function 
approximations for the exact forms 

H~2)' - iLlIH~2) = 0, V = Vm' (77) 
and 

H~2)' - iLl2H~2) = 0, V = ftn' (78) 

respectively. 
Using the Airy representations, we easily find that 

the reflection (conversion) coefficient and the trans
mission (conversion) coefficient as defined by (63) 
and (64) are now approximated by 

r ~ - (Q2 - QI)N-(vm)N-(vp ) (79) 
p.m - [4(ka/2)f + t~l) + t~)](t~l) _ q~ 

and 

(80) 

In obtaining these forms, we have used the fact that 
WI(t) and w2(t) satisfy the Stokes differential equation 

d2 

-2 WI 2(t) - (WI2(t) = 0 (81) 
dt' . 

for any argument t, while (75) and (76) tell us that 

and 

9. THE FACTORIZATION 

(82) 

(83) 

We now return to the problem of factorizing F(v), 
which is defined by (24). We write this in the equivalent 
form 

F(v) = fb)/fb), (84) 
where 

and 
fb) = (H~2)' - iLl2H~2»e-iv"/2. 

Using the identity H!...~(x) = riV7r H~2)(X), we readily 
deduce that both/ley) and/2(v) are even functions of v. 
Also,fl(v) and/2(v) have no singularities in the finite v 
plane, but they do have zeros at v = v. and v = ft., 

where the subscript s indicates the order of the root. 
We are now permitted to use the infinite product 
theorem to obtain 

fl(V) = NO) IT (1 - ~) (85) 
s Vs 

and 

f2(V) = f2(0) IT (1 - v:). 
• ft s 

(86) 

Then, (84) may be written 

F(v) = F(O) IJ ( 1 - ;J ( 1 + ;J / (1 - ~) ( 1 + ~) 
1 

=-~'--- (87) 
M+(v)N-(v) 

Noting that v = Vs and v = ft. occur in the lower 
half v plane, we see by inspection that 

M+(v) = [F(O)r1 IJ (1 - ~) / (1 - ;) (88) 

is regular and free of zeros in the upper half-plane. 
With similar reasoning, we find that 

N-(v) = [F(O)r! IJ (1 + ;.) / (1 + ;). (89) 

We defer a detailed study here of these infinite 
products. However, we can obtain two significant 
pieces of information. First of all, the quantity 
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N-(vm)N-(v p ) appearing in (79) is of the order of 
[F(O»)-l, where 

H(2)' - iLl H(Z) 1 + Ll 
F(O) = 0 2 0 ,...., __ 2 (90) 

H~2)' - iLllH~2) - 1 + Lll ' 

which is itself of the order of unity. The second 
quantity of interest is the ratio N-(vm)/N-(ftn) which 
occurs in (46) and (64) for the transmission coeffi
cients. From (89), it is evident that 

N=(vm) = II (1 +ftn) (1 + Vm)j(1 +ftn)(1 + Vm). 
N (ftn)' ft. v. Vs ft. 

(91) 

For many cases of practical interest, such as ground 
wave propagation over mixed paths, the infinite 
product given by (91) is quite close to unity. This is a 
consequence of the fact that the ratio vs/ft. itself does 
not differ much from unity if ILlll and ILl21« 1. In 
fact, in general, we can show that 

lim (vs/ft.) = 1. 
.-- 00 

The consequence of the above discussion is that the 
transmission (conversion) coefficient Sn.m can be well 
approximated by the relnarkably simple relationship 

S ql - q2 1 (92) 
n,m "-' (1) _ (Z) (2) _ qZ . 

m n n 2 

Apparently, there is no such simple expression for the 
reflection factor r p.m , although an order-of-magnitude 
estimate suggests that 

r (1) _ (Z) t(2) _ qZ 1 
p.m m n n 2 __ --" 

Sn.m ,-.., t~) + t~l) t~l) - q: 4(ka/2)i ' 
(93) 

which, at least for the lower-order modes, has a 
magnitude very small compared with unity (typically 
of the order of 10-4). Thus, the neglect of the reflected 
mode at the discontinuity has some justification in 
fact. 

10. FINAL REMARKS 

As a final closure in this discussion, we take the 
simplified form Sn.m and use it to obtain an explicit, 
albeit approximate, expression for the resultant 
magnetic field H; for 0 > 01 above a two-section path. 
In this case, we introduce an "attenuation function" 
W' which is defined as follows: 

where 

(94) 

is a reference field which is numerically equal to the 
field of the magnetic line source of strength K located 
on the surface of a flat perfect conductor at a linear 
distance kaO. Having the field normalized in this 
fashion means that. the "attenuation function" W' 
reduces to unity if the earth were flat and perfectly 
conducting. 

In order to facilitate the discussion, we also intro
duce some of the dimensionless parameters which are 
now common in ground-wave propagation theory. 
These are Xl = (ka/2)lOl' X = (ka/2)lO, Yo = [2/ 
(ka»)lk(ro - a), and y = [2/(ka)]tk(r - a). Then, 
without difficulty, we find that 

W' ~ W c::: (1Tx)!e-iU /4 

X '" 1 e-iXtm!tl G(l)(y )G(l)(y) 
.(.. (1) Z mOm, 

m=1.Z,3, .. · tm - ql 

and 
for x < Xl, (95) 

W' ~ (1TX)!e-iU /4 '" 1 e-ixltm(llG(1)(y) 
. £., (1) 2 m 0 

m=I.2,3 ... · tm - qI 

x 

where 

'" S e-i(X-Xl)tn (2) G(Z)(y) 
k n.m n' 

n=1.Z.3.··· 

for X> Xl, (96) 

Sn.m = (ql - qz)(t~) - t~)-l(t~) - q~)-l. (97) 

It is of considerable interest to observe that (96) has 
precisely the same form as the expression derived 
from an application 'of the compensation theorem 
applied to an equivalent problem,! In fact, (96), for 
y = Yo = 0, is equivalent to the integral formulas 

W' = W(x, ql) + (:J(qZ - ql) 

X (X-Xl W(x - x, ql)W(X, q2) dx (98) 
Jo [x(X - x)]! 

= W(x, q2) + (:i)!(ql - qz) 

(99) 

j = 1, 2. (100) 

That the forms given by (98) and (99) lead back to (96) 
can be readily verified by simple integration, provided 
we recognize that 

1 
(q2 - ql) ~ ( (2) (1) ( (2) 2 = 1. (101) 

n=1.2.3.··· tn - tm ) tn - q2) 
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This, in turn, is a consequence of the identity 

which can be verified by integrating both sides over a 
contour in the complex t plane which encloses the 
poles at t = t~2) in a clockwise sense. In (202), we then 
set t = t~) and use the fact that 

w'(t(l) = q w (t(I» 
1m 11,011' (103) 

which leads back to (101). 
The integral formulas for (98) and (99) are really 

most suitable for numerical work when the distance 
from the discontinuity (i.e., the coast line) is small. In 
this case, the convergence of the n series in (96) is poor 
because of the smallness of x - Xl' Other representa
tions also exist and their relative merit in numerical 
work has already been described.1 
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We obtain the field equations of Einstein for spatially homogeneous spaces as the Euler-Lagrange 
equations of a variational problem. We write these equations in Hamiltonian form and regularize them. 
In this way, we obtain a class of solutions without rotations. We derive, in particular, the Lagrangian 
function for the rotating model with the sa group first computed by GOdel. We suggest that the corre
sponding Hamiltonian equations can be regularized. 

1. INTRODUCTION 

It is the main objective of some cosmologists nowa
days to treat the following outstanding problem of the 
relativistic cosmology: Consider the line element 

ds2 = dt2 + A(w1)2 + B(W2)2 + C(W3)2 

+ 2Dw2W 3, (1.1) 

where WI, w2 , and w3 are the invariant differential 
forms of the group S3 satisfying the relations 

dw1 = _w2 /\ w3 , dw2 = _w3 /\ WI, 

dw3 = _WI /\ w 2 , (1.2) 

and A, B, C, and D are functions of t only. We find the 
solution in form (1.1) to Einstein's field equations with 
dust such that the rotation and the expansion of the 

matter are different from zero. This is interesting not 
because the astronomers had discovered the rotation 
of the universe, but it is interesting from a theoretical 
point of view. This model probably would be the 
simplest world model with finite space part and with 
the most general motion of the "Weltsubstrat," that is, 
with nonvanishing translation, rotation, expansion, 
and shear. 

We had this problem in mind when developing this 
paper, the structure of which is as follows: Using an 
idea of Weyl, we obtain Einstein's field equations for 
spatially homogeneous spaces as the Euler-Lagrange 
equations of a variational problem. More precisely, 
we obtain the vacuum field equations for all the groups 
and the field equations with incoherent matter for 
Class I groups only. We call Class I the Bianchi Type 
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I, II, VIII, and IX groups, characterized by 

dWI = 0, dw2 = 0, dw3 = 0, (1.3) 

(1.4) 

dWI = w2 A wS, dw2 = _ws A WI, dwS = -WI A w2 , 

Denoting by t the coordinate on R, we can introduce 
the vector fields 

a 
Xo = -, X a , a = 1, 2, 3, at 

and the I-forms 

(2.1) 

(1.5) such that 
W

O = dt, wa
, a = 1, 2, 3, (2.2) 

dWI = _w2 A wS, dw2 = -ws A WI, 

dwS = -WI A w2• (1.6) 

Our reasons for this should be clear later. 
We apply the general theory to the line element 

ds2 = dt 2 - (AWI)2 - (Bw2)2 - (BwS)2 (1.7) 

with each of the groups (1.3)-(1.6). We write the 
Euler-Lagrange equations in Hamiltonian form. We 
regularize these equations; that is, we introduce a new 
variable T by a suitable transformation on t such that 
these equations transform into an analytic system. 
This system is then easily solved by a computer, or 
one can think of the solution developed into con
vergent power series with respect to the regularizing 
parameter T. As a second application, we derive the 
Lagrangian function for (1.1) with (1.2) first given by 
GodeJ.l It is obvious that there are several ways to 
regularize the corresponding canonical equations; 
therefore, we can say that the problem of the rotating 
universe can be solved by regularization, in the same 
sense as Sundman solved the 3-body problem of the 
celestial mechanics. We do not give here, however, any 
explicit regularizing transformation, since there might 
be a "much better" one than the obvious one. 

In closing, we refer to a remarkable talk delivered by 
Misner at the Cincinnati Conference.2 Misner special
izes the Arnowitt, Deser, and Misner formalism to 
type IX spaces in order to obtain the Einstein equa
tions for 

He writes the field equations in Hamiltonian form, 
introduces a new parameter instead of time, and dis
cusses the singularities of the model. Our approach 
is similar. It is based on ideas of WeylS and Godel,I 
designed for spatially homogeneous spaces, and we 
think it is simpler. Concerning the introduction of a 
new parameter instead of the time, we follow Sund
man,' as explained. 

2. PRELIMINARIES 

We consider the Lie group M, = R X Ga, where 
R is the real line and Gs is a 3-dimensional Lie group. 

w"(Xp) = ~"p, IX, (J ••• 0, 1,2,3, (2.3) 

and Xa and wa are invariant under the left translations 
of Gs . One knows that the left-invariant vector fields 
of M4 form a Lie algebra; that is, 

or 

[Xo, Xa] = 0, a = 1,2,3, [Xa, Xb] = Cla~, 
(2.4) 

where Ca
bC are the components of the structure con

stant tensor of the Lie algebra of Gs with respect to the 
base (2.1) and (2.2). The C's satisfy 

(2.6) 

and the Jacobi identities 

cafbCfcd + ca,eCfdb + cafrlCibr. = 0. (2.7) 

We use X" and w" to span the tensor algebra over M 4 , 

that is, we specify tensor fields by giving their com
ponents with respect to these bases. We introduce on 
M4 a connection by 

Vx"Xp = r,,/xy, (2.8) 

where r"py are the components of the connection with 
respect to (2.1). The curvature tensor field of the con
nection is given by 

R(U, V)Y= VuVvY- VvVu Y - V[U,V]Y, 

and from that we have 

R(Xy, X 6)Xp = VXyVX6XP - VX6VXyXP 

- V[Xy,X6]Xp = R"Py6X". 

Following the roles of the covariant differentiation, 
we compute that 

R"PY6 = r y,,"r6/ - r 6,,"ry / - r"p"C"Y6 
+ Xyr 6P" - X6ryP". (2.9) 

By requiring that the torsion tensor field 

T(X, y) = VxY - VyX - [X, Y] 

vanishes, that is, 

v x Xp - V x X" - [X"' Xp] = 0, 
" p 
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we obtain the following symmetry properties for the 
P's: 

(2.10) 

Using (2.10) we compute the components of the 
Ricci tensor field: 

Rpy = R~py~ 

= Ptp/P",/ - Ptp",tpPp/ + XpPtpytp - XtpPp/. 

(2.11) 

Introducing on M4 a metric by the requirement that 

that is, 

o( )] = y~P(t), rx, (3 = 0, 1, 2, 3, 
Yab t 

(2.12) 

ds2 = dt2 + YabCt)WaWb, a, b = 1, 2, 3, (2.13) 

M4 becomes a pseudo-Riemannian space. Equation 
(2.l3) excludes the possibility of light like t, but it is at 
our disposal to choose it timelike or spacelike. The 
metric (2.13) is left invariant under the transformations 
of G3 , but not invariant under M 4 • We call these 
metrics spatially homogeneous, meaning that there 
exist global 3-dimensional hypersurfaces generated by 
G3 • The name also suggests that these hypersurfaces 
are spacelike. We make some remarks regarding this 
point later. 

The requirement that the metric (2.13) should be 
covariant constant with respect to the connection 
(2.8), combined with the requirement (2.10), leads to 
the following equations: 

2g(V xa Xp , Xy) 

= Xag(Xp, Xy) + Xpg(Xy' Xa) - Xyg(Xa, Xp) 

+ g(Xp, [Xy, Xa]) + g(Xy' [Xa' Xp]) 

that is, 

where 

- g(Xa, [Xp' Xy]), 

faPy == fa/Yay 

= !(X,.ypy + Xpyya - XYYIlP) 

+ i(Cpya + CyaP - Ca/JY)' 

Using (2.14), we observe that 

XaY,,-p=O, a= 1,2,3, 

and introduce the notation 

Xof=j, 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

where f is a function over M 4 ; we can write (2.8) ex
plicitly with the y's as 

VXaXO = KabXb, VXaXb = -lYabXo + faboXo, 

where 
(2.18) 

and 
(2.19) 

(2.20) 

We now substitute (2.18) into (2.11) and find that 
the components of the Ricci tensor field are given by 

Roo = (K/), + K/K/, (2.21) 

R -KIf g KIf g-KICg KICg 
aO - g la - a uf = g fa - a gf' 

(2.22) 

Rab = lYab - K/Ylb + !Yab(K/) + R*ab' (2.23) 

where 

(2.24) 

is the Ricci tensor field of the group space G3 • These 
expressions have been calculated by Taub5 and 
Heckmann and Schiicking.6 Using the identity 

'!Y y"lb - (K b)' + 2K I K b 2at - a ai' (2.25) 

we can compute the Ricci scalar R, 

lR = (Ktf), + HK/K/ + (K/)2] + !R*, (2.26) 

where 
(2.27) 

is the Ricci scalar of the group spaces G3 • 

We consider Einstein's field equations with inco
herent matter written in the form 

for the spaces (2.13), where 

and 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

are the velocity vector field of the matter and the 
corresponding I-form, respectively. The normalization 
(2.29) chooses the t lines to be timelike. One has to 
make this choice for physical and not for mathematical 
reasons. Choosing, instead of (2.29), the normaliza
tion 

(2.32) 
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we could extend our future discussions to spacelike t 
lines. The corresponding solutions, however, would 
represent stationary world models, where the density 
of the matter is a function of the spacelike coordinate 
t only. One is not looking systematically for such 
models without having a special reason. We would 
like to remark, however, that there are interesting 
special solutions for spacelike t lines in the case of the 
Bianchi Type VIII group if we include a nonvanishing 
A term into our discussions. These solutions are given 
by the line elements 

ds2 = dt2 + (l - k)(w1 cos pt + w2 sin pt)2 

+ (1 + k)( -WI sin pt + w2 cos pt)2 

- (1 + 2k2)(W3)2, (2.33) 

where 

p = ( 1 - 2k2 )t, ! < Ikl ::;; .1, 
2(1 + 2k2) 2t 

k a real parameter, 
and 

ds2 = dt2 + t(l + S)(WI)2 + HI - s)(w2)2 - (W3)2, 

(2.34) 
where 

Is I < 1, s a real parameter, 
and 

and the continuity equations are 

uit - lYfgufuO = 0, 

(pu)' + pu(K/) + peg g,Uf = 0. 

For later references, we write (2.29) as 

(U)2 + Ufuf = 1. 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

Equation (2.38) is a consequence of (2.39) and (2.40). 
The components of the tensor of rotation are 

(2.42) 

that is, 

(2.43) 

3. VARIATIONAL PRINCIPLE FOR VACUUM 

Since the vacuum case already contains some essen
tial features of our problem, for the sake of simplicity 
we start with this case. We write the vacuum field 
equations using (2.21), (2.22), (2.23), (2.25), and (2.26) 
in the following form: 

Roo - !R = !{K/K/ - (K/)2 - R*) = 0, (3.1) 

(3.2) 

Rab 
- !Rba

b = (Kab
)' - (K/)tJa

b + (K/)Ka
b dw l = w2 A w3 , dw2 = -w3 A wI, 

dw3 = -WI 1\ w2, (2.35) _ HK/K/ + (K/)2]ba
b 

or in a special coordinate system 

WI = cos x3 dx l = e",l sin x3 dx2 , 
1 

w 2 = -sin x3 dx l + e'" cos x3 dx2
, (2.36) 

1 

w3 = e'" dx 2 + dx3
• 

Equations (2.33) and (2.24) are the Class II and 
Class III universes discovered by the author.7 Equation 
(2.34) contains the famous Godel cosmos8 as a special 
case for s = O. The speciality of (2.33) and (2.34) is 
that they are invariant under a 4-dimensional Lie 
group containing (2.35) as an invariant subgroup. As 
a consequence of that, the density of the matter is 
constant. 

Coming back to our main line of reasoning, we list 
a few formulas for later use. The components of the 
tensor fields V xU and V xft( Y) are 

u":p = X pU" + r py"u Y and u,,:p = X pu" - r p,/uy , 

(2.37) 

as one easily sees following the roles of the covariant 
differentiation. All our subsequent formulas are con
sequences of (2.37). The equations of geodesic motion 

+ R*ab 
- lR*tJa

b = O. (3.3) 

These are Taub's equations5 written in a slightly 
different form. Weyl writes in his famous book (Ref. 
3, p. 251) while calculating the static spherically 
symmetric field for vacuum: "Wir nutzen das Wir
kungsprinzip zunachst nur teilweise aus, indem wir 
annehmen, dass bei der Variation die zugrunde gelegte 
Normalform des ds2 nicht zerstort wird; ... bei sol
cher eingeschrankten Verwendung geniigt es, das 
Wirkungsintegral fUr jene Normalform zu berechnen." 
These ideas apply in our case word for word. 

The normal form for ds2 is given in our case by 
(2.13). The action integral for this normal form is 

f iRgt dx = r)ROyt dt fa WI A w 2 A w3
, (3.4) 

where !R is given by (2.26) and 

(3.5) 

The first integral in (3.4) is extended between two 
fixed values of t, the second one over Ga if compact, 
or over a part of it if otherwise, giving a finite constant 
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C which we normalize later. The action integral is, 
therefore, 

J = c yi{(K/)" + HK/K/ + (K/)2] + !R*} dt. itl 

It 
(3.6) 

Using the identity 
(3.7) 

and integrating by parts and normalizing c = 2, we 
have 

But varying (3.8) with respect to the y's is precisely the 
requirement to consider variations, which leaves the 
normal form (2.13) unchanged. 

We now prove that 
(3.9) 

gives the six field equations (3.3) as Euler-Lagrange 
equations. The proof is a straightforward calculation. 
We assume, following Siegel,' that our variational 
problem has a solution, and we consider a family of 
functions 

Yab(OC;t), -1<oc<l, (3.10) 
such that 

(3.11) 

is the solution of our variational problem. We con
struct with these functions the integral 

J(oc) = rtsL[Yab(OC; t), Yaioc; t)] dt, -1 < oc < 1. 
Jtl 

(3.12) 

As a consequence of our assumption, J(oc) assumes its 
extremum at oc = 0 and, therefore, 

J'I,,=o == dJ(oc) I = 0 
doc ,,=0 

is equivalent to (3.9). 
Carrying out our calculations, we see that 

(3.13) 

Yab(OC; t1) = aab = const, Yab(OC; t2) = bab = const, 
(3.14) 

We know that we do not have to compute (R*aS. In 
order to facilitate the calculations, we compute the 
expressions 

(ytQ)' = _yfay'abybQ, 

(yi)' = fyiy'abyab, 

(K/Y = !y,tayaQ - K/ybQy'ab' 

(K/)' = !y,abyab - yatK/y'ab. 

Substituting into (3.16), we obtain 

- (\i[2yatK/KQb _ 2yafK/(K/) 
JIt 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

- !yab(K/K/ _ K/)2 + R*ab - !yabR*]y'ab dt. 
(3.21) 

We now evaluate the first integral in (3.21). Integrating 
by parts and using (3.7) and (3.14), we obtain 

= _ rt~i[yai(K/r _ yab(K/r _ 2yaiK/K,/ Jh 
+ 3yaiK/(K/) - yab(K/)2]Y'ab dt. (3.22) 

Substituting (3.22) into (3.21), we obtain 

ddJ = _ (llyi[yaf(K/f _ yab(K/r + yatK/(K/) 
oc Jh 

_ !yab[K/K/ + (K/)2] 

+ R*ab _ !R*yab]Y'ab dt. (3.23) 

Substituting oc = 0 and using (3.13) and (3.15), we find 
that 

_yiyla{(Kab)" - (K/)"dab + Kab(K/) 

-t[KlK/ + (K/)2] + R*ab - !R*dab} = 0, (3.24) 

and a glance at (3.3) proves our assertion. The 
Lagrangian of the vacuum problem is, therefore, 

L = yi[K/ K,/ - (K/)2 + R*]. (3.25) 

and that 
y'ab(O; t) is arbitrary. 

In order to obtain the Euler-Lagrange equations in 
(3.15) Hamiltonian form, we introduce 

The formula for dJ/doc reads as 

dJ = (tl(y)h[K/K/ _ (K/)2 + R*] dt 
doc J tl 

(3.16) 

Pab = OL/OYab 

and define the Hamiltonian function by 

H = (OL/OYab)Yab - L. 

(3.26) 

(3.27) 

Since L is homogeneous of degree two in Yab, we find 
that the Hamiltonian function is given by 

H = yi[K/K/ - (K/)2 - R*], (3.28) 
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and the Euler-Lagrange equations in Hamiltonian 
form are 

Yab = oHloPab , Fab = - oHloYab' (3.29) 

Since H does not depend explicitly on t, (3.28) has a 
constant value h for a solution of (3.29), that is, 

H = y![Kl K/ - (K/)2 - R*] = h (3.30) 

is the energy integral. A glance at (3.1) shows that 

h = 0. (3.31) 

This is the seventh field equation. Equations (3.2) are 
integrals of the other equations as Taub proves in Ref. 
5. Therefore, the Taub equations can be written as 

t5 (tsY![K/K/ - (K/)2 + R*] dt = 0, (3.32) Jh 
K/Cffla - K/Cfl

flf = 0, (3.33) 

H = r![K/K/ - (K/)2 - R*] = 0. (3.34) 

4. VARIATIONAL PRINCIPLE FOR 
INCOHERENT MATTER 

We now consider the Einstein field equations with 
incoherent matter. Using (2.21), (2.22), (2.23), (2.25), 
and (2.26), we find that 

Roo - iR = [K/K/ - (K/)2 - R*] = -Kp(U)2, 

(4.1) 

Rao = KlC!ga - K/C",,! = -KPUUa, (4.2) 

Rab 
- iRt5a

b = (Kabr - (K/rt5ab + (K/)Kab 

- t[Kl K/ + (K/)2]t5ab , 

(4.3) 

R*ab - iR*t5a
b = -Kpuaub. 

These are the Heckmann-Schlicking equations6 written 
in a slightly different form. We have, in addition, 

(4.4) 

UUa = C' "au"uf , (4.5) 

(pur + (pu)[K/ + (C"flfu!)/(l - uaif)!] = O. (4.6) 

Our problem is now to find the Lagrangian for the 
Heckmann-Schlicking equations. Examining (4.6), we 
discover that the term 

contains the vector 
(4.7) 

(4.8) 

obtained by contraction over two indices from the 
structure constant tensor of G3 • The term (4.7) vanishes 
if (4.8) vanishes. It is natural, therefore, to divide the 
3-dimensional Lie groups, their Lie algebras, that is, 

into two different classes according to the vanishing or 
nonvanishing of the vector (4.8). These classes are the 
following: 

Class I: Cflfla = 0, a = 1,2,3, (4.9) 

Class II: Cflfla r!: 0, a = 1,2,3. (4.10) 

Class I contains the groups of the following Bianchi 
types: 

Class I: Type I, II, VIII, and IX. (4.11) 

The structure of the Class II algebras is given by 

[Xl> X 2] = 0, [XA , X 3 ] = CBAXB , 

A, B, ... = 1,2, (4.12) 
or, alternatively, 

do/ = -C1AWA A w3
, dw 2 = -C2

AWA A w3
, 

dw3 = 0. (4.13) 

Therefore, the Class II algebras are given by the 
different normal forms of the 2 X 2 real matrices 
CB A with nonvanishing trace. These are9 

Class II: Type Ill, IV, V, VI, VII. (4.14) 

We write our variational principle fot the Class I 
groups only. We can integrate (4.6) in this case to 

pu = Ilr! ~ 0, (4.15) 

where I is a constant. Writing (4.4) as 

U = (I - uaua)!, (4.16) 

we obtain from (4.15) 

p = 1/["1(1 - uaif)]! (4.17) 
and 

(4.18) 

We now claim that the Lagrangian of the Heckmann
Schlicking equations for Class I groups is given by 

L = r![K/K/ - (K/)2 + R*] - 2KI(l - uaif)!, 

(4.19) 
and the Hamiltonian is 

H = r![K/ K/ - (K/? - R*] + 2K/(1 - uaif)!. 

(4.20) 

We obtain the Heckmann-Schlicking equations as 

t5 rh 
{Y![K/K/ - (K/)2 + R*] Jh 

- 2Kl(1 - UfUf)!} dt = 0, (4.21) 

K/,Cf"a = -K(I/y!)ua, a = 1,2,3, (4.22) 

H = Y![K/K/ - (K/)2 - R*] 

+ 2Kl(1 - UfUf)! = h = 0, (4.23) 
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and 

. CfgaUflUf 
Ua = t' a = 1,2,3, C

g
ga = O!. (4.24) 

(1 - UfUf) 

To prove this assertion, we compute the derivative 
dFldrx of 

F(rt.) = -21el (tl(l - uauai dt for rt. = O. J tl 
We imagine that the functions Yab(cx.; t) are substituted 
for Yab[t]: 

dF its uaub 
- = -lei y'ab dt. 
drt. h (1 - UfUI)t 

(4.25) 

Using our earlier results, we see that 

- (yi)[Rab - tRyab] - [IeIIO - UfUf)t]UaUb = O. 

(4.26) 

Dividing by _yt and using (4.17), we find that (4.26) 
is equivalent to (4.3). It follows, exactly as before, that 
the Hamiltonian function (4.20) has to be constant for 
the solutions. Dividing (4.20) by 2yl, using (4.18) and 
(4.1), we see that the energy constant has to be zero. 
Equations (4.22) and (4.24) are consistent with the 
other equations (see Ref. 6). 

5. SOME REMARKS 

Examining Eqs. (3.32)-(3.34), one sees that the 
variational principle has its full power in the vacuum 
case. One would treat the vacuum problem as a 
mechanical problem defined by the Lagrangian func
tion 

L = yt[Kl K/ - (K/)2 + R*], 

and reduce it with the help of the integrals 

(5.1) 

K/Cfga - K/Cflgf = 0, a = 1,2,3. (5.2) 

In case of dust, the situation is different. The Class I 
groups are preferred because (4.6) is then integrable. 
Furthermore, the power of (4.21)-(4.23) is limited by 
(4.24) in general. We see in the last section of this 
paper that, in the case of 

ds2 = dt2 + A(WI )2 + B(W2)2 + C(W3)2 + 2Dw2W3 , 

(5.3) 

(4.24) is trivial and the method retains its full power 
and simplicity. In order to obtain the general Type 
VIII and IX models (the Type I and II models do not 
have rotation), one develops the above formulas for 
the line element 

ds2 = (dt + p,W')2 + Yab(t)WaWb
, 

a, b,l, ... = 1,2,3, (5.4) 
with 

Pa = 0, a = 1,2,3, (5.5) 

which replaces (4.24) as the geodesic condition. The 
expressions corresponding to (4.21)-(4.23) are natu
rally more involved. 

Another remark refers to the Bianchi Type II group 
given by 

dw l = _w2 A w3
, dw2 = 0, dw3 = O. (5.6) 

We claim that there is no rotating solution for (5.6). 
The proof is trivial. From (4.22), we obtain 

K,oCfgl = 0 = Ie(llyt)ul , 

that is, 
(5.7) 

Due to the special form of the structure constant 
tensor, it follows that 

CfabUf == ClabUI = O. (5.8) 

Using (4.24) and (5.8), one sees that 

Ua = 0, a = 1, 2, 3. (5.9) 

Since the components of the rotation tensor are given 
by 

[see (2.43)], we obtain 

wab = 0, WaD = 0, (5.10) 

as claimed. Rotating solution for Class I groups is, 
therefore, possible only with Bianchi Type VIII and 
IX groups. We now go over to more serious applica
tions. 

6. A CLASS OF SOLUTIONS 

We consider the line element 

ds2 = dt2 - (AWl)2 - (BW2)2 - (BW3)2 (6.1) 

with each of the four different Class I groups; that is, 
with 

or 

or 

or 

dwl = 0, dw2 = 0, dw3 = 0, (6.2) 

dw l = w2 A w3 , dw2 = _w3 A WI, 

dw3 = _WI A w2, 

dw l = -w2 A w3 , dw2 = _w3 A WI, 

dw3 = -WI A w2 , 

(6.4) 

(6.5) 

respectively. It is not known by me whether or not the 
cases with (6.3) and (6.4) are in the literature, but (6.1) 
with (6.5) has been discussed. With vacuum this is the 
Taub solution and with incoherent matter it is dis
cussed by Behr.lo The case (6.1) with (6.2) is fully 
integrated by Schiicking. Our aim is to compute the 
Hamiltonian function of these cases and write the field 
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equations in Hamiltonian form and regularize these 
equations, in the way that Sundman regularized the 3-
body problem of the celestial mechanics. The idea is as 
follows: One introduces by a suitable transformation 

t = t( 1') or l' = T(t), 

a new independent variable l' such that our field 
equations, as a system of first order ordinary differ
ential equations with respect to 1', should be analytic. 
A system 

X'K = !K(X!), K, I, ... = 1,2,' .. ,n, 

is called analytic if the functions!K as functions of x! 
are analytic. Having done that successfully, one con
siders the problem solved since everything else can be 
done by computers and by the application of the 
qualitative theory of differential equations.ll 

To demonstrate all of this by an example, we pro
ceed with our problem. From (4.22), it follows that 

U = 1, ua = 0, a = I, 2, 3, (6.6) 

and Eqs. (4.24) are trivially satisfied. The Lagrangian 
and Hamiltonian functions read as 

L = -4ABB - 2AB2 + AB2R* - 2Kl (6.7) 
and 

H = -4ABB - 2AB2 - AB2R* + 2KI, (6.8) 

respectively, where the relevant Ricci scalars are 

for Eq. (6.2) 
R* = 0, (6.9) 

for Eq. (6.3) 
R* = -A 2/2B4 , (6.10) 

for Eq. (6.4) 
R* = - (A2 + 4B2)/2B4, (6.11) 

for Eq. (6.5) 
R* = - (A2 - 4B2)/2B4. (6.12) 

We treat the case (6.12), that is, (6.1) with (6.5). The 
other cases can be obtained by making suitable 
changes. 

The Hamiltonian function for (6.1) with (6.5) is 
given by 

H = -4ABB - 2AB2 + (A3/2B2) - 2A + 2KI. 

(6.13) 

We write the field equations in Hamiltonian form, 
that is, we define 

P = ~~ = -4BB, Q = ~~ = -4AB - 4AB. 

(6.14) 

Solving (6.14) for A and B, we obtain 

A = (AP/4B2) - (Q/4B) , B = -P/4B. (6.15) 

Substituting into (6.13), we obtain 

H = (AP2/8B2) - (PQ/4B) + (A3/2B2) 

- 2A + 2KI, (6.16) 

and the field equations in Hamiltonian form are 

A = aH/ap, B = aH/aQ, P = -aH/aA, 
Q = -aH/aB. (6.17) 

The firsttwo equations are (6.15), and the second two 
are given by 

P = _(P2/8B2) - (3A2/2B2) + 2, 

Q = (AP2/4B3) - (PQ/4B2) + A3/B3. (6.18) 

The energy integral reads as 

H == (AP2/8B2) - (PQ/4B) + (A3/2B2) 

- 2A + 2KI = O. (6.19) 

The form of (6.15) and (6.18) strongly suggests the 
introduction of the new variables 

x = A/B, Y =P/B, z = Q/B, (6.20) 
or 

A =xB, P=yB, Q = zB. (6.21) 

Then, the equations read as 

iB = ixy - tz, (6.22) 

BB = -tyB, (6.23) 

yB = ly2 - j-x2 + 2, (6.24) 

iB = x(x2 + ty2), (6.25) 
and 

B[lxy2 - tyz + ix3 - 2x] + 2KI = O. (6.26) 

Introducing a new independent variable l' by 

df ==f' = fB, 
dT 

our equations become 

x' = ixy - tz, 

B' = -tyB, 

y' = ly2 - jx2 + 2, 

z' = x(x2 + ty2), 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

where Eq. (6.29) is a consequence of (6.26), (6.28), 
(6.30), and (6.31). A more elegant way to do this 
would be to reverse the order of the operations. One 
should carry out the time transformation first with 
the help of a canonical transformation (see Ref. 4, 
35). It is then obvious that one retains an energy 
integral and, therefore, one can leave (6.29) aside. 
And, as a second step, one would go over to the 
ratios. 
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We want to give our method for solving the prob
lem: We integrate the analytic system 

x' = ixy - iz, y' = ly2 - %X2 + 2, 

z' = x(x2 + iy2); (6.32) 

we compute B from (6.26) 

B = 4Kl/( _ixy2 + iyz - XS + 4x); (6.33) 

we compute A from 
A = xB. (6.34) 

The cosmic time t is computed from 

t= d~ iT 4Kl 

TO -ixi + iYz - x3 + 4x 
(6.35) 

This method solves our problem in a way similar to 
Sundman's solution of the 3-body problem of the 
celestial mechanics. 

The best way of visualizing (6.32) is to go into a 3-
dimensional Euclidean space £s with the coordinates 
x, y, and z. The right-hand sides of (6.32) are the 
components of an analytic vector field V over £s. 
V is nowhere singular; that is, the components of V 
vanish nowhere on £s simultaneously. 

Through any point Po = (xo, Yo, zo) of £s, one can 
draw with the help of a computer one and only one 
integral curve C of (6.32). We then find, corresponding 
to each such line, a universe following the rest of our 
method. Singularities of the universe occur, for ex
ample, where C goes through the yz plane; that is, 
x = 0 since the geometrical meaning of x is the ratio 
of the axes of the universe. To find the answers to the 
arising questions. one should study Nemytskii and 
Stepanov.ll Some numerical calculations will be made 
in a later paper. As a curiosity, we compute the 
Friedmann cosmos. Assuming 

x = 1, 

then Eqs. (6.32) reduce to 

z = 2y, 

which integrate to 

y = 2tgHT - TO). 

Then, (6.33) reads 

and 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

We now list the equations for the other cases: 

(6.1) with (6.2), 

x' = ixy - iz, y' = 'b2
, Z' = ixy2, 

B = 16KIJ[y(2z - xy)], A = xB, t = f'B dl1; 
1.0 

(6.1) with (6.3), 
(6.42) 

t =fTB dl1; 
TO 

(6.1) with (6.4), 
(6.43) 

x' = ixy - !z, y' = ly2 - %X2 - 2, 

z' = x(x2 + ii), 
B = ___ --.:4.;..:.K:.-l ---, A = xB, (6.44) 

-ixl + !yz - x3 
- 4x 

t = f'B dl1. 
1.0 

As a curiosity, we remark that (6.42) can be integrated 
in closed form: 

IX 8 
x = + {3, y = -- , 

3(TO-T)S TO-T 

Z =-- +4{3, 4 [IX ] 
TO - T 3(To - T)S 

(6.45) 

Kl 2 Kl ( )3 B = -(TO - T), A = xB, t = - - TO - T , 
12{3 36{3 

where TO, IX, and {3 are constants of integration. The 
corresponding solution is a Schiicking solution. 

7. THE ROTATING UNIVERSES 

There is a challenging problem in the relativistic 
cosmology: Consider the line element 

ds2 = dt 2 + A(W1)2 + B(W2)2 + C(WS)2 

+ 2Dw2wS , (7.1) 

where A, B, C, and D are functions of t only and the 
differential forms £01, ro2 , and £03 satisfy either 

dw1 = £02 A £03, dw2 = _£03 A WI, 

dwS = -£01 A £02 (7.2) 
or 

dw1 = -w2 A wS, dw2 = _ws A wI, 

dw3 = _£01 A w2• (7.3) 

We find A, B, C, and D such that (7.1) satisfies Ein
stein's field equations with incoherent matter and such 
that the expansion and the rotation of the matter do 
not vanish. 
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This problem is challenging not because the astron
omers discovered the rotation of the universe, but 
because (7.1) with (7.3) probably gives the simplest 
finite model where the "Weltsubstrat" has the most 
general motion, namely, translation, rotation, expan
sion, and shear. For the sake of definiteness, we 
restrict ourselves to (7.1) with (7.3). We see that 

r •• = G ~ ~), 
1 

° ° 
"aD = C D 

(7.4) 
BC - D2 BC - D-

, 

D B 

BC - D2 BC - D2 

and, therefore, 

° ° 
KaD = 

BC- DD BD-BD (7.5) 
2(BC - D2) 2(BC - D2) 

, 

CD - CD BC - DD 

2(BC - D2) 2(BC - D2) 

where a is the row and b is the column index. From 
(4'.22) and (7.5), it follows that 

(B - C)D - (B - C)D Z = -1(-U1 , 

2(BC - D2) y! 

U2 = 0, Ua = 0, 
and from (4.24), we obtain 

Therefore, 

(7.6) 

(7.7) 

Ua = [(1- :2t v,o,o} (7.8) 

where V is a constant. One might mention that the 
only nonvanishing component of the rotation tensor 
[see (2.43)] is given by 

(7.9) 

and the length of the vector of rotation W defined by 

is given by 
Wa - 1'Y)apylJ,., U 

- 2'/ ""Py lJ (7.10) 

(7.11) 
We write (7.6) for later references in the following 
form: 

A[(B - C)D - (B - C)D] = 21(IVy!, (7.12) 

where 
y = IA(BC - D2)1. (7.13) 

One easily computes that 

L = 1(_ A(BC - D
2
)' _ A(BC - D2) + R*)< 

y 2A(BC - D2) 2A(BC - D2) 

- 21(Z( 1 - :2t (7.14) 

The Ricci scalar of the group space is given by 

R* = 2(A2 + B2 + C2
) - (A + B + C)2 + 4D2 

2A(BC - D2) 
(7.15) 

There are two problems: (a) reduction of the me
chanical system, defined by the Lagrangian function 
(7.14), with the help of the first integral (7.12); (b) 
regularization of the reduced system. 

A. Reduction of the Mechanical System 

The reduction of a system is a standard problem in 
the mechanics, and we found its solution following 
standard methods. Therefore, we give the results only. 
Consider the functions x, y, z, and w defined by 

x = -A, Y = -HB + C + [4D2 + (B - C)2]1}, 

z = -HB + C - [4D2 + (B - C)2]1}, (7.16) 

w = arctan (B - C/2D), 

or the inverse transformations 

A = -x, B = !(y + z) - !(y - z) sin w, 

C = Hy + z) + Hy - z) sin w, (7.17) 

D = -!(y - z) cos w. 

We show that (7.17) reduces our system defined by 
(7.14) and (7.12). We first compute the new form of 
(7.12). One sees that 

yz = BC - D2; (7.18) 

therefore, xyz = -A(BC - D2) and 

yl = (xyz)l. (7.19) 

One easily computes that 

A[(B - C)D - (B - C)] = !x(y - Z)2IV ; 

therefore, (7.12) reads as 

. 4KlV ( )! 
w = x(y _ Z)2 xyz . (7.20) 

It does not contain w! We now compute the Lagran
gian function (7.14) in the new variables and find that 
it does not contain w. Using (7.18), we see that 
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A straightforward calculation shows that 

B· A D' 2 • • (Y - Z)2( ')2 • • 4K212y2 . 
L- - = yz - -- w = yz - 2YZ, 

z x(y - z) 

therefore, 

Another trivial calculation shows that 

* 2(x2 + l + Z2) - (x + y + Z)2 
R = - (7.23) 

2xyz 

From (7.14), (7.19), (7.21), (7.22), and (7.23) it then 
follows that 

t(1 x j 1 j tit x L = -(xyz) - - - + - - - + - - -
2xy 2yz 2zx 

2(x2 + l + Z2) - (x + y + Z)2 2K212y2 ) 
+ -

2xyz x(y - Z)2 

( 
Y2)t 

- 2Kl 1 + -; . (7.24) 

The Lagrangian function has been first computed by 
GodeJ.1 (Also, see Ref. 12.) Defining 

oL oL oL 
p = ox' q = oj' r = ot ' (7.25) 

we compute the Hamiltonian function 

1 
H = --t {2[(xp) + (yq)2 + (zr)2] 

2(xyz) 

- (xp + yq + zr)2 

+ 2(x2 + l + Z2) - (x + y + Z)2} 

_ 2K212y2 (xyz)t + 2Kl (1 + Y2)!. (7.26) 
x(y - Z)2 x 

The field equations are 

. oH . oH . oH 
x = op' y = oq , Z=-, or 

. oH. oH 
P = - ox' q = - oy , 

. oH 
r= --, oz (7.27) 

where H is given by (7.26). 
The method for finding a rotating universe is as 

follows: Find a solution of (7.27) for which 

H=O. (7.28) 

Then we obtain w from (7.20) by integration. Com
pute the components of the metric from (7.17). Ex
amining the form of (7.17), one sees that seeking a 

solution via the ansatz 

(

a 0 

Yab = 0 b + c sin IX 

o c cos IX 

c c~s IX ), 

b - c sin IX 

where a, b, c, and IX are unknown functions of time, 
is a naive but well-founded approach. We now con
sider our second problem. 

B. Regularization of the Reduced System 

We formulate this problem as follows: Introduce a 
new independent variable by a suitable transformation 
of t such that (7.27) is transformed into an analytic 
system. Examining (7.26), one had the strong impres
sion that the problem of the rotating universe can be 
solved by regularization. One sees several ways and 
one has several suggestions; the strongest one is 
probably to study Siegel's book.4 

Note added in proof" I am indebted to G. F. R. Ellis 
for bringing to my attention the following two papers, 

G. F. R. Ellis and M. A. H. MacCallum, Commun. 
Math. Phys. 12, 108 (1969), 

S. Hawking, Monthly Notices Roy. Astron. Soc. 
142, 129 (1969), 

and for the remark that there are two additional 
groups of Class I, namely,a special Type VI and a 
special Type VII group characterized by 

dwl = w3 A wI, dw2 = w2 A w3 , dw3 = 0 
and 

dwl = w2 A w3 , dw2 = w3 A WI, dw3 = 0, 

respectively. 
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I construct on the Lie group R x H3 two different families of left-invariant metrics which satisfy the 
Einstein field equations with incoherent matter, calling the Riemannian spaces M 4 , obtained this way, 
Class II and Class III universes. We discuss the geometry of these universes. 

1. INTRODUCTION 

Schticking and I discussed recentlyl the physical 
and the geometrical properties of the finite rotating 
universe, the Class I solution, according to the 
terminology introduced by Farnsworth and Kerr.2 
The Class I solution is a family of left-invariant 
metrics on the Lie group R X S3 satisfying Einstein's 
field equations with dust. 

In this paper, I discuss in a similar manner the Class 
II and Class III universes, which are two different 
families of metrics imposed on the same manifold, 
namely, one the Lie group R x Jl3. The Class IV 
universes given in Ref. 3 receive their treatment in a 
subsequent paper. The four classes exhaust all the 
possibilities of homogeneous dust solutions of 
Einstein's field equations as Refs. 2 and 3 show. 

In order to keep this paper readable independently 
of Ref. 1, I repeat some general remarks made there 
and suggest that the reader glance at Ref. 1 too. 

2. USEFUL THEOREMS AND FORMULAS 

As a technical introduction we list some well
known theorems and formulas for later use.' 

Given a 4-dimensional manifold M" we denote the 
vector fields on M, by X, Y, Z, ... and the I-forms 
by w, 0, q" •••• M, and the tensor fields can be 
regarded as analytic. The exterior derivative of w. is 
given by 

dw(X, Y) = !{Xw(Y) - Yw(X) - w([X, Y)}. (2.1) 

We denote the basis for the vector fields by 

(2.2) 

and that for the I-forms by 

(2.3) 

where 

The connection form is defined by 

(2.6) 

The covariant differentiation V x is a derivation of 
the algebra T(M,) of the tensor fields such that it 
preserves the type of the tensor field and commutes 
with all contractions. The covariant derivative of a 
vector field Y is given by 

Vx(Y) = ~a(Xa'f}c + 'f}bfabC)Xc' (2.7) 

where 
X = ~aXa and Y = 'YjbXb. (2.8) 

The covarient derivative of a I-form is 

U(X, Y) = (V xw)(Y) = XW(Y) - w(V x(Y». (2.9) 

The components of the tensor field U, defined above, 
are given by 

Uab = U(Xa' Xb) = XaUb - f abC Uc, (2.10) 

where 
(2.11) 

The Lie derivative of Y with respect to X is defined by 

Lx(Y) = Vx(Y) - Vy(X). (2.12) 

One defines the torsion tensor field by 

T(X, Y) = V x(Y) - Vy(X) - [X, Y) (2.13) 

and the curvature tensor field by 

R(X, Y)Z = VxVy(Z) - VyVx(Z) - V[X,Yl(Z)' 

(2.14) 

The components of T and Rare 

T(Xb' Xc) = TabcXa, R(Xe, Xa)Xb = RabeaXa' 
(2.15) 

(2.4) Cartan's structure equations are 

We introduce an affine connection on M, by 

V xa(Xb) = fabc Xc' (2.5) 

2871 

dwa = -wap A wP + lTapq wP A Wll, (2.16) 
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We assume henceforth that and, therefore, 

T = 0, that is, Tab. = 0. (2.18) R\.a = r./ ra/ - ra/ rc/ - rfba C
'
•a 

We define the functions 

cabC = -CaCb ' a, b, c, ... = 0, 1,2,3, (2.19) 

by the equations 

(2.20) 

then it follows, by using (2.1) and (2.4), that 

dwa = -!Caj)q wj) /I. wq (2.21) 

and, from (2.16), (2.18) and (2.6), that 

dwa = -Hr j)qa - rqj) a)wj) /I. wq. (2.22) 

Therefore 
cabO = r bCa - rCba. (2.23) 

We introduce a pseudo-Riemannian metric on M4 
by the nondegenerate tensor field 

g(X, Y) = g( y, X). (2.24) 

It is well known that on a pseudo-Riemannian mani
fold there exists one and only one affine connection 
such that 

T = ° and V zg = 0, (2.25) 
that is, 

V x(Y) - Vy(X) = [X, YJ (2.26) 
and 

2g(V x( Y). Z) = Xg( Y, Z) + Yg(Z, X) - Zg(X, Y) 

+ g(Y, [Z, X]) + g(Z, [X, YJ) 

- g(X, [Y, ZJ). (2.27) 
Suppose that 

g(Xa, Xb) = gab = diag (+1, -1, -1, -1), (2.28) 

in other words, 
(2.29) 

It follows then that 

2g(V x.(Xb) , Xc) = g(Xb' [Xc, XaD + g(Xc, [Xa, XbD 

- g(Xa, [Xb' XcD (2.30) 

and, using the notation 

r abc = r ab a gac' Cabc = gaacabc' 

we obtain 
r abc = H Cbca + CCab - Cabc)' 

Using (2.1) and (2.17), we have 

dwab(Xc, Xa) 

= !(XCWab(Xa) - Xawab(Xc) - Wab([XC' Xa]) 

(2.31) 

(2.32) 

= ...,..!(waj)(XC)Wj)b(Xa) - waj)(Xa)Wj)b(XC» + !Rabca , 

+ Xcraba - Xarcba. (2.33) 

It should be noted that the power of the formalism 
developed above lies in the freedom of choice for the 
basis Xo, Xl, X2 , Xs of the vector fields or wO, WI, 

w 2 , WS of the I-forms, respectively [with the proviso 
(2.4)]. In the following we specialize our manifold 
M4 and make a definite choice for the case most 
adequate for our problem. The steps are as follows: 
Suppose that the functions cabc are constants and 
satisfy the Jacobi identities. Then our pseudo
Riemannian manifold M, is a Lie group. Suppose that 
M, is simply connected. Then it is the universal 
covering group, uniquely defined by the Lie algebra 
(2.20) of the invariant vector fields Xo, Xl' X2 , Xs. 
The corresponding left-invariant I-forms wO, wt, w2 , 

W S satisfy 
dwa = -!cabCwb /I. WC (2.34) 

and characterize M, equivalently. 
We choose now, for the base of vector fields or of 

the I-forms on M 4 , the invariant vector fields Xo, Xl' 
X2 , Xs or invariant I-forms WO, WI, W2 , WS, respec
tively. 

The requirement (2.28), that the XO, Xl, X2 , Xs 
should be pseudo-orthonormal, defines the left
invariant metric. Or, equivalently, 

g = gabwawb. (2.35) 

Generally speaking, this choice of base and the 
formalism sketched above allows one to discuss many 
properties of the group or Riemannian space M, 
from a simple knowledge of the constants of structure 
cabC ' We do not have to specialize the coordinates and 
can perform many calculations without an explicit 
knowledge of the left-invariant forms. The most 
important formal consequence of the above choice 
is that the corresponding r's are constants [see (2.32)]. 
But, above all in importance, our results will be 
global results since the theory of Lie groups' assures 
us that these vector fields and forms exist globally. 
Since the r's are constants, (2.33) reduces to 

RQbca = rc/ rd/ - ra/ rc/ - r'bQ Clca. (2.36) 

The components of the Ricci tensor field are 

RbC = RfbC! = r fb
g r g / + cgfg rb/' (2.37) 

The field equations are 

Gab + Agab = Rab - lRgab + Agab = -KPUaUb, 
uaua = 1, (2.38) 

where 
(2.39) 
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After a trivial computation, we obtain 

Rab = -KpUaUb + (A + Kp/2)gab' uaua = 1. (2.40) 

3. THE GROUP 

Consider a 4-dimensional vector space over the 
field of real numbers. We denote the base vectors by 

(3.1) 

and convert this vector space into an algebra by 
introducing the noncommutative multiplication by 
the following requirements: 

eoe/< = e/<eo = e/<, ft = 0, 1,2,3, 

e1e1 = -eo, e2e2 = eo, eaea = eo, 

e2es = -eSe2 = -e1, eae1 = -e1eS = e2 , 

e1e2 = -e2e1 = es · 

(3.2) 

tangential to lP and propagate them by the left 
translations over H8 generating the three independent 
left-invariant vector fields mentioned above. Since 

(3.9) 

we obtain 
(3.10) 

as the vectors at a, corresponding to ei at eo. Defining 
the components e/, of Wi by 

(3.11) 

we obtain, using (3.10), (2.3),and (3.3), the following 
expressions: 

e1fJ = (-al, aO, as, _a2), el = (a2, a8, aD, a~), 

el = (a3, _a2, -a\ a~. (3.12) 

We call this algebra GOdel's quaternion algebra and Therefore, the invariant vector fields 
the vectors 

(3.13) 
GOdel quaternions.6 

Introducing the conjugate quaternion a* by are given by 

we have from (3.2) that 

aa* = [(aO)2 + (a1)2 - (a2)2 - (a3)2]eo 
= (aO)2 + (a1)2 _ (a2)2 _ (as)2. (3.5) 

We identified here the subfield aOeo with the real field. 
Consider now the normed GOde1 quaternions, that 

is, quaternions a satisfying the condition 

They obviously form a group with respect to the 
quaternion multiplication. Identifying the vectors 
(3.1) with the unit vectors along the axes in a 4-
dimensional pseudo-Euclidean space of signature 

+ + --, (3.7) 

or Euclidean space of coordinates aO, ai, a2, as, 
denoted by E4, we find that (3.6) is the equation of the 
sphere or hyperboloid lP, respectively. The manifold 
J[3 with the quaternion multiplication (3.2) is a Lie 
group, which we denote also by Jl3. 

We want to obtain the left-invariant vector fields 
of Jl3 in the coordinate system induced by the 
Caltesian coordinates of the imbedding E4. We 
consider, therefore, in the point eo on Jl3 the three 
vectors 

(3.8) 

1 a ° a a a 2 a E1 = -a - + a - + a - - a -, 
aao aal aa2 aa8 

2 a a a ° a 1 a (14) 
E2 = a aao + a aa1 + a aa2 + a aaa' 3. 

3 a 2 a 1 a 2 a a --a --a -+a-. 
aao aa1 aa2 aas 

Computing the commutator relations, we obtain 

[E2' Ea] = -2E1' [Ea, El ] = 2E2 , [EI' E2] = 2E3 • 

(3.15) 

Introducing for later use new vector fields 

Xo = -tEl' Xl = -tEa, X2 = -tE2' (3.16) 

we obtain 

[Xl>X2] = -Xo, [X2 ,XO] = Xl, [Xo, Xl] = X2 • 

(3.17) 

If we represent the unit quaternions 

by the matrices 

respectively, every Godel quaternion 

(3.19) 
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goes over to the matrix 

A-( aO+a
3 

a
l
+a

2
) 

-al + a 2 a O - a 3 
(3.20) 

with 
(3.21) 

and the quaternion muliplication goes over to the 
matrix multiplication. This expresses the well-known 
fact that }[3 is isomorphic to SLG(2, R). 

We introduce on}[3 a new coordinate system 

(3.22) 

The left-invariant I-forms of a matrix group whose 
general element is given by the matrix A can be 
obtained by computing 

w = A-I dA. (3.25) 

As shown, for instance, by Flanders ,7 all matrix 
elements of w will be left-invariant I-forms. Carrying 
out the computation indicated in (3.25), we obtain 

( 

- H cos XO dxl + ex1 
sin XO dx2

) ) 

-t dxo + t sin XO dxl 
- eX

l cos2 ixo dx2 

W = 1 dxO + 1 sin XO dxl + eX1 sin2 lxo dx2 • 

H cos XO dxl + eX
1 sin XO dx2) 

(3.26) 

We select from (3.26) the following left-invariant 
I-forms: 

W
O = dxo + ex1 

dx2
, 

WI = cos XO dxl + exl sin XO dx2, 

w2 = -sin XO dxl + eX
1 cos XO dx2 

(3.27) 

as the base for the I-forms on }[3. The corresponding 
left-invariant vector fields, serving as the base for the 
vector fields on }[3, are given by 

Q 
Xo=-, 

(7Xo 

X . ° (7 ° a _xl. ° (7 
I = -sm x (7XO + cos x ax! + e sm x ox2 ' 

a . a _1 0 
X 2 = -COSXO-o - smxO-

1 
+ eX cosxo-

2
• ox ax ax 

(3.28) 
These are the vector fields defined by (3.16), written in 
the coordinate system (3.22) as defined by the sub
stitutions (3.23), as one can see easily by a straight
forward computation. 

by the substitutions 

aO = le1x1x2 cos !XO + cosh Ixl sin Ixo, 

al = lelxlx2 sin lxo + cosh Ixl cos ixo, 
a2 = le1x1x2 sin txO + sinh txl cos ixo, (3.23) 

as = -le1xlx2 cos tx° + sinh txl sin Ixo. 

(This is a two-parametric family of straight lines on 
}[3-xo and Xl being the parameters-and x 2 is the 
coordinate along the lines.) 

This coordinate system covers HS completely. 
The matrix A is given in this coordinate by 

(3.24) 

We now consider the group 

M4 = R X }[3, (3.29) 

where the coordinate x 3 is introduced on Rand 

Q 
X 3 =-· 

QX3 
(3.30) 

Therefore, the left-invariant vector fields on M 4 , 

(3.31) 

defined by (3.28) and (3.30), can be chosen for the 
base of the vector fields on M 4 , and the left-invariant 
I-forms 

(3.32) 

defined by (3.27),and 

(3.33) 

are the corresponding base for the I-forms on M4 • 

The Lie algebra of the left-invariant vector fields on 
M4 is given by 

[XI ,X2] = -Xo, [X2 ,XO] = Xl' [XO,XI ] = X2 , 

[Xa, XS] = 0, a = 0, 1,2, (3.34) 

or, correspondingly, 
dwO = WI A w2 , dwl = _w2 A wO, 

dw2 = -wo A wI, dw3 = O. (3.35) 

In the subsequent sections two different pseudo
Riemannian metrics, invariant under the left transla
tions of the group M4 and satisfying the Einstein 
equations (2.40), are introduced on M 4 , which is by 
construction simply connected and, therefore, is the 
uniquely defined universal covering group of the Lie 
algebra (3.34). These manifolds are called the Class 
II and Class III universes. We discuss their properties. 
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4. THE METRIC OF THE CLASS II 
UNIVERSES 

We construct the metric on M, as follows. We let 

R > ° and t < Ikl ~ (2)-! (4.1) 

be two real parameters and introduce a new basis in 
the Lie algebra (3.34) by the following substitutions: 

y. =!( 2 )! X + !(2(1 - 2k2»)! Xs , 
° R 4k2 - 1 ° R 4k2 - 1 

2 2 
Yl = ! Xl' Y2 = ! X 2 , (4.2) 

R(1 - k) R(1 + k) 

2 (1 - 2k2)! 4e 1 
Ys =- Xo+- lXS ' 

R 4k2 - 1 R (4k2 - 1)~ 

for t < Ikl, K is a timelike generator of M, and 
x2 a timelike coordinate. Therefore, (4.6) in our 
coordinate system exhibits the fact that the metric 
is stationary. But it is not static, since tl1ere is 
no hypersurface orthogonal time like Killing vector 
field. 

It will turn out that the vector field Yo is tangent to 
the world lines of the matter. We introduce now new 
coordinates 

by the substitutions 

-0 -1 -2 -s X,X,X,x (4.7) 

XO = R[t(4k2 - 1)]!xO, Xl = xl, x2 = x2, 

x3 = -(1 _ 2k2)!xO + xS (4.8) 

We define the metric on M4 by demanding that or 
Yo, Yl , Y2 , Ys be pseudo-orthonormal, that is, 

g(Ya, Yb) = gab = diag (+1, -1, -1, -1). (4.3) 

In other words, we define the line element to be 

(4.4) 

where (}O, (}l, (}2, (}S is the basis of the I-forms, corre
sponding to Yo, Yl , Y2 , Ys and given by 

(}O = Rk2( 2 )!wo _ R( 1 - 2k2 )!WS, 
4k2 - 1 2(4k2 - 1) 

(}l = R[t(1 - k)]!w\ (}2 = R[t(1 + k)]!w2, (4.5) 

(}S = _ !i.(1 - 2k2)!wo + !i. 1 wS. 
2 4k2 - 1 2 (4k2 - I)! 

After trivial computations we obtain 

ds2 = (tR)2[(1 + 2k2)(w0)2 - (1 - k)(Wl)2 

- (1 + k)(W2)2 - (WS)2 - 2(1 - 2k2)!WOWS], 

(4.6) 

where the w's satisfy (3.35) and are given in our 
coordinate system by (3.27). We would like to make 
the following remarks to (4.6). Since the invariant 
vector field Xs commutes with the other vector fields 
Xa , a = 0, 1, 2 [see (3.34)], Xs is also a generator of 
M 4 • Therefore, in a coordinate system where Xs = 
ajaxS

, the w's do not depend on xS [see (3.27) and 
(3.30)]. But, since X3 is not hypersurface orthogonal, 
we cannot get rid of the "cross terms" in the metric. 
Consider now the vector field K = ajox2• One sees 
that [K, Xa] = 0, a = 0, 1, 2, 3; and that therefore K 
is also a generator of M 4 ; consequently, the w's and 
the metric are independent of x 2• Since 

g(K, K) = (tR)2k(2k - cos 2xO)e2<l:1 > 0 

We see that 
a 

Y=
axo' 

(4.9) 

(4.10) 

which shows that the matter is at rest with respect to 
the coordinates (4.7). 

Carrying out straightforward calculations, we find 
that 

! 
W

O = !( 2 ) dxo + exp (Xl) dx2 
R 4k2 - 1 ' 

WI = cos!( / )! XO dxl 

R 4k - 1 

+ exp (xt) sin !( / )\0 dx2
, 

R 4k - 1 

w 2 = -sin!( 2 )! XO dxl 

R 4k2 - 1 

! 
+ exp (Xl) cos !( / ) XO dx2, 

R 4k - 1 

WS = !(2(1 - 2k2»)! dxo + dxs. 
R 4k2 - 1 

(4.11) 

Substituting (4.11) into (4.6), we obtain the metric 
in the new coordinate system (4.7). Carrying out 
these computations, we see that the metric has the 
form 

ds2 = (dxO)2 + 2ft/if dxo + ga.il/'wll , 

IX, p, y, ... = 1,2,3, (4.12) 
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where Fa and gaP are functions of XO alone and wI, w2 , w3 are 1-forms given by 

- _ (0 Rk2 ( 2 )! R ( 1 - 2k2 )!) 
Pa -, 4k2 _ l' 2(4k2 - 1) , 

(

-1 + k cos 2xo k sin 2XO 0) 
gaP = (tR)2 k sin

0
2xO k(2k - cos 2XO) -(1_-12k2)! , 

-(1 - 2k2)! 

and 

WI = dx\ w2 = exp (Xl) dx2 , w3 = dx3 , (4.15) 

respectively. The 1-forms (4.15) are the left-invariant 
I-forms of the group of Bianchi type III since 

dWI = 0, dw2 = WI A w2, dw3 = 0, (4.16) 

. as one sees immediately. Our solution is, therefore, a 
special case of spatially homogeneous solutions 
admitting the group (4.16). 

We introduce now another coordinate system 

(4.17) 

by the substitutions 

-0 0 (1 - 2k2)! 3 -1 1 2 2 
X =X - x, x =X, X =x, 

1 + 2k2 

X3 = C +22kS x
3 

___ ~_ (4.18) 

where 

and 

- 0 
Xo=-, oxo 

X- . _0 0 + _0 0 
1 = -sIn x - cos x -oxo OXI 

+ exp (_Xl) sin XO ~2' oX 

X- _0 0 . _0 0 
2 = -cos x - - sm x -oxo OXI 

+ exp (_Xl) cos XO ~2 ' 
OX 

(4.13) 

(4.14) 

(4.21) 

(4.22) 

or 

o -0 +' ( 1 - 2k2 )! -3 X-I, = Xl, x-2 = x2, 
X = x 2(1 + 2k2) x, 

We now introduce a new basis for the Lie algebra 
of the left-invariant vector fields on M4 by the follow
ing substitutions: 

x3 = U(1 + 2P)]!x3
• (4.19) 

We will see that X3 = const are the H3 hypersurfaces. 
Carrying out these coordinate transformations, we 

obtain from (4.2) the following expressions: 

(4.20) Since (4.23) is a Lorentz transformation between the 
Z's and the Y's, the metrics defined by 

g(Za' ZbJ = gab = diag (+1, -1, -1, -1) (4.24) 

and 

g( Ya, Yb) = gab = diag ( + 1, -1, -1, -1) (4.25) 
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are identical. After obvious substitutions we obtain 

2 -
Zo = i Xo, 

R(1 + 2k2) 

Zl = 2 i (Xl cos p:e + X2 sin pxs), 
R(1 - k) 

Z2 = 2 i ( - Xl sin pxa + X2 cos px3
), 

R(1 + k) 

(4.26) 

2 -
Zs = - Xs , 

R 

where f3 and Xo, Xl, Xz, X3 are given by (4.21) and 
(4.22), respectively. The corresponding left-invariant 
I-forms are 

4>0 = iR(1 + 2kZ)iwO, 

4>1 = iR(1 - k)i(Wl cos pxs + w2 sin PXS), 
4>2 = iR(1 + k)i( _WI sin pxs + w2 cos PXS), (4.27) 

4>s = tRws. 

As the consequence of all that, the line element 

ds2 = (tR)2(1 + 2k2)(wO)2 

- (1 - k)(w1 cos #s + w2 sin pr)2 
- (1 + k)( _WI sin f3xs + w2 cos f3xS)2 _ (W3)2 

(4.28) 

is the same as (4.6) but is in the new coordinate system, 
where wO, wI, w2 , WS are given by 

WO = dxo + exp (Xl) dx2, 

WI = cos XO dxl + exp Xl sin XO dx2, 

w2 = -sin XO dx l + exp (Xl) cos XO dx2, 

WS = dr. 

(4.29) 

To sum up our findings, we see that we used two 
different bases for the Lie algebra of the left-invariant 
vector fields on M" namely, 

and 
(4.30) 

(4.31) 

We shall see in the next section that (4.30) is 
intimately connected with the motion of the matter in 
our solutions. (4.31) is distinguished by the geometry 
of the 3-dimensional hypersurfaces corresponding to 
the normal subgroup J[3 of M" as we shall see in 
Sec. 6. 

The three different coordinate systems employed 
differ as follows: In (4.6) with the coordinates xO, Xl, 

X2, xS , the x2 lines are the integral curves of the time
like generators' of M,; in (4.12) the XO lines are the 
world lines of the matter, as we shall see in the next 

section; in (4.28) the r lines are perpendicular to the 
3-dimensional hypersurfaces corresponding to the 
normal subgroup. In case of k = t we obtain a 
cosmos filled with radiation. 

5. MISCELLANEOUS_RESULTS AND THE 
MOTION OF THE MATTER 

Consider the basis Yo, Yl , Y2 , Ys defined by (4.2). 
The Lie algebra of M, is given in this basis by the 
following commutation relations: 

Using (2.32), we compute th,e components of the 
affine connection: 

r ___ 1 _-_2_k2( 2 )i 
012 - R (1 - k2)(4k2 - 1) , 

r _ _1 _+_2_k( 1 - 2k2 )i 
123 - - R (1 _ k2)(4k2 - 1) , 

r _ k(1 + 2k)( 2 )! 
120 - - R (1 _ k2)(4k2 - 1) , 

r __ 1 - 2k( 1 - 2k2 )i 
231 - R (1 - k2)(4k2 - 1) , 

(5.2) 

r __ k(1 - 2k)( 2 )! 
210 - R (1 _ k2)(4k2 - 1) , 

r _ 1. ( 1 - 2k2 )! 
312 - - R (1 _ k2)(4k2 - 1) . 

Using (2.37), we see that the components of the Ricci 
tensor field are given by 
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Comparing with (2.40), we see that we indeed have a 
solution of the field equations, with 

Ua = (1, 0, 0, 0) (5.4) 
and 

Kp 2 1 
2A = -(4k - 1), A = - R2(1 _ k 2) (5.5) 

The meaning of (S.4) is that Yo is the velocity vector 
field of the matter. Since Yo = oloio [see (4.10)], it 
follows that in (4.12) the XO lines are the world lines 
of the matter, as stated earlier. 

In order to investigate the motion of the matter, we 
have to integrate the equations8 

Lyo(Y) = Vyo(y) - Vy(Yo), (S.6) 

where Y is perpendicular to Yo, that is, 

Y= rtYa , (S.7) 

the summation extending over 1, 2, 3. 
The vector Y is a vector perpendicular to a 

particle geodesic, and the tip of its arrow is in the 
neighboring particle geodesic. 

Substituting (S.7) into (5.6), applying the rules of 
the cO\lariant derivation, and introducing the notation 

it = Yort, 

we obtain the equations 

it = CabOr/. 
Using (S.1), we get 

'1 1 - k( 2 \t 2 

'YJ = R (1 _ k2)(4k2 _ I)J'Y} , 

. 1 + k( 2 )t 1 
'YJ = - R (1 _ k2)(4k2 _ 1) 'YJ, 

i/ = O. 

(5.8) 

(S.9) 

These equations de~cribe the motion of the matter with 
respect to the 3-dimensional vector frame of the Ya • 

As a consequence of these equations, we have 

(1 + k)ijI'YJI + (1 - k)ij2'YJ2 = 0, 

and by integration we obtain 

['YJI/(! - k)t]2 + ['YJ2/(I + k)t]2 = A2, 'YJ3 = B, 

(S.IO) 

as the equation of the orbit for the neighboring 
particle. The orbits of the particles in the Ya frame 
are, therefore, ellipses in the (Y1 , Y2) plane. The main 
axes of the ellipses are in the Y1 and Y2 directions. 
The axes of the ellipse rotate around Ya with respect 
to the inertial compass. To see that, we determine the 
motion of the frame Ya along the world lines of the 
matter. Using the formula 

ta == VYo(Ya) = I'oab Yb 

and (S.2), we obtain the equations 

to = 0, 

t _ 1 - 2k2( 2 )\'; 
1- R (l-k2)(4k2-1) 2, 

t __ 1 - 2k2( 2 \\', 
2 - R (1 _ k2)(4k2 _ I)J 1, 

ta = O. 

(5.11) 

The content of these equations is that y3 is parallel 
propagated along the i O lines and YI and Y2 and that 
the axes of the ellipse (S.IO) are rotating around Ya 
with respect to the parallel propagated frame. 9 The 
angular velocity of this rotation is given by 

1 - 2k2( 2 )t 
Wy frame = R (1 _ k2)(4k2 - 1) . 

This gives a characterization for the frame Yo, YI , 

Y2 , Y3 by the motion of the matter. 
Another way to bring Y1 , Ya, Ya in connection with 

the motion of the matter is to decompose the tensor 
field 

U(X, Z) = (V xOO)(Z) = XOO(Z) - OO(V x(Z» 

into symmetric and skew-symmetric parts (00 is the 
covariant tensor field, I-form, corresponding to Yo). 
The components of the tensor field U are given by 

Uab = U( Ya , Tb) = - r abo [see (2.9) and (2.10)]. 

The symmetric part, the tensor of shear a, has the 
nonvanishing components 

k( 2 )t 
0'12 = 0'21 = R (1 _ k2)(4k2 _ 1)' (5.12) 

The skew-symmetric part, the tensor of rotation w, 
has the nonvanishing components 

2k2( 2 )1-w - -w - - S13 
12 - 21 - R (1 _ k2)(4k2 - 1) . (. ) 

The nonvanishing component ofthe rotation vector V, 
defined by 

Va - _ L.,abcdu W 
- ..,;'/ a cd, (5.14) 

is given by 

(5.15) 

Therefore, writing the tensor fields in contravariant 
form, we obtain 
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or 

_ ~( 2 )t[2-t(Y, + Y;) 
(j - R (1 _ k2)(4k2 _ 1) 1 2 

® 2-t(YI + Y2 ) - 2-t(Yr - Y2 ) 

® 2-t(Yr - Y2)]; (5.17) 

that is, the eigenvalues of (j are 

k( 2 )! 
± R (1 - k2)(4k2 

- 1) 

and the corresponding eigenvectors are 

2-!(Y1 ± Y2)· 

The vector of rotation is given by 

V _ 2k2( 2 )t Y; 
- R (1 - k 2)(4k2 _ 1) 3' 

(5.18) 

(5.19) 

(5.20) 

For no value of k, t < Ikl S 2-t , is the shear or 
rotation vanishing. The G5del cosmos is therefore not 
contained in Class II. This concludes the characteriza
tion of the frame Yo, Yl, Y2 , Y3 by the motion of 
the matter. 

Using (2.36), we can calculate the components of 
the curvature tensor field and the Weyl tensor field C, 
which turns out to be of Type I and can be given by 
the non vanishing components 

2k2 
C2323 = -ClOlO = 3R2(1 _ k2)' 

2k2 
C3131 = -C2020 = 3R2(1 _ k2) , 

4k2 
C - C ------

1212 - - 3030 - 3R2(1 _ k2) , 

(5.21) 

2k [ 2)]t C2310 = -C3120 = 2 2 t(1 - 2k , 
R(1-k) 

defined by 

where 

1 (2(1 - 2k2»)t 
Wo = (4k2 _ l)t Yo - 4k2 _ 1 ' 

Jfl = 2-t(YI - Y2), W2 = 2-t(YI + Y2), (5.23) 

W; _ (2(1 - 2k2»)t Y; + 1 Y, 
3-- 4k2-1 0 (4k2_1)t 3' 

We notice that the Weyl vector fields Wo , WI' W2 , 

and Ws can be regarded as the eigenvector fields of the 
tensor of shear [see (5.13)]. Wo and Wa belong to 
the eigenvalue zero. 

6. GEOMETRY OF THE SOLUTION 

Consider the basis Zo, ZI' Z2, Za defined by (4.26). 
The Lie algebra of M, is given in this basis by the 

following commutation relations: 

2 1 + 2k2 
[ZI' Z2] = - R [(1 _ k2)(1 + 2k2)]! Zo, 

[Z Z] - ~ 1 - k ZI 
2, 0 - R [(1 _ k2)(1 + 2k2)]t ' 

[z Z] - ~ 1 + k Z2 
0, 1 - R [(1 _ k2)(1 + 2k2)]!' (6.1) 

[ZO' Za] = 0, 

_ _ 1 + k ( 2(1 - 2k2) )! Z 
[ZI, Za] - R (1 _ k2)(1 + 2k2) 2, 

1 - k( 2(1 - 2k2) )!z 
[Z2' Z3] = + R (1 _ k2)(1 + 2k2) l' 

The first three commutation relations show that 
Zo, ZI, Z2 form together the basis of a 3-dimensional 
subalgebra of the Lie algebra of M 4 • The second three 
commutation relations indicate that the subalgebra is 
an ideal. This ideal generates lP. 

Using (2.32), we compute the components of the 
affine connection 

r __ 1. 1 - 2k2 
012 - R [(1 _ k2)(1 + 2k2)]t' 

k( 2(1 - 2k2) )t 
r 12a = - R (1 _ k2)(1 + 2k2) , 

r __ 1. 1 + 2k + 2k2 
120 - R [(1 _ k2)(1 + 2k2)]! ' 

k( 2(1 - 2k2) )t 
r 231 = R (1 _ k2)(1 + 2k2) , 

(6.2) 

r _ 1. 1 - 2k + 2k2 
210 - R [(1 _ k2)(1 + 2k2)]! ' 

1 ( 2( 1 - 2k2) )t 
r a12 = - R (1 _ k2)(1 + 2k2) . 

From (6.2) we can read out a bit of geometry. Since 

V Z.(Za) = raab Zb = 0, a = 0, 1,2,3, 

it follows that the vector fields Zo, Z1, Z2, Za are 
geodesic. Denoting V Z,(Za) by 2a , we have 

20= 0, 

. 1 ( 2(1 - 2k2) )t Z -- Z 
1 - R (1 _ k2)(1 + 2k2) 2, 

2 __ ( 2(1 - 2k2) )!Z 
2- (1-k2)(1+2k2) 1, 

(6.3) 

Z3 = o. 
Therefore, it follows that Zo is parallel-propagated 
along the x3 lines and ZI and Z2 rotate around Zo 
with respect to the parallel-propagated frame. What 
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is the geometrical meaning of Zo , Zl , Z2? These three 
vector fields are tangential to the 3-spaces is = const. 
Looking into the geometry o( these 3-spaces, we see 
that the components of the affine connection and the 
Ricci tensor field are given by 

r _ 1. 1 - 2k2 . 
012 - - R [(1 _ k2)(1 + 2k2»)t ' 

f
120 

= _ 1. 1 + 2k + 2k2 , (6.4) 
R [(1 - k2)(1 + 2k2))t 

r 201 = _ 1. 1 - 2k + 2k2 , 
R [(1 - k2)(1 + 2k2)]t 

and 

R = dia (_ 2(1 + 2k + 2k2)(1 - 2k + 2k2) 
ab g R2(1 _ k2)(1 + 2k2) , 

2(1 - 2k2)(1 - 2k + 2k2) 

R2(1 _ k2)(1 + 2k2) 

2(1 - 2k2)(1 + 2k + 2k2») ( ) 
R2(1 _ k2)(1 + 2k2) I 6.5 

respectively; therefore, Zo, Zl' Z2 are the eigenvector 
fields of the Ricci tensor field. The eigenvalues do not 
depend on is [see (6.5»). The nonvanishing compo
nents of the curvature tensor field are 

R _ (1 - 12k4) 
1212 - R2(1 _ k2)(1 + 2k2) , 

R _ _ (1 + 2k - 2k2)2 
2020 - R2(1 _ k2)(1 + 2k2) , 

(6.6) 

(1 - 2k - 2k2)2 
R - - ~~-=~-=~-

0101 - R2(1 _ k2)(1 + 2k2) 

[see (2.36)]. These are also independent of XS. 
Introducing the notations 

Po = 1 - 12k', 

PI = -(1 + 2k - 2k2)2 

= -4[k - HI + ~3)]2[k - t(l - ~3)]2, (6.7) 

P2 = -(1 - 2k - 2k2)2 

= -4[k + Hl + .J3)]2[k + Hl - .J3)]2 

and constructing Fig. 1, we obtain an impression 
about the dependence of (6.6) on the parameter k. 
Changing the sign of k is equivalent to changing the 
one and two directions. Po remains unchanged under 
the switch of sign in k. 

The geometric meaning of (6.6) is as follows: R1212 , 

Rso20 , RolOl are the Gaussian curvatures of the 
geodesic surfaces spanned by the vectors ZlZ2, 
ZsZo, and ZoZl , respectively, at the point in question. 
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FIG. 1. Po, PI' PI are proportional to the Gaussian curvature of 
the ge?desic 2-surfaces spanned by ZIZ., Z.Zo, and ZOZI' 
respectively. 

From this it follows that the geometry of the hyper
surfaces 

ds2 = (tR)2[(I + 2k2)(w°)2 - (1 - k) 

x (WI cos {3XS + w2 sin {3i3)2 - (1 + k) 
- ( - WI sin {3i3 + w2 cos {3i3)2] 

[see (4.28)] is independent of i 3 and is given by the 
geometry of the space 

ds2 = (tR)2[(I + 2k2)(WO)2 - (1 - k)(W1)2 

- (1 + k)(W2)2]. (6.8) 

We can think of the space-time (4.28) as a 1-
parametric family of 3-dimensional hypersurfaces
i 3 being the parameter. These hypersurfaces are 
generated by J[3 and all have the geometry of (6.8). 
The i 3 lines are perpendicular to these hypersurfaces, 
which are embedded in (4.28) such that the Zl and Z2 
directions rotate around Zo as we move along the i 3 

lines. This is the geometrical content of (6.3). The 
XI lines are spacelike; therefore, no physical observer 
can actually move along them. 

It is probably interesting to point out the difference, 
or similarity between the Class Jl and the Class II 
universes. We can think of the Class I universes as a 
I-parametric. family of 3-dimensional hypersurfaces
f being the parameter. These hypersurfaces are gener
ated by S3, and all have the geometry of 

ds2 = -(tR)2[(1 - k)(W1)2 + (1 + k)(W2)2 

+ (1 + 2k2)(W3)2]. 
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(The range of k is Ikl < ! and 

diiJ1 = - iiJ2 /\ iiJ3, 

diiJ2 = - iiJ3 /\ iiJ1, 

diiJ3 = - iiJ1 /\ iiJ2.) 

The f lines are perpendicular to these hypersurfaces, 
which are embedded in the Class I universes such that 
the Zl and Z2 directions rotate around Z3 as we move 
along the f lines. The £lines are timelike; therefore, 
physical observers can actually move along them. 

We return now to the discussion of the Class II 
universes. One sees from Fig. 1 that the geometry of 
(6.S) is very simple at 

k = 2-1. 

qur metric is then a special case of Class III universes, 
as we shall see later. 

In order to verify our observation at the end of 
Sec. 4, we compute the components of the Ricci tensor 
field with respect to the Z'8. Using (2.37) and (6.2), 
we obtain the following nonvanishing components: 

R __ 2 1 + 4k4 
00 - R2 (1 _ k2)(1 + 2k2) , 

4k2 [2(1 - 2k2)]l 
R - - --"~-....=..:~-

03 - R2 (1 _ k2)(1 + 2k2) , 

R - R _ 1. 1 - 2k2 
11 - 22 - R2 1 _ k2 ' 

(6.9) 

4k2 1 - 2k2 
R -----=.:..:---

33 - R2 (1 _ k2)(1 + 2k2) • 

In the case of k = !, (6.9) takes the form 

Roo = -20j9R2, 

Rn = R22 = 12/9R2, R33 = 4/9R2. (6.10) 

Using (2.40),one sees that the field equations can be 
satisfied by 

Ua = (1,0,0, -1), 

Kp = Sj9R2, A = -I6/9R2. (6.11) 

Since uaua = 0, one can interpret this model as 
filled with radiation having the energy density p and a 
A term. With these remarks, we close our discussions 
of the Class II universes. 

7. THE METRIC OF THE CLASS III 
UNIVERSES 

We consider the Lie group R x J[3 as before and 
impose on it another metric as follows. Let 

p > ° and lsi < 1 (7.1) 

be two real parameters and introduce in the Lie 
algebra (3.34) a new basis by 

Yo = (tKp)lXo, 

Y1 = (tKp)1[2/(1 + s)]lX1' 

Y2 = (tKp)1[2/(1 - s)]lX2' 

Ya = (!Kp)lXa, 

(7.2) 

and we define the metric on M, by demanding that 
Yo, Y1 , Y2 , Ya be pseudo-orthonormal, that is, that 

g(Ya, Yb) = gab = diag (+1, -1, -1, -1). (7.3) 

In other words, we define the line element to be 

ds2 = (00)2 _ (01)2 _ (02)2 - (03)2, (7.4) 

where 0°, 01, 02, 03 form the corresponding basis of 
the left-invariant I-forms, that is, 

00 = (2jKp)lwO, 

01 = (2jKp)1[t(I + s)]lwt, 

02 = (2jKp)1[l(I - s)]lw2, (7.5) 

03 = (2jKp)lwa• 

After trivial substitutions, we obtain 

ds2 = (2jKp)[(WO)2 - HI + S)(W1)2 

- t(1 - S)(W2)2 - (W3)2], (7.6) 

where the w's satisfy (3.35) and, if we use the coordi
nate system introduced before, can be given by (3.27) 
and (3.33). All the physical and geometrical investiga
tion can be carried out in the frame of the Y's given 
by (7.2) and in the coordinate system introduced in 
Sec. 3, since the two different frames and the three 
different coordinate systems introduced in the case of 
the Class II universes coincide here, due to the 
simplicity of the line element (7.6). 

At s = ° we have the G6del cosmos as we see in 
Sec. S. 

8. MISCELLANEOUS RESULTS AND THE 
MOTION OF THE MATTER 

Consider the basis Yo, Y1 , Y2 , Ya defined by (7.2). 
The Lie algebra of M4 is given in this basis by the 
following commutation relations: 

1 2 [Y1 , Y2 ] = -(iKp) t Yo, 
(1 - S2) 

1 1 + S 
[Y2,YO] = (tKp) lY1 ' 

(1 - S2) (S.l) 

1 1 - s 
[Yo, Y1] = (tKp) 1 Y2 , 

(1 - S2) 

[Ya , Y3 ] = 0, a = 0, 1, 2. 
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Using (2.32), we compute the components of the 
affine connection 

f012 = 0, 
! 1 - S 

f 120 = -(!Kp) !' 
(1 - S2) (8.2) 

~ ! 1 + s r 20l = -(2XP) *. 
(1 - S2) 

Using (2.37), we find that the only nonvanishing 
component of the Ricci tensor field is given by 

Roo = -Kp. 

Comparing this with (2.40), we see that 

A = -tKP 
and 

Ua = (1,0,0,0). 

(8.3) 

(8.4) 

(8.5) 

The meaning of (8.5) is that Yo is the velocity vector 
field of the matter. Since Yo = (tKp)t%xo, the 
t = (2/Kp)!xo-lines are the world lines of the matter. 

In order to investigate the motion of the matter, 
we have to integrate Eqs. (5.6). Repeating the same 
reasoning as in Sec. 5 and using the same notations 
we find that the equations 

.1 _ (! )! 1 + S 2 
'Yj - Kp (1 _ S2)* 'Yj , 

~2 = _(1Kp )* 1 - S 'Yj\ (8.6) 
2 (1 _ S2)* 

~s = ° 
describe the motion of the matter with respect to the 
3-dimensional vector frame Yl , Yz, Ys . The orbits 
of the neighboring particles are given by 

( 
'Yjl )2 ( 'Yj2)2 2 S --'---;Ot + * = A, 'Yj = B, (8.7) 

(1 + s) (1 - s) 

which are ellipses in the Yl , Yz plane. The main axes 
of the ellipse lie in the Y1 and Y2 directions. 

The axes of the ellipse do not rotate, since from 
the equations 

Ya == VYo(Ya) = roab Yb 

and from (8.2) it follows that 

Yo = 0, Yl = 0, Y2 = 0, Ys = 0. 

Therefore the frame Yl , Y2 , Ys is parallel-propagated 
along the XO lines and can therefore be chosen as the 
inertial compass. This gives a characterization for the 
frame Yo, Yl , Y2 , Ys by the motion of the matter. 

Another way to bring Yl , Y2 , Ys in connection with 
the motion of the matter is to compute the tensor of 
shear and the vector of rotation. Along the lines 
explained in Sec. 5 and using the same notation, we 

find that 

(J = CtKp)!s(1 - sZ)-![2-!(Yl + Y2) ® 2-1(Yl + Y2) 

- 2-!(Yl - Y2) ® 2-t(Yl - Yz)]' (8.8) 

that is, the eigenvalues of (J are 

± (tKp)ts(l - S2)-! 

and the corresponding eigenvectors are 

2-t ( Y1 ± Y2)· 

The vector of rotation is given by 

V = -(tKp)ts(1 - s2)-lys. 

(8.9) 

(S.lO) 

(S.11 ) 

The shear is vanishing for s = 0; therefore, we have 
the Godel cosmos at this value of the parameter s as 
we already stated at the end of Sec. 7. 

This concludes the characterization of the frame 
Yo, Yl , T2 , Ys by the motion of the matter. 

Using (2.36), (2.37), (2.39) and the formulas 

Cabcd = Rabcd - Eabcd - /2 Rgabcd , 

where 

Eabcd = HSadgbc - Sacgbc + gaaSbc - gacSbd), 

Sab = Rab - iRgab' (S.12) 
and 

gabcd = gadgbc - gacgbd' 

we can calculate the components of the Weyl tensor 
field. The nonvanishing components are 

C2S2S = -ClOlO = tKP, CS13l = -C2020 = tKP, 
C12l2 = -Csoso = -tKp. 

This is a type I e2 Weyl tensorlO (type D) and Yo, Yl , 
Y2 , Ys are the Weyl vectors. We can give for (7.6) a 
similar description as we gave to (4.28) toward the end 
of Sec. 6. 

We can think of the space-time (7.6) as a I-para
metric family of 3-dimensional hypersurfaces-xs being 
the parameter. These hypersurfaces are generated by 
H3, and all have the same geometry. The XS lines are 
perpendicular to these hypersurfaces, which are 
embedded in (7.6) such that Zo, Zl' Z2 are parallelly 
propagated along the XS lines. The XS lines are 
spacelike. 

From this, one sees that (7.6) is intrinsically similar 
than (4.28). One can use these models to study the 
motion of rotation within the general theory of 
relativity. 

In a forthcoming paper, we discuss singularly the 
Class IV universes which then exhaust all the possi
bilities for homogeneous universes with dust within 
the framework of general relativity. 
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The family of Lie groups SL(n, C). R(n2) is studied from the mathematical point of view, i.e., their 
structure and unitary irreducible representations. The first steps in the study of representations are based 
on the Wigner-Mackey-Bruhat method. The homogeneous spaces and little groups are determined by 
introducing a (generally) pseudo-Hermitian metric on vector spaces of finite dimension. However, the 
presence of null vectors does not allow this approach to be an exhaustive one; there are cases where the 
stabilizer is a semidirect product of a reductive group by a nilpotent one. In such cases, results are avail
able if the reductive subgroup is compact, but it seems that these results can be generalized. The connec
tion is also examined, both in structure and in representations, between this family and creation
annihilation operators. A complete list of inequivalent classes of representations is given in terms of orbits 
and little groups for n = 2, 3, 4, 6. 

INTRODUCTION 

Since it was proved that compact Lie groups are an 
incomplete tool for treating the strong-interaction 
symmetries, several other types of groups have been 
proposed. Although most of them are semisimple 
groups, "inhomogeneous" groups have also been 
proposed.1-7 Semisimple groups have the advantage 
of being a convenient tool for which there is an abun
dant mathematical literature. However, in spite of 
several hints, we do not know yet the symmetry 
group; nonsemisimple groups like the inhomogeneous 
special linear groups, especially those which contain 
the Poincare group, may prove to be of great interest, 
and they appear as possible solutions to the external
internal unification problem. Thus, it is necessary to 
investigate their structure and their unitary irreducible 
representations in order to identify quantum numbers. 
Besides, there are other physical domains where such 
groups may be useful, for example, the classification 
of nuclear spectra and the creation-annihilation 
operators. The physical applications of this family will 
be treated in a subsequent article. 

Here, we are interested in the mathematical study of 
these groups, i.e., the investigation of their structure 
and unitary irreducible representations (VIR's). The 
problem was solved by Wigner8 for the Poincare group 
(n = 2). Then Mackey9.10 and Bruhatll proved that 
the method of induced representations can be applied, 

with some topological restrictions, to any group con
taining a normal Abelian subgroup. Thus, when 
dealing with such groups, one needs to separate a 
vector space into orbits and to find the little groups 
that leave unchanged a point of each orbit, the choice 
of this point being arbitrary. 

In the case of Gn = SL(n, C). R(n2),12 one obtains 
either reductive little groups or semidirect products of 
reductive groups by Abelian groups.13 Explicit results 
are available for the representations of the first case.14 

The second case is more interesting: Further Wigner 
decomposition can generally be done only once more, 
because the next little groups' structure is more com
plicated (nilpotent subgroups take the place of Abelian 
ones). The investigation is carried on in some cases 
where the reductive subgroup is compact, with other 
methods consisting of the decomposition of the regular 
representation and the establishment of a complete 
correspondence between the representations of the 
reductive subgroup and the faithful representations 
of the whole semidirect product which occur in the 
regular representation. 

On the other hand, a connection is established 
between Lie algebras of the family and creation
annihilation operators by means of the symplectic Lie 
algebra, which is identified to a subalgebra of the uni
versal enveloping algebra generated by these operators. 
Any algebra ofthe family is isomorphic to a subalgebra 
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INTRODUCTION 

Since it was proved that compact Lie groups are an 
incomplete tool for treating the strong-interaction 
symmetries, several other types of groups have been 
proposed. Although most of them are semisimple 
groups, "inhomogeneous" groups have also been 
proposed.1-7 Semisimple groups have the advantage 
of being a convenient tool for which there is an abun
dant mathematical literature. However, in spite of 
several hints, we do not know yet the symmetry 
group; nonsemisimple groups like the inhomogeneous 
special linear groups, especially those which contain 
the Poincare group, may prove to be of great interest, 
and they appear as possible solutions to the external
internal unification problem. Thus, it is necessary to 
investigate their structure and their unitary irreducible 
representations in order to identify quantum numbers. 
Besides, there are other physical domains where such 
groups may be useful, for example, the classification 
of nuclear spectra and the creation-annihilation 
operators. The physical applications of this family will 
be treated in a subsequent article. 

Here, we are interested in the mathematical study of 
these groups, i.e., the investigation of their structure 
and unitary irreducible representations (VIR's). The 
problem was solved by Wigner8 for the Poincare group 
(n = 2). Then Mackey9.10 and Bruhatll proved that 
the method of induced representations can be applied, 

with some topological restrictions, to any group con
taining a normal Abelian subgroup. Thus, when 
dealing with such groups, one needs to separate a 
vector space into orbits and to find the little groups 
that leave unchanged a point of each orbit, the choice 
of this point being arbitrary. 

In the case of Gn = SL(n, C). R(n2),12 one obtains 
either reductive little groups or semidirect products of 
reductive groups by Abelian groups.13 Explicit results 
are available for the representations of the first case.14 

The second case is more interesting: Further Wigner 
decomposition can generally be done only once more, 
because the next little groups' structure is more com
plicated (nilpotent subgroups take the place of Abelian 
ones). The investigation is carried on in some cases 
where the reductive subgroup is compact, with other 
methods consisting of the decomposition of the regular 
representation and the establishment of a complete 
correspondence between the representations of the 
reductive subgroup and the faithful representations 
of the whole semidirect product which occur in the 
regular representation. 

On the other hand, a connection is established 
between Lie algebras of the family and creation
annihilation operators by means of the symplectic Lie 
algebra, which is identified to a subalgebra of the uni
versal enveloping algebra generated by these operators. 
Any algebra ofthe family is isomorphic to a subalgebra 
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of some symplectic algebra: One can thus establish 
both structural and spectral connections among 
infinitesimal operators. The application of these results 
to field theory will be treated in a subsequent article. 

Section I deals with the group structure and Tep 
generalization; the action of these operators is studied 
both in abstract group structure and in representations. 
The study of UIR's of proper Gn begins in Sec. II, 
where Wigner's method is used in two successive 
steps. In Sec. III, special cases of decomposition are 
examined, where Wigner's method can be applied. 
Section IV deals with cases in which difficulties due 
to nilpotent subgroups occur. Creation-annihilation 
operators are treated in Sec. V. 

It is important to note the following: To avoid 
confusion, we specify that, when we speak of repre
sentations of a Lie group, we mean UIR's unless the 
contrary is specified; the description of representations 
is given up to those of reductive little groups, such as 
U(p, q) or GL(r, C), or their direct products.14 

I. GENERALITIES (TRIVIAL STRUCTURAL 
REMARKS) 

A. Gn and Poincare Subgroups 

The group Gn is the semidirect product of the uni
modular complex linear group SL(n, C) by the Abelian 
group R(n2) of n2 real translations. The action of 
SL(n, C) on R(n2) is 

(A)I%P ---+ A~A~(A)y~, A E SL(n, C), A E R(n2
). 

In matrix notation, the generic element of Gn can be 
written 

= (A AA*-I) 
g 0 A*-I' 

where A and A are n X n complex matrices, A is uni
modular, and A is Hermitian (or A is skew-Hermitian). 
The group law is 

(A, A)(A', N) = (A + AA'A*, AN). 

There are many ways to choose a subgroup of Gn 

isomorphic to the universal covering of the inhomo
geneous Lorentz group !f. However, we shall imme
diately put in evidence the most interesting choice in 
the case n = 2n'. In fact, R(4n2) = R(4) x R(n'2), 
that is, every Hermitian matrix of 2n' lines and 2n' 
columns can be written as a finite sum of the generators 
(J II X lXi' where lXi is an n' X n' Hermitian matrix and 
(J II is an ordinary Pauli matrix. Similarly, the matrices 
A X A' [where A E gl(2, R), A' E gl(n', R) and such 
that SpA' SPA' = 0] span sl(2n', R). The complexi
ficatiori of this algebra gives sl(2n', C) and, if one puts 
the equivalence relations 

(iA) x (A') = (A) x (iA') = i(A x A'), 

(iA) x (iA') = -A x A', 

one finds again the commutation relations of gan' by 
using those of gz and gn" The Poincare subalgebra is 
generated by {a i xl, hi xl; (JII x I}, and its com
mutator in gf)(2n', C) is the subalgebra isomorphic to 
su(n'), spanned by {I x u}. (Here ai and hi are 
generators of the Lorentz Lie algebra.) 

B. Involutive External Automorphisms of G n 

In view of further physical applications, it is im
portant to investigate whether our group Gn can be 
imbedded into a larger group Gn containing "parity," 
that is, whether G is an extension of Z2 by G, since we 
require the operator parity to be an involution and to 
correspond to the physical parity for the Poincare 
group (n = 2), or a particular Poincare subgroup of 
Gn . For this purpose, we use the method introduced in 
Ref. 6; G is a semidirect product of Z2 = {I, s} by G. 
The operator parity is P = Ad s and it induces an auto
morphism on the Lie algebra g. Therefore, we investi
gate the different possibilities for Ad s E Aut g. In 
order to determine Aut 9 (by a method similar to that 
used in Ref. 15), we first remark that 9 = fEB t (con
sidered as vector spaces), with f = sl(n, C), t = R(n2), 

t being also a characteristic ideal of g. We can thus 
write, for every FE Aut g,16 

with 
F = (f, <1>, tp), 

fE Aut t = GL(n2 , R), 

<I> E Aut f = (SL(n, C)/Zn) • (Z2 x Zz) 
= Int f • (Z2 x Zz), 

tp E L(f; t) = C(R(2n2 - 2); R(n2». 
The group law establishes a relation between <I> and 

f: Let p E Hom (sl(n, C); gl(n2 , R» be such that 
p(K) . T = KT + TK*; f must belong to the normal
izer N of p(f) in GL(n2 , R), because 

f' p(K) ,/-1 = p(<I>(K»; 

thus,fdefines <I> as an automorphism off. Calculating 
that, if n > 2, the external automorphism K ---+ -K* 
cannot be expressed by any Ad fEN, we easily 
check that N is the direct product of Aut f/Z,. by the 
multiplicative group of real numbers. 

Using the group law again, one can prove that 

tp(S) = p(<I>(S»' A = <I>(S)A + A [<I>(S)]*, 

where A is a fixed n x n matrix. One can thus write 

Aut 9 = (R* X Aut fiZz)· R(n2) = (R'" x Z2)' Int 9 

and 

F;..i.iI..A(K; T) = (A ·jK· A-I; AA ·jT· A* 
+ peA 'jK' A-I). A) 

= Ad (-A, A)· UK; AjT), 

j being either 1 or J, with JK = K and JT = T. 
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Searching for an involutive automorphism F, we 
see that A must be equal to ± I and that there always 
exists an A I such that 

F ±l.i.A . ..4. = F ±l.i.A.O . Fl .1 •l . ..4.'· 

Thus, we can only investigate semisimple auto
morphisms, which leave globally invariant t and 
f = Ad A/(!') r"'oJ sI(n, C). 

We now consider the case j = 1. Then Ad A2 = 1 
and A2 = exp (2ik1T/n) . I. A is semisimple and may 
always be put into the diagonal form I'f) EB (-12t./) or 
exp (i1T/n)' [I'f) EB (-/2<1+1)]' Then A must be -1, since 
we want P to be external. The positive and negative 
eigenspaces of P on the semisimple part both have 
a complex structure, f+ being a subalgebra [see (A) 
below]. 

In the casej = J, we have Ad (AX) = I,and A may 
be either 1 or -1; the choice of A affects only the 
eigenvalues of the eigenvectors of P belonging to t, 
while P defines in f an external real forml7 f+ - [see 
(B) and (C)]. 

We now write the results in terms of positive and 
negative eigenspaces of P: 

(A) f+ = s(gI(p, C) + gI(q, C), 

L = C(p x q) + C(q x p), 

t+ = C(p x q), L = R(p2) + R(q2), 

(B) f+ = sI(n, R), L = i· sI(n, R), 

t± = R(!n(n + 1», t± = ROn(n - 1», 

(C) f+ = su*(2n'), L = i· su*(2n'), 2n' = n, 

t± = {(~ j/)}, t~ = {(: _Sn)}' 
where H, A, and S are n' X n' complex matrices, with 
H Hermitian, A skew-symmetric, and S symmetric. 

C. Generalized peT 

Having defined P, we may as well define (external) 
operators T and e, in order to generalize the peT 
assignment. We impose PCT = ei'P, e and Tboth being 
of square unity and being represented by an anti
unitary operator whenever P is represented by a 
unitary operator. Evidently, we need to define only 
one of them, say T, e being then defined by C = 
PTei'P. Following again the method of Flato and 
Sternheimer,6 we have two choices. In the first one, 
we take T to be the principal anti-automorphism, 
which turns 9 to its opposite Lie algebra, having 
again the possibility of combining it with the in
volution which has value + 1 on f and -Ion t. The 
second choice consists of defining T, not by its action 
on the algebra's structure, but on the representations 
of the group C. We consider two complex conjugate 

representations U and U of C: T is then defined by 

U(Tg) . cP = U(g)'~' g E C, for every vector cp. 

Both definitions give an anti unitary operator which 
is not an element of (J. We have thus given a formal 
extension of the TCP assignment to the family of 
groups G n which contain the inhomogeneous 
Lorentz group. 

D. Representations of G 
To determine representations of (J knowing those of 

G, let g = sgs. We can thus associate couples of 
representations of G; that is, with U we associate the 

representation U, U(g) = U(sgs). The representations 

U and U are, in general, inequivalent. This always 
happens when U is unitary irreducible and not 
reduced to unity on the Abelian subgroup. In this 
case, we proceed as follows: We "double" the Hilbert 
space of U, and we put 

(
U(g) 0) 

U(g) = 0 U(sgs) ' if g E G, 

( 0 U(gS») if f E sG. 
= U(sg) 0 ' 

Thus, we obtain VIR's of G in which the discrete 
element s is represented by 

(~ ~). 
These representations provide a useful tool for the 
definition of P, e, and T on known representation 
spaces of G. 

II. ORBITS AND STABILIZERS 

A. First Decomposition 

The method used here to determine representations 
of G is that used by Wigner8 for the Poincare group. 
Macket,lO and Bruhatll have proved since then that 
this method can be generalized to any semidirect 
product of a reductive Lie group by an Abelian one. 
We thus have to decompose the dual to the Abelian 
subgroup into orbits and then find the representations 
of the stabilizer of one point of each orbit. 

In case of Gn , the dual R(n2) is isomorphic to R(n2); 
if both are represented by n X n Hermitian matrices, 
the bilinear form is 

(IX, A) = SpIXA, IX E R(n2), A E R(n2). (1) 

SL(n, C) acts on R(n2) according to 

IX . A = A *IXA, A E SL(n, C). (2) 

It is then easy to verify that an orbit is determined 
by Idet IXI = Mn and the triplet (p, q, r) = sign IX, the 
three integers denoting, respectively, the number of 
positive, negative, and null eigenvalues of IX. 
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Taking for standard element in each orbit the 
matrix 

and 
M· (/11 EiJ (-I,J), if M ¥= 0, 

we have the following result. 

Proposition 1: The little group corresponding to the 
orbit {M; (p, q, r)} depends only on (p, q, r) and is 

S(U(p, q) x OL(r, C» . C(r(p + q». 

Remark: By S(Gk X G'k'), when speaking of matrix 
groups, we mean the subgroup of G x G'determined 
by (det g)k. (det g')k' = l. 

We immediately obtain the following corollaries. 

Corollary 1: Every nondegenerate representation of 
G .. is determined by a positive number M, a partition 
of n into two integers (p, q), and a representation of 
SU(p,q). 

Corollary 2: Most degenerate representations of 
G .. are all the representations of SL(n, C). 

B. Second Decomposition 

When rep + q) ¥= 0, the little group G' is not semi
simple but is still a semidirect product of a reductive 
by an Abelian group. So we still apply the same 
method to determine its representations. 

G' is a matrix group: any g' E G' can be written 

g' = (u 0) , U E U(p, q), I-" E GL(r, C), 
zu I-" 

Z E £,(cv+q
; Cr ), det U' det I-" = l. 

Taking the dual Abelian group isomorphic to be 
L(Cr ; C,,+a), we have the bilinear form 

(" z) = tSp(z' + '*z*). (3) 
The action of the homogeneous part on the dual space 
is 

, ~ 141,1-". 
To decompose L(C(p + q); C(r» into orbits of G', 

we observe that U-l~ft denotes the same linear map
ping as " after changes of bases in C(r) and C(p + q), 

VI -E* +E* 

the latter being a (p,q)-pseudo-unitary one. Rank, is 
an invariant. Moreover, there is a metric induced on 
1m' by the (p, q) metric of C(p + q): There exists a 
basis of PI + ql + Sl mutually orthogonal vectors in 
1m ',PI of them having a positive square, ql a negative 
one, and Sl a null one. The triplet (PI' ql, Sl) is an 
invariant. 

Remark: The following inequalities obviously hold: 

Rank, = PI + ql + Sl ~ min (p + q, r), 

PI + Sl ~p, 

Sl ~ min (p, q), 

ql + Sl ~ q. 

Furthermore, if rank ,= r ~ p + q, we may 
associate with every , a vector '0, the components of 
which are the minors of rank r of ,. I-" acts on '0 like a 
scalar of modulus one, and 141 acts according to the 
rth fundamental (nonunitary) representation of 
SU(p, q),lS both keeping invariant a pseudo-Her
mitian product in C«~+q». The metric tensor is then 

with 

il < i2 < . . . < ir • 

There are no other invariants characterizing the 
orbits. We can thus state a theorem. 

Theorem 1: Orbits of L(C(r); C(p + q» are charac
terized by sign , = (PI' ql , Sl) and the real positive 
number Mo = lao 1'0)1. Mo is always zero if rank ,< r. 

Remark 1: If p + q = r, Mo = Idet "2. 
Remark 2: It is easy to check that orbits which 

differ only on Mo have isomorphic stabilizers. 

To determine the little group, we first find out its 
Lie algebra. Putting u = exp U and ft = exp M, we 
find 

Ell t(Al - A:) + iH HAl + Ai) - iH 

Ell t(Al + AD + iH l(Al - A*) - iH 

0 -F* F* 
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with 

VI E SU(Pl, ql), E E C«PI + Ql)SI), 

V{ E SU(p~, q{), F E C(p~ + q{)SI), 

Al E gt(SI, C), X E C(PI + ql)rl), 

Ml E gt(r1 , C), Y E C(SI . r1), 

H E R(sD (Hermitian), 

II = I(Pl) E8 (-J(Ql», J{ = I(p{) E8 (- l(qD), 

p{ = P - PI - S1' q{ = q - ql - SI, 

2SpV1 + SpV{ + Sp(2A1 - A~) + SpM1 = O. 

On the other hand, it is easy to find the discrete 
center of the little group; it is Zn. 

Theorem 2: The stabilizer Gil of the orbit (PI' ql, 51) 

of G' is the inessential extension of a reductive group 
R by a nilpotent one N; R is the group 

N is a central extension of the Abelian group A by the 
Abelian group B such that 

A = I:(C(PI + Ql), C(51» 
® C(C(p~ + q{), C(SI)) ® C(C(Sl), C(r1)), 

B = C(C(P1 + ql), C(r1» ® R(sD., 

The group law in N is 

n' n' = (H, X, Y, E, F)(H', X', E', F') 

= (H + H' + t(E/1E'* - E'/1E*) 

+ !(F/{F'* - F'I{F*), X + X' 

+ !(Y E'- Y'E), Y + Y', E + E', F + F'). 

The law in G", expressed as a semidirect product, is 

(VI' V~, A1,!tI)' (H, X, Y, E, F) 

= (AlHAt, I-'IXV1\ 1-'1 YA1\ AIEv1\ AIFvi-l
) 

. (VI' v; , Al , !tI)' 

Remark: The exponent 2;1 means that, in the deter
minant condition, one must take det ().2). *-1). 

C. Third Decomposition 

To study representations of group G" is much more 
tedious (in the general case) than in previous decom
positions, because the normal subgroup of the semi
direct product is no longer Abelian but, generally, 
nilpotent. The extension structure of G" is expressed in 

this diagram: 
1 

! ! 
1 

! 
l~B~N~A ~1 

~ ! ~ 
1 ~ B ~ Gil ---+ Gil /B ~ 1 

! ! ! 
l---+R ---+R ~1 

~ ! 
1 1 

The maximal Abelian normal subgroup is, in general, 
B ® C(C(5l); C(rl»; the action of Gil on the dual is 

(
H) ( At fIAI ) 
X -- U1

1
XI-'1 . 

Y All(y - E' X)!tI 

Orbits of H and X have been calculated in Secs. 
II.A and II.B. There is, however, a difference: when 
rank fI = 51 and rank X = rI , no determinants nor 
pseudonorms are conserved, since Al and 1-'1 are not 
unimodular matrices but only obey Idet Al . det 1-'11 = 
1. Thus, we have only the following invariant quan
tity: 

IIHII X 111'11 2
, 

where IIHI/ = Idet hi and IIXI/ is the (1l1~al) pseudo
norm of X as defined in (2). 

Orbits of Y depend on those of X. Let C(rI ) = 
El E8 Eo with Eo = Ker X; then r is the sum of its 
restrictions to El and Eo, i.e., f = 'f\ + '1"0' Then it 
is easy to see that rank '1"0 is the only discrete invariant 
characterizing orbits of r. There is no continuous in
variant if rank X + rank'l"o < ri' However, such 
invariants may arise in special cases, as, for instance, 
when X = 0 and 51 = r 1 , where IIHYII is conserved. 

The stabilizers will be of the form G'" = R' . (AB), 
where R' is a reductive group, determined as before. 
But here appears the following fact: In the extension, 
the maximal Abelian subgroup is no longer the second 
factor of a semidirect product, since its complementary 
is not a subgroup of G"'. Thus, one cannot consider 
R' by itself nor R' . B = Gill / A and apply again the 
Mackey-Bruhat procedure. If one tries to apply it to 
the whole group Gill, one finds the same maximal 
Abelian normal subgroup, the orbits being points and 
the stabilizer being G'" itself. So far, no method has 
been devised that gives all representations of such 
groups. 

We must note, however, that these difficulties arise 
when n becomes large. Few cases occur for n ~ 6, and 
the decomposition problems for larger n seem to 
present no physical interest. So we consider some 
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special cases in the next section, trying to cover all 
cases for small n. 

III. SPECIAL CASES OF DECOMPOSITION 

In this section, we consider some cases where further 
decomposition may be carried on; i.e., N is Abelian. 

A. Orbits without Null Vectors 

Since difficulties arise for the orbits of Sec. n.B 
which contain null vectors but not their positive and 
negative components, we shall consider orbits where 
such vectors do not occur, i.e., S1 = O. Then G" is the 
group 

S(!r(PI' ql) x U(p~, q{) x GL(rl»· C(r1(pt + qt», 

where only the underlined subgroups act on 

C(r1(PI + ql» 

(and where p~ may be smaller than qD. The decomposi
tion is already given by Sec. n.B and (r1' PI' ql) is de
composed into Pi, q2' p~, q;, S2, r2. In the same way, 
(', P, q) gives rise to PI , ql, p~, q;, SI, '1' If we take 
only orbits for which S2 = 0, for the same reasons as 
above, and repeat this procedure until we arrive at a 
reductive stabilizer, we obtain the series 

s(U(p~, q~) X U2(p~, q~) 

X ..• X Uk(p~, qD X Uk+1(Pk' qk) x GL(rk», 
such that 

n = rk + 1,j . (pj + qj) + (k + 1) . (Pk + qk)' 

We distinguish two series inside this formula: series 
(1) if rk ¥= 0, and series (2) if rk = O. 

A stabilizer belonging to (l) determines only one 
orbit, since this notation makes a distinction between 
U(p; , q;) and U(q;, p;) for P; ¥= q;, and thus all suc
cessive ranks and signatures are given. On the other 
hand, to the stabilizers belonging to (2) there corre
sponds a continuous spectrum of orbits since the 
( . Pk++'lk ) pseudonorm varies throughout all strictly 
Pk-l 'lk-l 

positive real values and does not affect the stabilizer. 
So we have: 

Theorem 3: There are two series of VIR's of G. 
Representations of series (1) are in I-to-l correspond
ence with those of the little group (l). Representations 
of the second series are determined by those of the 
little group (2) and by a strictly positive number. 

Remark: P; and q; may be zero, but Pk + qk ¥= 0 
(respectively, rk ¥= 0) in case (2) [respectively (I)]. 
k may take any value from 0 to n - 1 (provided we 
put Po = p, qo = q, '0 = r, p~ = q~ = 0). 

B. Orbits with Null Vectors 

Another case where the difficulties due to nil potency 
drop out is when PI = q~ = q1 = q' = 0 (thenp = q = 
s ~ ,); there are different results for SI = '1 and SI < 
rl' 

Case A: S1 = rl : The group G" is then 

Za x SL(SI; C) • R(sD, 

since the determinant condition gives 

det Al = exp Ciibr). 

We have immediately: 

Theorem 4: If n = 3n', to every representation of 
G ~ there correspond three representations of G n • 

Remark: The same type of little group may occur as 
a direct factor after the same steps of decomposition 
described in Sec. III.A are carried out, the other direct 
factor being reductive. 

Case B: SI < '1: Let (~, ,¥) = (fl, f) be an element 
of the dual Abelian subgroup. It transforms by 

Rank ~, sign ~, and rank'¥ are discrete invariants, 
but, since ~ and'¥ do not vary independently, orbits 
cannot yet be characterized. So we consider the orbit 
of,¥ when ~ is a fixed (p', q', r') Hermitian form. As 
a result, Al must be of the form 

Al = PoA1PO + PoA1P1 + PIA1P1 , 

where P1A1P1 belongs to a U(p', q') subgroup [in 
particular, Idet (P1AIPl)I = 11 and Po and PI are 
Hermitian idempotents such that 

Po + PI = I, Po~Po = 0, P1~Pl = ~. 

Since '¥ = Po'¥ + P1'¥, let us consider the orbit of 
P1'Y first: 

Po'¥ -40- (PoAl1po)' (Po'Y) '/-'1 + (PoAl1P1) . (P1'Y) '/-'1' 

P1'¥ -40- (P1Al1P1) . (P1'¥) . /-'1' 

According to previous results (see Sec. II.B), rank 
and signature of the vector space spanned by the col
umn vectors of P 1'Y are in variant. Calculating the corre
sponding little group by introducing projectors Qo 
and Q1' such that Qo + Ql = I, PI 'YQI = PI'Y, and 
P1'¥Qo = 0, one obtains, in particular, Ql/-'lQO = 0, 
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and, thus, 

Po'fQo - (PoA1
1po) • (Po'fQo) . (Qo,utQo) 

and rank Po'YQo is a constant, while PO'YQl varies 
arbitrarily. 

Searching for continuous spectra of invariants, we 
observe that Idet (PoA11Pol = Idet (Qo,u1Qo)1 > 0; so 
there is no continuous spectrum related to (Po'fQo). 
Examining Pl'f, we see that Idet ,uti is arbitrary, un
less PI = 1 (i.e., rank A = SI), in which case 

Idet ,uti = det I (PI A-IP1) I = 1. 

Then there exists a pseudonorm for PI'Y = 'Y I , if rank 
'Y = rank ,ul = r l . Finally, no continuous spectrum 
exists for A. Thus we have the following result. 

Orbit 

Sign A Successive rank 'Y 

+ 

( ) 1,1,"',10 
0 (~es 
- (1 ~ k ~ n - 3) 

Proposition: Orbits are characterized by sign d and 
(a) if rank d = SI and rank'Y = r1' by sign'Y and 

the (~~)-pseudonorm II 'YII, 

(b) if rank A = Sl and rank'Y < r 1 , by sign 'Y, and 
(c) if rank A < S1' by sign PI'f and rank Po'J!'Po. 

We shall not calculate explicitly the stabilizers, 
except in case SI = 1, sufficient for n ~ 6. 

If S1 = 1, the only cases for sign A are +, -, and O. 
Sign P1'f is no longer relevant since all columns of 'Y 
are parallel to one of them and rank 'I" is either 0 or 1. 
In the last case, further decompositions are easily done 
until a zero rank for some "Pi is obtained, in which case 
the stabilizer is reductive. We thus obtain three series 
of stabilizers. 

Stabilizer 

S(Uk+l;l(I, 0) x GL(n - k - 2» 

S(GLk+l:t(1) x GL(n - k - 2» 

S(Uk+l;t(O, 1) x GL(n - k - 2» 

(4) 
(5) 

(6) 

If the successive decompositions give no zero rank for any 'J!'i' we obtain the following terms, which eventually 
depend on an additional positive parameter II'YII. 

Orbit Stabilizer 

Sign A Rank 'I" Norm 'I" 

~} { 
MER+ S(UH'(I, 0)) } (4') 

(5') 1, 1, ... , 1 0 S(GLn-l:t(1» '" zn 
'-..-" 

n-3 MER+ s(un-1:t(0, 1» (6') 

Remark: Analogous series may occur after some 
steps of decomposition of type Sec. lILA. 

IV. DECOMPOSITION IN NILPOTENT CASES 
Here, we consider one case where there is "effective 

nilpotency." This is a starting point for more general 
nilpotent cases. 

Let the first decomposition be (p + 1, 1, 1) or (1, 
p + 1,1) and the second one SI = 1. We thus obtain 
Gil with the group law 

(t, ~, w)(t', ~', w') 

= (t' + t - ti(,*w,' e-iS 
- ,'*w,iS

), , + wr e-iS
, ww'), 

where 

t, t' E R, r" E CP
, W, W' E U(p), det w = e-2i

,9.. 

If we put u = we-i6 , we observe that 

w = u· (det u)-1/n = u· e i6 , 

i.e., Gil is the n-fold covering of the group r P defined by 

(t', ", u')(t, {, u) 

= (t + t' - ti(r·u'{ - {*u'*t), r + u'{, u'u). 
Since G" and r P are locally isomorphic, we study 

the representations of r p. Since Gil is the central ex
tension Zn ---+ Gil ---+ rp,all the representations of Gil 
are ray representations of r p. They are all obtained by 
allowing the character of the center U(l) of the reduc
tive subgroup U(p) of rp to be any integral multiple of 
27T/n. Thus, there correspond n representations of Gil 
to any representation of r p . 
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After observing that unfaithful representations of 
r p are either those of U(P) or those of U(p)' CP, 
which are known, we study the faithful representations 
that occur in the regular representation of r" . 

We proceed to the decomposition of the right 
regular representation. This immediately separates the 
representations which take different values on the 
center: 

(t,', u): F(t', ", u') 
-+F(t + t'+ tia*u'*,' - ""'u'O,,, + u",u'u). 

By the Fourier transform on Cv ® R ~ R(2p + 1), 
we obtain 

(t, "u): F(,t, z, u') -->- exp [i,tt + ii(,*z + z*m 
x F(,t, u-1(z - iA,), u'u). 

Different ,t's give inequivalent representations. 
Therefore, we now consider ,t #- 0 to be a constant. 
We write F(,t, z, u') = exp (-iz*z 1,t1-1) . <I>;.(z, u'); 
then we introduce a polynomial basis on the z's for 
<1>;., which spans a dense subspace of L2(01). 

Thus, we have 

<I>;.(z, u')-->-exp [-t IA\ '*' + ti(z*,(l + e) 
+ ,*z(l - e»] . <I>;.(u--1(z- iAO, u'u), 

where e = 1.-1 . \At. 
Now, to find a convenient polynomial basis, we 

search the expression of the infinitesimal generators of 
the nilpotent part. We take 

X =.i. = ~ + ~, 1 (2Z" = x" + iY", " O~Jl o'Jl Of:,Jl 

Y" =.i. = i(~ _ ~), or 22 = X" _ iY", 
O'YJJl o'Jl o~Jl 

and obtain, for ,t > 0, 

," '1
0<1>" 2 ," '1

0<1>;. + .- m Z,,'V;. = 111-_, ,,'V;. = -111- IZ,,'V;., 

OZ" OZ" 
and, for A < 0, 

'1 0<1>" . m 
Z,,<I>;, = 111-;-:- + I z,,'V " , 

vZJl 
- 0<1>" 
Z <1>" = - i,t - . 

" OZ fJ 

We now introduce the polynomial basis 

pt.~I(z, z*) = (h! k!rl( z - IAI :SZk, 
Pb,~I(z, z*) = (h! k!r1( z - 1).1 :Szk' 

where hand k are integral p-tuples. We recall the sym
bolic notation 

Ikl = I(a, b, c, .. ')1 = a + b + c + ... , 
k! = Ca, b, c, ... )! = a! b! c! .. " 
zIt = (Z1' Z2, Za, .. . )(a.b.c .... ) = z~· z~· z~· . " 

k ~ k' ~a ~ a' and b ~ b' and c ~ c' and, .. , 
k - k' = (a - a', b - b', c - c',' . '). 

We can now write 

<I>±I;'I(z, u) = .2 Ph."(U) . p~l;'l(z, z*), 
h." 

where hand k take any value. 
We calculate next the restriction of the regular rep

resentation to the subgroup CP = {(O, "l)}. Let 
p = l,tl and P = p-p (the case p+P can be automati
cally deduced by interverting Z and z). We can then 
write 

Ph•k = .2 em! (k - m)! (h - m)!J( - p)lm1zh-mzk-m, 
m 

where 0 ~ m ~ hand 0 ~ m ~ k. 
Carrying out the calculations, we obtain 

Pb•k -->- I [(j - m)! m! (h - m)lt1 

i.m 

with 
o ~ j ~ 00, 0 ~ m ~ h, 0 S m S j. 

That is, 

ph,LJ.1 -+ exp (tA,*,) O$~OO ( +i{ + o( :i,tn) 

. ( - i,tnb 
• (h !)-1 . ~L'" , 

p~~;'1 -->- exp (-lA,*,) I (-i' + 0 a. y 
051500 (+IAoJ 

. (i,t,? (hl)-1 . Pt~J.I. 

Thus, the infinitesimal generators of the nilpotent 
subgroup act only on the first p-tuple. Since this action 
is independent of the value of k, we may investigate 
the irreducible subspaces under the whole group by 
fixing h = O. 

We introduce the basis functions 

"P+IJ.I(Z, u) = I Pk(u)pt,l-ll = I piU)Zk. (k!)-l, 
k k 

"P-IJ.I(Z' u) = I cpk(u)Po:~J.1 = I cpiU)Zk. (k!)-l. 
k k 

We consider ,t > 0, i.e., holomorphic functions on 
CV, the case ,t < 0 being obtained by changing z to 
z and u to ii. 

Decomposing Pk(U) according to the characters of 
U(p), we have 

m (u) = '" DN(u);' eimro!" • Kk . 
't'k £.. h N.h.3.m' 

N,h,j,m 

where eiro = det u, U E (SU(p)/Zp), mE Z, IJN being 
the VIR of SU(p)/Z" with maximal weight N. 

But the space generated by the p+I.l.1 (respectively, 
P-IAI), Ikl being constant, is the space of the UIR of 
SU(p)!Z" , with maximal weight (0, 0, ... , 0, Ik\) 
[respectively, Okl, 0, ... , 0)], the center U(1) being 
represented by e iro • 1-->- e-il"lro (respectively, eil"lro). 
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Thus, the problem of decomposing the regular 
representation into irreducible components is equiv
alent to a reduction of the tensor product of two 
irreducible representations of SU(p). Since there is no 
restriction on the range of N, we have immediately the 
following result. 

Theorem: The regular representation of r:v is a 
direct integral of inequivalent unitary representations, 
each one labeled by a nonzero real number (character 
of the center). Furthermore, each of them decomposes 
into a direct sum of irreducible representations. Equiv
alence classes of the latter are in I-to-1 correspond
ence with VIR's of U(p). 

Remark: The theorem holds if we replace r:v by 
r(:v_q)Xq and U(p) by U(p - q)x U(q). r(:v-q)xa is de
fined by exactly the same group law as r:v, the reduc
tive group being U(p - q) x U(q) instead of U(p). 

V. RELATION BETWEEN 9n, sp(m, R), AND 
CREATION-ANNIHILATION OPERATORS 

Here we study the connection of the inhomogeneous 
sl(n, C) structure with creation-annihilation operators. 
In fact, the set of n paj .·s of these operators forms a 
nilpotent Lie algebra mn of dimension 2n + 1 with 
the commutation relations 

[Ai' Ail = t5iiI, [Ai' Ai] = [Ai, Aj] = 0, 
[A;. I] = [At, 1] = O. 

If now we consider the universal enveloping algebra 
Un of mn on the field R of real numbers and take its 
quotient by the center I, we find that the set of sym
metrized elements of degree two forms itself a Lie 
algebra, which is isomorphic to sp(n, R). One can 
immediately identify the correspondence between the 
generators of the two algebras by means of the com
mutation relations 

[HA;Aj + AjAi), HA!A! + A!A:)] 

= t5ikt(A:Aj + AjA:) + t5ih!(A:Aj + AjA:), 

[i(AiAj + AjAi), t(AkAh + AhAk)] 

= -t5ikHAhA j + AjAh) - t5il.!(Ai Ak + AkA;), 

[!(AiAj + AjAi), HAkA: + A!Ak)] 

= t5iht(AkAj + AjAk ) - t5ik!(AiA! + A!A;), 

[!(AiAi + AjAi)' !(A;A! + A!A:)] 

= t5ikt(A iA! + AkAj) + t5jd(AiA! + A:Ai ) 

+ t5ih!(A jA: + AZA j ) + t5 jh!CA iA: + A:Ai )· 

Remark: To simplify the notations, we do not show 
the division of every polynomial of degree 2 in Ai and 
Aj by I, which is, actually, the only correct way to 

write commutators in the quotient U nil: One cannot 
drop the division when dealing with representations. 
The correspondence to the matrix Lie algebra of 
sp(n, R) is 

2(E~ - E:t!),-....,AiAj + AjA;, 

2(E~+i + E~+j)'-"'" AiAj + AjAi' 
2(En+1 - E~H).-. A:t'A~ + A'!'A'!' I , t J ,t-

On the other hand, since we can always express 
sI(n, C) . R (n2) as a subalgebra of sI(2n, R)· R(4n2.), 
we can identify gn as a subalgebra of sp(2n, R).19 The 
generators of this subalgebra are 

2Xij = A;Aj + AjAi + An+iA!+i + A!+iAn+i} 

2~j = AiA!+i + A!+;Ai - AnHAj- AjAn+i 

E glen, C), 

~(Tij :: AiAj + AjAi + An+iAn+j + An+jAn+i } 
2Ulij - AiAn+i + An+jA; - An+iAi - AjAn+i 

E R(n2
). (Tu symmetric, real, 

iIXu skew-symmetric pure imaginary. 

To obtain sl(n, C) instead of gI(n, C), we must 
impose a trace condition to the generators, that is, 
Xii and Yu do not belong to the subalgebra, but 
Xii - Xii and Yii - Yjj do. On the other hand, if we 
want to consider the generalized Weyl Lie algebra Wn 
instead of the generalized Poincare gn (the former 
being the semi direct product of the latter by a real 
generator, the dilatation), all elements Xii (but not 
Yu) appear in W n • It is easy to derive representations 
of Wn from those of Gn, since the dilatation affects 
only the determinant of IX and not its signature. So, if 
det IX =;6 0, there will be one orbit for each signature; 
the little group may have any real number for determi
nant, so that the pseudonorm conservation of Sees. II 
and III drops. In fact, any representation of Wn con
sists of a direct integral over a class of inequivalent 
representations of Gn that have identical successive 
signatures and little groups. 

The relation between the structure of mn and gn is 
now established; we want to examine its effects on 
representation theory. 

Let An be the simply connected Lie group with Lie 
algebra mn • According to the general theory of repre
sentations of nilpotent Lie groups,20 all its represen
tations are known. Applying the Mackey-Bruhat 
method, we see that they form two series. The first 
series is isomorphic to the set of all representations 
of the Abelian group R(2n), the character of the center 
being trivial. These representations are not faithful. 

All faithful representations occur in the second 
series and are determined by the nontrivial characters 
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of the center. Passing to the Lie algebra, we see that 
every representation is characterized by a nonzero, 
pure imaginary number iA., which is the value of the 
Casimir I. Acting on V(Rn; dx), it may be put into one 
of two forms 

a 
U;.(Ak) = A. - , 

OXk 

U ;.(At) = iXk' 

U;.(I) = iA., 

- a U),(Ah) = A. - , 
OXh 

or OiA!) = -iXh' with A. > 0, 

0;.(1) = -iA.. 

Available results for sv(n; R) are obtained by this 
series only. From U;., one obtains 

* * a Jl 2Mki = AiAk + AkAi -4- 2Xk - + uik ' 
OX j 

. 02 

2~k; = A;Ak + AkA; -4- IA. --, 
OXjOXk 

-2Sk; = AjA: + A:Aj -4- iA.-1
• xjxk. 

Putting Hi = Mii and Yi = !~ii' Xi = lSi. and calcu
lating the value of the first invariant Casimir operator 
of sv(n, R), we find 

C = 1, Hi + (Xi + y;)2 - (Xi - y;)2 
i 

+ 1, MjkMkj + MkjMjk + Sjk~k; + ~kiS;k 
i<k 

= -l(2n2 + 1). 

It is easy to verify that the generators of sv(n, R) are 
expressed as skew-Hermitian operators. On the other 
hand, representations corresponding to different A.'S 
are either unitarily equivalent or contragredient, as we 
see by transforming the expressions above by the 
operator f(x) -4- A.-lj(A.-ix ). 

Two contragredient representations are not equiv
alent. Finally, as the example for n = 1 shows, these 
representations are not irreducible, but split into two 
irreducible inequivalent components acting respec
tively on the Hilbert spaces Je+ and Je-. Je+ (re
spectively, Je-) is the closure of the space spanned by 
polynomials of even (respectively, odd) degree in n 
real variables, everyone multiplied by the function 
exp (-!~x~). Thus, we have the following statement. 

Proposition 2: A necessary condition for a skew
Hermitian (Schur) irreducible representation of sv(n, 
R) to appear as a direct summand in a "squared" 
UIR of An is that the Beltrami-Laplace operator C 
has the value -l(n2 + i). In this case, the contra
gredient representation appears also as a direct sum
mand. 

An illustration of this result, which establishes that 
correspondence of structures need not be reflected by a 
correspondence in representations, is the case n = 1. 

For U;.(I!lI), we have 

Af(x) = A.j'(x), 

A*f(x) = ixf(x), 

If(x) = iA.j(x), 

which gives, for sV(I, R) '" sl(2, R), 

Hf(x) = xj'(x) + vex), 

Yf(x) = -!if"(x), 

Xf(x) = -tix2j(x), 
and 

C = H2 + 2(XY + YX) = -i. 
Let us call this representation dD and its contra

gredient dD. Examining it rapidly, we see that: 
(a) The vectors Hk. exp (-!X2), Xk. exp (-!X2), 

and yk. exp (-fx2) (respectively, Hk. [x' exp (-!X2)], 
X k

• [x' exp (-fx2)], and yk. [x' exp (-fx2)]) span 
the same dense subspace of the space Je+ (respec
tively, Je-), consisting of all even (respectively, odd) 
square-integrable functions of R into C. 

(b) The compact generator Y - X = tl(x2 - d2/ 

dx) is the energy operator for the I-dimensional -har
monic oscillator. Its spectrum is (n + f), n being odd 
for odd eigenfunctions and even for even eigenfunc
tions. Its period is 47T, while the unity element of the 
group sl(2, R) is equal to exp [27T(Y - X)]. 

From (a) and (b), we can conclude that 

Proposition 3: D is integrable to the direct sum of 
two inequivalent UIR's of the group [Z2' SL(2, R)],21 
the twofold covering of SL(2, R), having center Z4' 
The expression of the representation D in Je+ E8 Je- is 

exp tH:f(x) -4- eitt(etx), 

exp tX:f(x) -4- exp (-tftx2)f(x), 

exp t Y:f(x) -+ .1"-1 [exp (_titx2).1"f](X). 

We remark that the integrability and the connection 
with the harmonic oscillator can be easily generalized 
for n dimensions. 

Coming back to the general case, we notice that 
representations of 9n provide us with the spectra of 
many generators of sp(2n, R). But, since we cannot, in 
general, take the "square root" of a representation of 
sv(2n, R), we are not able to determine the spectra of 
the skew-adjoint operators Ai and A:' In particular, 
the operator L AiA~ + A:Ai is contained in Wn and 
its spectrum can be easily calculated for a given repre
sentation. In fact, in most interesting cases, its eigen
vectors are homogeneous polynomials on the variables 
(since its form is LXi' %xi ), which could be ex
pected, since we identify it with the generalized dila
tation. 
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CONCLUSION 

The main results can be summarized in the following 
way: 

(1) A "geometrical" study of involutive automor
phisms and antiautomorphisms of the groups G" is 
done, thus allowing the formal definition of TCP 
operators on groups containing the Poincare group. 
One must remark that the method used is not specific 
to the family G". 

(2) Many series of representations of G" are found, 
among them all those which enter the Plancherel 
formula. However, this formula is not explicitly given, 
because the Plancherel measure is not yet known for 
SU(p, q) in general. 

(3) The groups r vXq = R . N (with R compact
reductive, N nilpotent) are examined, and their regular 
representation is decomposed into irreducible parts. 
It seems that the method applied here, which makes 
use of the properties of a "good" polynomial basis on 
the infinitesimal generators of N, may also be success
fully applied in cases of groups r v,q (R noncompact) 
and even more general cases of such semidirect prod
ucts. 

(4) Structural and spectral relations are established 
between creation-annihilation operators and Lie al
gebras of the family G". Such a treatment has the 
physical meaning of connecting the group-theoretical 
and the quantum field-theoretical points of view. 

(5) A thorough physical application of these results 
has still to be done, in order to obtain useful informa
tion for group-theoretical problems in domains such 
as strong interactions or nuclear spectroscopy. We 
shall deal with these applications in forthcoming 
papers. 
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APPENDIX 

We give the list of inequivalent classes of representa
tions for small n in terms of orbits and little groups. 
This list is complete. Representations are characterized 
by an orbit decomposition; in this way, two representa
tions which are induced by inequivalent representa
tions of the same little group and which belong to the 
same orbit are not separated by this classification. [For 
example, for n = 2, the "physical" representations of 
;l'-that is, with strictly positive mass-which have 
mass M are classified in the same family regardless of 
their spin. The spin would appear only if one gave 
the list of all representations of the little group 
SU(2)]. 

Thus, the description ends at a stabilizer, the 
representations of which are supposed known. Apart 
from pseudo unitary and linear groups and their direct 
products, groups like r(v.(/) appear. rC:/J.(/) is defined in 
the same manner as rv = r(v.O) = r(o.v)' but its 
faithful representations are not yet calculated (except 
for r(v.O) described in Sec. IV). 

Orbits may be characterized by a continuous number, 
M > O. The significance of M is not specified in each 
case: It may denote the modulus of determinant or a 
pseudonorm, as it is described in Sees. II and III. 

Orbits are always characterized by discrete quanti
ties, like successive signatures and ranks of matrices. 
These are sometimes described by plus and minus 
signs or by integers denoting rank, but they are also 
described by the little group expressed adequately. In 
the next column, a simpler expression of the stabilizer 
is given [the notation GL(k) is used for GL(k, C)]. 
The notation A" B, where A and B are Abelian 
groups, denotes a central extension of A by B. 

TABLE I. n = 2. 

Continuous 
Series character Discrete quantity Little group Little group 

r+ SU(2,0) - SU(2)a 
(2) M +- SU(1,l) -SU(1,1)b 

SU(0, 2) -SU(2)o 

(2) M {! + S(U(1,0)2») -z: S(U(O, 1)2) 

(1) {! 0 S(U(l, O) X GL(l)} 
- U(1)e 0 S(U(O, 1) X GL(l)) 

(1) 0 8L(2) -SL(2) 

a Positive mass ,; M. 
b Imaainary mass ,; - M. 
o Nellative mass -,; M. 
d Zero mass, continuous spin M. 
e Zero mass, discrete spin. 
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Continuous 
Series character 

(2) M 

(1) 

(3) 

E. ANGELOPOULOS 

TABLE II. n = 3. 

Discrete quantities Discrete quantities (l.g.) 

+++ SU(3,0») ++- SU(2,1) 
+-- SU(l,2) 

SU(0,3) 

++ + S(U(I,O) x 0'(1,0))] 
+- S(U(l,O) x U2(0, 1) 
-+ + S(U(O,1) x U2(1,0» 

S( U(O, 1) x U'(O, 1) 

+ + + S( U3(l, O»} 
S(U3(0,1)) 

0 SL(3) 

+ 0 S(U(I,O) x GL(2») 
0 S(U(O, 1) x GL(2» 

++ 0 S(U(2,0) x GL(1»} 
+- 0 S(U(l,1) x GLO» 

0 S(U(2,0) x GL(l» 

+ + 0 S(U2(1,0) x GL(1») 
0 S(U2(0, 1) x GL(1) 

+- 1 " S(GV;I(1). R 

TABLE Ill. n = 4. 

Little group 

{
SU(3) 
SU(2,1) 

U(I) 

SL(3) 

U(I)'SL(2) 

U(2) 
U(l, 1) 

U(1) 

Z3 X R 

Continuous Discrete quantities 
Series character Discrete quantities (little group) Little group 

(2) M (p, q, 0) SU(p,q) SU(p,q) P +q =4 

(2) M (p, q, 1) 1+ S(U(p - I, q) X U'(l, 0» SU(p - 1, q) x UCO} 
(2) M (p, q, 1) 1- S(U(p, q - 1) X U2(0, 1) SU(q,p-l)xU(l) p+q=3 
(1) (p, q, 1) 0 S(U(P, q) x GL(l» U(p, q) 

(2) M r" S(U2(p, q» Z2 X SU(p, q) 
(2) M 1+1+ S(U(P -l,q) x U3(1,0» 

U(l) ) (2) M 1-1- S(U(P, q - 1) X U3(0,1» U(1) 
(1) (p, q, 2) 1+0 S(U(P - 1, q) x U'(l, 0) x GL(l»} U(1) x UO) P + q = 2 
(1) 1-0 S(U(P, q - 1) X U'(O, 1) x GL(l» 
(1) 0 S(U(P, q) x GL(2» U(I) • (SU(P, q) x SL(2» 

(2) M ) CI±I± S(U4(p, q» 

~ ] (1) 1±1±0 S(U3(P, q) X GL(l» U(l) 
p+q=1 (1) (p,q,3) b±O S(U'(P, q) X GL(2» U(l) X SL(2) 

(1) S(U(P, q) X GL(3» U(1) . SL(3) 

(1) (0,0,4) SL(4) SL(4) 

(p+l,q+l,1) I" S(GV;I(I) X U(p, q» • (C A R) Z4· r l p +q = 1 
(1,1,2) 1° S(GV;I(1) X GL(l}). (C X R) gives: 

(4) !} (S(U2 ;1(1, 0) x GL(l) U(1) 
(5) 0 S(GV;I(1) x GL(l)) GL(I) 
(6) S(U2;1(0,1) x GL(l}) U(1) 

(1,1,2) 1° 

(4') M !} (S(U3;1(1,0»} 
(5') 1 S(GV;I(l) Z, 
(6') M S(U3;1(0, 1» 



                                                                                                                                    

TABLE IV. n = 6. 

Continuous 
Series character Discrete quantities (little group) Little group 

(2) M SU(p,q) SU(p,q) p+q=6 

(2) M S(U(p - 1, q) X V2(1, 0» Z.o V(p - l,q)} p+q=5 (2) M S(U(p, q - 1) X U2(0, I» Zoo V(p, q - 1) 

(1) S(U(p, q) X GL(l» U(p, q) p+q=5 

(2) M S(V(P', q') X U2(Pl, qI» SV(p', q') X U(PI' ql) 
Ipl+ql=2 
lp' +q' = 2 

it' 
(2) M S(U(p', q') X U3(pl' ql» SU(p',q') X U(l)} Ip' +q' = 3 tTl 

." (1) S(U(p', q') X U2(Pl, ql) X GL(1» U(p', q') X U(1) lpl + q, = I it' 
(1) S(U(P,q) X GL(2» V(I) . (SUCp, q) X SL(2» p+q=4 tTl 

I;/'l 

Z. X U(p,q) p+q=3 
tTl 

(2) M S(U2(P,q» z 

r+ q

, 

..., 
> 

(2) M S( U(p', q') X U2(P", q") X U3(P2' q2» U(l) x U(l) } 
p" +q" ..., 

=1 .... 
(1) SCU(p', q') X U2(Pl, qI) X GL(l» U(l) x U(Pl,ql) p' +q' = 1 

0 
Z 

PI +ql = 2 I;/'l 

(2) M S(U(p', q') x U4(Pl' qll> Z.· U(p', q') } Ip' +q' = 2 
0 

(1) S(U(p', q') X U3(Pl, ql) x GL(1» U(p', q') x U(1) ." 

(1) S(U(p', q') X U2(Pl' ql) X GL(2» z.· [U(P', q') X U(l)· SL(2)] lpl + ql = 1 V:l 
(1) S(U(p, q) x GL(3» U(I) . [SU(p, q) x SL(3)] p+q=3 t'-t ,-... 

;:: 

(2) M S(U3(p,q» Zs X V(p,q} p+q=2 
~ (2) M S(U2(p', q') X U4(Pl, ql» U(I) X Z. } fp' + q' = 1 

(1) S(U2(P', q'} X U3(Pl, ql) X GL(I» U(I) x U(1) \Pl +ql = 1 :;d (1) S(U2(p, q) X GL(2» U(p, q) X SL(2) p+q=2 "'"' ;:: 
(2) M S(U(p', q') X U5(p" q,» 

V(ll ) '" ':-' 
(1) S(U(p', q') X V·(PI + ql) X GL(I» U(l) x U(l) PI + ql ..... 
(1) S(U(p', q') x US(PI + ql) x GL(2» U(l) x [V(I} , SL(2}] = p' + q' = 1 
(1) S(U(p', q') x U2(P1 + q,) X GL(3» U(l) x [U(I)' SL(3)] 

(1) S(U(P, q) x GL(4» U(I) , [SU(p, q) X SL(4)] p+q=2 

(2) M S(V6(P,q» 

Z, } (1) S(U5(p,q) x GL(l» UO) 
(I) S(U'(P, q) X GL(2» U(I) X SL(2) 

p + q =1 (1) S(U3(p, q) x GL(3» U(1) X SL(3) 
(1) S(U2(p, q) x GL(4» z.· rVo) , SL(4)] 
(1) S(V(P, q) X GL(5» U(1) . SL(5) 

(I) SL(6) SL(6) N 
00 
>0 
Vl 



                                                                                                                                    

N 
00 
\0 
0'1 

TABLE IV(bis). n = 6. 

Continuous 
Series character Discrete quantities Discrete quantities (little grOUp) Little group 

(p + 1, q + 1, 1) 1° S(G£2;I(I) x U(p, q» • (C· A R) Z6 • r(~ .• ) p+q=3 

(PI + p' + 1, ql + q' + 1,2) 2±0 S(GL2;1(1) x U(p', q') X U2(Ph ql»' (C2 A R) Z6' r 1X1 
{P' + q' = 1 
PI + ql = 1 

(3) (2,2,2) 2°° S(GL2;1(2» • R' Z. X G." 

(p + 1, q + 1,2) 1° S(GL2;1(1) x U(p, q) x GL(1». (C2 A (C x R» gives: 
rank 1: S(G£2;I(I) x U(p, q» • (C' A R) Z8' r (~ .• ) } 

p+q=2 
rank 0: S(G£2;I(I) x U(p, q) x GL(1». (C2 A R) U(1) x [R+· r(~ .• )] 

(p + 1, q + 1, 3) 2±0 S(G£2;I(I) x U2(P, q) x GL(I»· «C X C) A (C X R» gives 
rank 1: S(GL2;1(1) x U·(p, q» x R U(I) X Z. X R p+q=1 tr.I 
rank 0 S(GL2;1(1) x U"(p' q) x GL(I»· (C A (C X R» gives 

rank 1 S(G£2;I(I) X U"(P, q» • (C A R) z. X r 1 } 
> 
Z 

rank 0 S(G£2;I(I) x U"(P, q) x GL(I»· (C A R) U(I)·(R+·r1) 
p+q=1 

0 

(3) (p + 1, q + 1, 3) 2+-1 0 S(G£2;"(1) x U(p, q» X R U(1) X R p+q=1 
tr.I 
t'" 

(p + 1, q + 1, 3) 1° S(G£2;I(I) x U(p, q) x GL(2»· (C A (C X R» gives: 
0 
'tI 

ranks 1,1 S(GO;I(1) x U(p,q)' (C A R) Z6' r 1 } 

0 
C 

1,0 S(G£2;I(I) x U(p, q) x GL(1»· (C A R) U(1) X (R+· r 1) p +q = 1 t'" 
0 S(G£2;I(1) x U(p,q) x GL(2»· (C A R) [U(I) . SL(2)] x [(Z, X R+)· r 1] 0 

rIl 

(4) (1,1,4) 2+- 1° + 0 S(U3;2(1, 0) x GL(1» U(1) 
(5) (1,1,4) 2+- 10 0 0 S(G£2;2(1) x GL(1» GL(1) 

(6) (1,1,4) 2+- 1° - 0 S(U3;2(0,1) x GL(I» U(I) 

(4') M (1,1,4) 2+- 1° + 1 S(U';2(1,0»} 
(5') (1,1,4) 2+- 1° 0 1 S(GL4;2(1» Z6 
(6') (1,1,4) 2+- 1° - 1 S(U·;2(0, 1» 

(4) 

:} {~ 
S(Uk+l;I(I,O) x GL(4 - k» 

}1 ~ k ~ 3 (5) S(G£k+l;I(1) x GL(4 - k» 

(6) (1,1,4) 1° 
S(Uk+l;I(O,I) x GL(4 - k» 

(4') S(U';I(1,O»} 
(5') S(G£5;I(I» Z6 
(6') S(U';I(O, 1» 
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We investigate the time evolution of the correlation functions of a nonequilibrium system when the 
size of the system becomes very large. At the initial time t = 0, the system is represented by an equilibrium 
grand canonical ensemble with a Hamiltonian consisting of a kinetic energy part, a pairwise interaction 
potential energy between the particles, and an external potential. At time t = 0 the external field is 
turned off and the system is permitted to evolve under its internal Hamiltonian alone. Using the "time
evolution theorem" for a I-dimensional system with bounded finite-range pair forces,we prove the 
existence of infinite-volume time-dependent correlation functions for such systems, lim PA (I; ql, PI; ... ; 
q",pn), as A - 00, where A is the size of the finite system. We also show that these infinite-volume 
correlation functions satisfy the infinite BBGKY hierarchy in the sense of distributions. 

1. INTRODUCTION 

The rigorous mathematical study of equilibrium 
statistical mechanics during the last decade has 
achieved many successes. This study concerns itself 
primarily with the properties of equilibrium systems 
in the thermodynamic limit, i.e., as the size of the 
system becomes infinite at fixed temperature and 
activity (or density). In particular, the existence and 
analyticity of the correlation functions at small values 
of the activity z has been proven for a wide class of 
interacting systems.1 The existence and convexity of 
the free energy has been proven for an even larger class 
of systems at all values of the activity.z 

The comparable mathematical investigation of the 
infinite-volume limit of nonequilibrium systems is 
much more difficult and has begun only recently. The 
results are restricted to I-dimensional systems of 
particles interacting by smooth, finite-range pair 
forces, and they prove the existence for all times of a 
"regular" solution of Newton's equations of motion 
for a "regular" initial configuration. A regular configu
ration is, roughly speaking, one in which the number 
of particles in a unit interval and the magnitude of the 
momentum of any particle in that interval have a 
bound of the form 0 log R, where R denotes the 
distance of the interval from the origin. It is shown in 
Ref. 3 that, at equilibrium, if either the activity is 
small or the interparticle potential is positive, the set 
of nonregular configuration has probability zero. 

A question left open by these results is whether a 
state which at timet = 0 is described by a set of 
correlation functions can still be described by a set of 
correlation functions when t =;!: O. 

In this paper we investigate this question and prove 
that, for certain classes of initial states, the time
evolving state is described by correlation functions 
and that these correlation functions satisfy the 
BBGKY hierarchy in the sense of distributions 
[see (2.9)]. 

The initial states we consider can be described as 
follows: Suppose that the system is in equilibrium at 
temperature {3-1 and activity z under the influence of 
a pair potential and an external potential h which is 
localized in a finite region i". At time t = 0, we 
switch off the external field and the system begins to 
evolve. We prove that, if the activity is sufficiently 
small (i.e., if we are deep inside the gaseous phase), 
the system can always be described by a set of correla
tion functions which vary in time according to the 
BBGKY hierarchy. We are unable to prove even that 
the time-averaged correlation functions evolve toward 
the correlation functions which correspond to the 
equilibrium state at temperature {3-1 and activity z 
(in absence of external field), as would be expected. 
We are, however, able to prove that the time-averaged 
correlation functions converge to a limit satisfying 
the stationary BBGKY hierarchy. 

We note that initial states of the kind just described 
suffice, in principle, for the study of transport 
properties at low activity. 

2. DESCRIPTION OF INITIAL STATE AND 
SUMMARY OF RESULTS 

We consider a I-dimensional system of identical 
particles of unit mass, interacting through a stable 
pair-potential ctI(q) which has finite range and is 

2898 
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twice continuously differentiable. We denote 

The condition of stability says precisely that C < 00; 

it guarantees that the thermoqynamic functions are 
well defined. 1 

The initial states we consider will be equilibrium 
states, at inverse temperature p and chemical potential 
1-', for an interaction coming from the pair potential <I> 
and an external potential h(q) which is continuous and 
which vanish outside some bounded interval I". We 
will assume that the activity z [= eIlP (21T/P)t, in units 
where Planck's constant is unity] is small enough so 
that the Mayer series converges, i.e., 

z < B({3)-l exp (-PC - 1), (2.2) 
where 

B({3) =I dq lexp [-(3<1>(q)] - 11· (2.3) 

Under these conditions, the thermodynamic limit for 
the correlation functions is known to exist for h = 0.1.4 

Now let A denote a finite interval centered at the 
origin and containing I", and let 

n 

HA(ql, PI;"'; qn' Pn) = t 2,p~ + 2, <l>A(qi - qj) 
i=1 i<j 

(2.4) 

denote the Hamiltonian for a system of n particles, 
in the box A with periodic boundary conditions, 
interacting by the periodized 2-body interacti9n <I> A' 

(By <I> A we mean the potential obtained by per{odizing 
<I> with respect to A. In order that <I> A be unambiguous, 
we will assume that the length of A is at least twice the 
range of <1>.3) We let fA denote the time-evolution 
mapping in the periodic box A determined by the 
Hamiltonian HA • Finally, we let 

n 

h(ql' ... , qn) = 2, h(qi)' (2.5) 
i=1 

Here it is convenient to introduce a piece of notation. 
Instead of writing (ql' PI; ... ; qn' Pn) for a point of 
(R2)", we will write (x) ... If 

(X) .. =(ql,Pl;··· ;q .. ,Pn) 
and if 

(Y)m = (q{, p{;'" ; q;", p;"), 

we use (x) .. U (y)m to denote 

We also write d(x) .. for dql dpl ... dq .. dp ... 
We now want to consider the following situation: 

We start at time t = 0 with the equilibrium state in the 

box A with inverse temperature p and chemical 
potential I-' (and the external potential h as well as the 
interparticle potential <1». We let the state evolve in 
time with fA (without the external potential); we 
write down the correlation functions for the time
evolved state; and we study their behavior as A -+ 00. 

Physically, this situation corresponds to having a 
system in equilibrium in the presence of an external 
potential h, turning off the external potential at t = 0, 
and watching the evolution of the correlations func
tions as A -+ 00. 

Thus, we want to examine the correlation func
tions5 : 

1 00 ePIl(m+ .. li 
PACt; (X)n) = ::;- L '" d(x')m 

.!:.A m=O m! (AXRI 

X exp {-{3(HA + h)[fAt«x)n U (x')m)]), 

(2.6) 
where 

00 ePllmi 
SA = L -. d(x')m exp {-{3(HA + h)[(x')mJ}· 

m=O m! (AXRl'" 

(2.7) 
Our main results can be stated as follows: 

(i) If h is nonnegative, the limit as A -+ 00 of 
PA(t; (x)n) exists for all t and (x)n. 

(ii) If h is not assumed to be nonnegative, the limit 
as A -+ 00 of PACt; (x) .. ) exists in the sense of distribu
tions in (x)n for each t; the limiting distribution is 
actually a locally square-integrable function of (x)n. 
In either case, we will denote the limit by p(t; (x),,). 

(iii) The infinite-volume correlation functions 
pet; (x)n) satisfy the BBGKY hierarchy in the follow
ing form: For any Cl function f(x)n of compact 
support on (R2)n, we let 

Then pt(f) is a differentiable function of t and 

d 
dt Pt(j) = pt({H,f}) - pt(A), (2.9) 

where 

n 

H(ql, PI;'" ; qn' Pn) = ! 2, P: + !,<I>(q; - qi)' 
i=l i< i 

(2.12) 
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Equation (2.9) may be obtained from the standard 
formal BBGKY hierarchy5 by multiplying by the test 
function/(x) .. , integrating ovep (x .. ), and putting the 
g and p derivatives on the test function by integnttion 
by parts. 

(iv) If PO(x)n denotes the equilibrium correlations 
with no external potential, then for all n~ m > 0 

qn+1 + a, P .. +1; ... ; qn+m + a, Pn+m) 

= pet; ql' PI;'" ; qn' Pn) 

X Po(qn+1, Pn+1;'" ; qn+m' Pn+m)' (2.13) 

3. INFINITE SYSTEMS 

Although we did not need the theory of actually 
infinite systems to formulate our results, the proofs 
depend on this theory. We will summarize in this 
section the main results that we need. For more 
details, see Refs. I or 3. 

A locally finite configuration of particles is defined 
by giving a sequence (possibly finite) of positions 
and momenta (gi' Pi) such that each bounded interval 
in R contains only finitely many gi' However, since 
the particles are supposed to be identical, we identify 
configurations which differ only by the labeling of the 
particles. Thus, a configuration may be thought of as 
subset of phase space R2 with multiplicity, where the 
subset is just the set of occupied points and the 
multiplicity of each point is the number of particles 
at the point. We will let X denote the set of all such 
configurations. If X and Yare configurations belonging 
to X, we let X u Y be the configuration obtained by 
adding the multiplicities for X and Y. Also, if A c R, 
and if X E X, we let X n A denote the configuration 
obtained from X by omitting all particles whose 
positions are not in A. The set of configurations with 
all particles in A will be denoted by X(A). 

We will say that a function f on X is measurable in A 
if 

f(X) = f (X n A) 

for all X E :r:. There is a simple way to construct such 
functions. Let "P be a function on R2 such that 
"P(q,p) = 0 for q fj; A. Then define 

(! "P)(X) = ! "P(qi' Pi), 
i 

where X is determined by (qi' Pi)' If A -is bounded, 
there are only finitely many nonzero terms in this sum. 
Clearly, ! "P is measurable in A. We give :x: the 
weakest topology such that ! "P is continuous for all 
continuous "P(q,p) whose support in g is bounded. It 
can be convincingly argued that states of classical 

statistical mechanics should be identified with Borel 
probability measures on X (see Ref. 6). 

If A is a bounded open subset of R, the mapping 
X -+ X n A is Borel from X to X(A). A Borel 
measure Y on X defines therefore a measure Y A on 
X(A), i.e., a sequence Yn.A of symmetric Borel meas
ures on (A X R)n, n = 0, 1, 2, .... If each Y .. ,A is 
absolutely continuous with respect to Lebesgue 
measure, we define density distributions fA (x)n by 

dy n,A = fA(X)n d(x) .. !n! , (3.1) 

where fA(X)n!n! is the probability density of finding 
precisely n particles with position gl, ... ,g" in A and 
momenta PI , ... ,Pn' 

For any symmetric continuous function "P on 
(R2)n, with compact support, we define a function 
I"P on X by 

I tp( X) = I "P( qil ' Pil; ... ; qi", Pi,,), (3.2) 
il<i2<"'<ifl, 

where the configuration X is defined by (gi' Pi)' If y 
is a measure on X such that I "P is y-integrable for all 
such tp(x)n, then 

"P-+fdY(I"P) 

is a positive linear functional on the space of contin
uous symmetric functions on (R2)" of compact 
support, i.e., a symmetric measure on (R2)". When 
this measure exists and is absolutely continuous with 
respect to Lebesgue measure, so that it can be written 
p(x) .. d(x) .. !n! , we say that p(x)n is the nth correlation 
function of y. To recapitulate: The correlation func
tion p(x)" is defined by the relation 

f "P(x)np(x)n d~:n = f I "P(x) dy(X). (3.3) 

It is not hard to see that, if y has correlation func
tions of all orders, then density distributions exist and, 
forgl ,'" ,qn EA, 

P(ql, PI;'" ; qn' P .. ) 

= i f dq; dp; ... dq'.,. dp'.,. 
m=O J(AXm'" m! 

X fA,n+m(ql' PI; ... ; q'.,., p'.,.). (3.4) 

Conversely, if there exists a constant 1] such that, for 
all A and n, 

V(A) being the length of the interval A, the density 
distributions can be reexpressed in terms of the 
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correlation functions by 

It has been shownl that, for activities satisfying (2.2), 
the infinite-volume limits of the correlation functions 
for finite-volume equilibrium ensembles exist; they 
have the form 

P(ql' PI;'" ; qn, Pn) 
= P(ql, ... , qn) exp [-lf3(p~ + ... + p~)l, (3.7) 

that, for any continuous function 'P on X which is 
measurable in some bounded interval, 

lim 'P(ri (X n A)) = 'P(TtX) 
A->oo 

for X E :i:. The convergence is uniform for X in any 

fixed:i:~ and t in any bounded interval.s For any fixed 

15, (t, X) -+ TtX is continuous from R x :i:~ to X. If 
an appropriate labeling of the particles in 

where, for some real number ~, 
is chosen, then the (q;(t), p;(t)) solve the differential 

(3.8) equations 

for all n, ql,"', qn' and hence they satisfy an 
estimate of the form (3.5). Thus, a measure on X may 
be reconstructed from this set of correlation functions; 
we denote this measure Yo and call it the infinite
volume equilibrium state. It follows easily from the 
estimates in Ref. 7 that, jf 1jJ is a bounded Borel 
function on X measurable in some bounded set, then 

IdY01jJ = lim r dY(A)1jJ, (3.9) 
A-+oo JX(A) 

where Y(A) is the finite-volume grand canonical 
ensemble density [regarded as a probability measure 
on X(A)]. 

4. THE EVOLUTION THEOREM 

In this section we summarize the results of Ref. 3 
in a form convenient for our purposes. 

(i) The existence of a solution of the equations of 
motion has not been established for arbitrary initial 

data in X, but o.nly for a special set X of configura

tions. This set X may be written as the union of a 

family of subsets :1:a, where 15 runs through the 
positive real numbers. We have 

:i:~ :::> Xa., b ~ 15'. 

Each :i:" is compact in X. The sets :i:" are large in the 
sense that 

Yo(X) = 1, i.e., lim Yo(X "'Xci) = O. 
.1-+00 

In fact, a slightly stronger statement is true 

lim Y(A)(X(A) n ±a) = 1 
" .... 00 

uniformly in A for large A. 
(ii) The crux of the existence of time evolution is 

contained in the following statement: There is a 1-

parameter group of mappings Tt of ± onto itself such 

(iii) The mapping (X, X') __ X u X', sending X x X 

to X, is continuous. If X E Xa and X' E Xa., then 

Xu X'E::i:aH" 
(iv) Every point in (R2)n determines a point in X 

representing a configuration of exactly n particles. 
We will usually fail to distinguish between (x)n as a 
point of (R2)n and the corresponding point in X. The 
mapping from (R2)n to X so defined is continuous 
and the image of each bounded set is contained in 

some Xci' 
(v) The equilibrium measure Yo on X (more pre

cisely. the measure obtained by restricting Yo to X) is 
invariant under yt for all t; i.e., if E egis a Borel set, 
then 

5. INFINITE·VOLUME LIMITS OF TIME· 
DEPENDENT QUANTITIES 

Proposition 1,' Let 1> and 1jJ be functions on X, both 
measurable in some bounded interval I. We assume 1> 
to be continuous and 1jJ to be a Borel function. We 
also assume that, for some real number a., 

11>(X)1 ~ exp [a.Nr(X)], (5.1) 

I 1jJ(X) I ~ exp [a.Nr(X)] (5.2) 

[where N reX) is the number of particles in the interval 
I for the configuration X]. Then 

(i) 1jJ( y)1>(Tt y) is Yo integrable and 

i dYo(Y)1jJ(Y)1>(Tty) 

= lim r dY(A)(Y)V'(y)1>(f~Y). (5.3) 
A .... oo JX(A) 
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(ii) If 4> is further assumed to be bounded, then, 
for any (x)" E (R2)", 1p( Y)c/>(Tt (Y U (x),,» is Yo integ
rable, and 

i dYo(Y)1p(Y)4>(Tt (Y U (x),,» 

= lim r dY(/\)(Y)1p(Y)4>(T~ (Y U (x),,». (5.4) 
A-+oo Jx(A) 

The integral varies continuously with (x)". 

Proof' There exists a real number ~ such that the 
nth correlation function of Y(A), PA(X)" satisfies 

PA(X)" S ~"exp (-!,Bi~/~)' 
(x)" = (ql' Pi; ... ; q", p,,) (5.5) 

for all n, (x)", and all sufficiently large A. This 
inequality persists for the infinite-volume correlation 
functions. By (3.6), the probability of finding precisely 
N particles in I, with respect to any Y(A) or with respect 
to Yo, is majorized by 

(n!)-1[~(27T/,B)tV(l)]n exp [H27T/,B)tV(I)]. (5.6) 

It follows that exp [IXNJC Y)] is square-integrable with 
respect to each Y(A) and with respect to Yo and that 
its square-integral has an upper bound which is in
dependent of A. By (5.1) and (5.2), 4> and 1p are 
both Yo square-integrable and, since Yo is invariant 
under Tt, "p 0 Tt is also Yo square-integrable. By the 
Schwarz inequality, then, 1p( y)4>(Tt Y) is yo-integrable. 
Similarly, if 4> is bounded, 'I{J(Y)rP(Tt (Y U (x),,» is 
Yo integrable. By 4(ii)-(iv), Tt (Y u (x),,) varies con
tinuously with (x),,; hence, 

f dYo(Y)1p(Y)rP(Tt (Y u (x),,» 

is a continuous function of (x)"' by the Lebesgue 
dominated-convergence theorem. 

Because of the boundedness of the square-integrals, 
replacing 4> by -A if 4> S A, rP if -A S 4> S A, and A 
if rP ~. A with A large, makes a change in 

J dY(A)1p(rP 0 Tt) 

which is small uniformly in A. Hence, in proving (5.3), 
we can assume that rP is bounded. In this case, (5.3) 
is a special case of (5.4). In a similar way, we see that, 
in proving (5.4), "p may also be assumed to be bounded. 

To prove (5.4), assuming 'I{J bounded, we choose 
E > 0 and then choose CJ large enough so that 

A 

Y(A)(X(A)""X,,) < E, for all sufficiently large oA, 
(5.7) 

and 
Yo(X""X,,) < E; 

this is possible by (i). Now, by 4(ii)-(iv), the mapping 

Y --+ $(Tt (Y u (x),,» 

is continuous on J::", and J::" is compact in X. The 
collection of all functions on :1:0 , which are restrictions 
of continuous functions on X measurable in bounded 
intervals (the interval may vary with the function), is 

an algebra of continuous functions on :1:" containing 
the constants and separating points. Hence, by the 
Stone-Weierstrass theorem,9 there is a continuous 
function $1 on X, measurable in some bounded 
interval, such that 

IrPl(Y) - 4>(Tt (Y U (x),,))! < E (5.8) 

for all Y E X". We can also assume 

(5.9) 
Because 

lim 4>(T~ ([Y U (x),,] (l A» = 4> (Tt (Y u (x),,» 
A'" 00 

uniformly for Y E X" (by 4.(ii»);.ve have 

l4>l(Y) - 4>(T~ (Y U (x),,»1 < E (5.10) 

for all sufficiently large A and all Y EX" (l X(A). 
Now 

lidYo(Y)1p(Y)rP(Tt (Y U (x) .. » 
- r dY(A)"PCy)4>(Tl (Y U (x),,»' 

JX(A) I 
S lidYO(Y)1p(Y)[4>(Tt (Y u (x),,» - rP1(Y)JI 

+ I r dYo(Y)"P(Y)4>l(Y) -f dY(A)(Y)"P(Y)rPl(y)1 J x X(A) 

+ I r dY!A)(y)1p(Y)[rPl(Y) - rP(11 (Y U (X),,»}!. 
Jr.!/\) 

(5.11) 

The first term on the right of (5.11) is majorized by 

Ii dYo(Y)1p(Y)[4>(Tt (Y U (X)n» - 4>l(Y)JI 
:t" 

+ If dYo(Y)1p(Y)[rP(Tt (Y U (X)n» - rPl(y)}1 :r;,:t6 

S 1I1p1l00 £ + £ /I 'I{J/I 00 (2/irPlI",,) = £ 1I'I{J/loo(1 + 2I1rPlI",,). 

[We have used (5.7), (5.8), and (5.9).] Similar argu
ments show that the same quantity majorizes the 
the third term on the right of (5.11) provided that A 
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is large enough so that (5.10) holds. Finally, the 
middle term on the right of (5.11) approaches zero 
as A ->- OCJ by (3.9). Hence, for A sufficiently large, 

II xdYo(y)1p(y)c/>(T
t 
(Y U (X)n» 

-f dY(A)(Y)1p(Y)c/>(T~ (Y U (X)n»1 
X(A) 

~ 3€ II 1p11 00 (1 + 2 11c/>1100)· 

Since € > 0 is arbitrary, (5.4) follows. 

Corollary 1: Assume the external potential h is 
nonnegative, and let the time-dependent finite-volume 
correlation functions be defined as in (2.6). Then 

lim PACt; (X)n) 
A-+ao 

exists for all t and (x)n and the convergence is locally 
uniform in (x)n. Furthermore, 

lim PACt; (X)n) = ePlln r dyo(Y) 
A-oo Jx 

x exp [-P ~ h(T-t (Y U (X)n))] 

X exp { - P[H(x)n + W«X)n, Y)]} 

x (Ix dYo(Y)e-Pl:h(Y)f, (5.12) 

where 

W«X) " , Y) = ~ c/>(qj - q~); 
i,; 

Y = (q;, p;), and the limit is a continuous function 
of (X)n. 

Proof: From the definition of PACt; (x)n) and the 
fact that 

(conservation of energy), it follows that 

PACt; (X)n) = ePllnf dY(A)(Y) 
X(A) 

x exp [-P ~ h(T~ (Y U (X)n))] 

x exp {-P[H(x)n + W«X)n, Y)]} 

x (f dY(A)(Y)e-Pl:h(y))-l; (5.13) 
X(A) 

the corollary then follows by straightforward applica
tion of Proposition 1. 

Corollary 2: Let the time-dependent finite-volume 
correlation functions be defined as in (2.6), and let 
the external potential h be any continuous function of 

compact support. Let f(x)n be any continuous func
tion of compact support on (R2)n. Then 

lim I d(x)n PACt; (X)n)f(X)n 
A--+oo n! 

= I dyo(Y) exp [-P(~ h)(T-tY)](~f)(Y) 

x (I dYo(Y)e-pl:h(y)f; (5.14) 

moreover, there exist locally square-integrable func
tions p(t; (X)n) such that 

lim I d(x)n PACt; (X)n)f(X)n 
A-oo n! 

= I d~~)" pet; (X)n)f(X)n, (5.15) 

for all continuous f of compact support. 

Proof' Again, by the definition of the finite-volume 
correlation functions and the conservation of energy, 
we have 

I d~~)n PACt; (x)n)f(X)n 

= I dY(A)(Y) exp [-P ~ h(f:\ty)] ~f(Y) 

(5.16) 

thus (5.14) follows from Proposition 1. The existence 
of the infinite-volume correlation functions pet; (X)n) 
as locally square-integrable functions (and not merely 
as measures) follows from the fact, easily verified, that, 
if 0 is any bounded open set in (R2)n, the mapping 
f ->- ~ f from the space of continuous functions with 
support in 0 to the space of continuous functions 
on X extends to a continuous mapping from 
L2(Q, d(x)n) to V(X,'dyo)' Hence, since e-:Eh(') E 

V(X, dyo), the mapping 

extends to a continuous linear functional on V(O) 
and is therefore given by a function square-integrable 
onO. 

6. THE BBGKY HIERARCHY 

Theorem 1: Let 1p be a nonnegative function on X 
with 

J 1p(Y) dyo(Y) = 1 and J 1p(y)2 dyo(Y) < 00. 
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Let I' denote the probability measure 1p(Y) dyo(Y) on 
X, and let yt be the time-evolved measure defined by 

f cp(Y) dyt(y) = f cp 0 TI(y) dy(Y). (6.1) 

Then yt has correlation functions of all orders, and 
these correlation functions are locally square-integ
rable. Moreover, for any function f which is infinitely 
differentiable and of compact support on (R2)n, 
J dyt I f is a differentiable function of t, and 

:t f If dyt = f I ({H,f}) dyt - f I h dyt, (6.2) 

where the notation is defined in (2.10)-(2.12). 

Proof: By a simple calculation, using the invariance 
of Yo under T t , we have 

dyt = (1p 0 Tt) dyo, 

f dyo 11p 0 Ttl2 = f dyo 11p12 < 00. 

Thus yt is obtained from Yo by multiplication by a 
square-integrable function. The arguments used in the 
proof of Corollary 2 show that this implies that yt has 
locally square-integrable correlation functions of all 
orders. On the other hand, 

f I fdyt = f I [foTt(y)]1p(Y) dyo(Y). (6.3) 

It follows readily from4~(ii)that, for any infinitely " , 
differentiable f and Y EX, 

:t I f(Tty) = I ({H,f})(Tty) - I heTty). (6.4) 

The right-hand side of this expression may be verified 
to be Yo-square-integrable; hence, its absolute value 
is I' integrable, and the integral is a bounded function 

of t. The complement of:i: has y-measure zero. Hence, 
by standard theorems about differentiation under the 
integral sign, 

:t f I !d;/ = f[~ ({H,!D - I fd dyt, (6.5) 

which is just Eq. (6.2). 

Corollary 3: Equation (2.9) holds. 

Proof: The p(t; (x)n) are the correlation functions 
of the measure obtained by evolving in time the 
measure 

e-PIh<Y) dyo(Y) / f dYo(Y')e-PIh<Y') 

[by Sec. 4(iii)], and e-pr.h(Y) is Yo-square-integrable. 

7. CLUSTER PROPERTIES 

Let Ta denote the operation of translation by a, 
acting on X, i.e., Ta(qi, Pi) = (qi + a, Pi)' The 

equilibrium state Yo is invariant under Ta and has 
strong cluster properties under the action of Ta' For 
a detailed discussion of these cluster properties, see 
Ref. 1; we will need the following fact, easily deduced 
from the results in this reference: If 1p and cp are func
tions on X which are y~-square-integrable, then 

lim fdYo(Y)1p(Y)Cp(TaY) 
[aJ .... <X) 

= f dyo(Y)1p(Y) f dyo(Y)1p(Y). (7.1) 

Using this result, we will prove the following: 

Theorem 2: Let the p(t; (x)n) be defined as in 
Corollary 2, and let PO(x)n denote the nth correlation 
function of the equilibrium measure Yo. Then, for 
continuous symmetric functions !(x)n, g(Y)m of com
pact support, 

lim fd(X)n d(Y)m!(x)ng(Y)mP (t; (x)n U Ta(Y)m) 
JaJ .... <X) 

= f d(x)n!(x)np(t; (x)n) f d(Y)mg(Y)mPo(Y)m' (7.2) 

Proof: Let ga(Y)m = g(TiY)m), and let Xa be the 
function on X defined by 

Xa«qi'P;»=( 1 )' I' !(qil'Pil;"';qifl,Pi,) 
n + m .ib"·,in+m 

X ga(qin+t' ... ,Pin+.J, (7.3) 

where the sum I' is to be taken over all (n + m)
tuples of distinct indices. Since! and g both have 
compact supports, for sufficiently large a, 

f(qil , ... ,pi)giqin+1
' ••• ,Pin+J = 0 

if any ik , 1 ~ k ~ n, is equal to any i., n + 1 ~ e ~ 
n + m. Hence, for such a, 

1 
Xi(qi' Pi» = ( + ),. I'f(qi' ... 'Pin) 

n m. 'b''',tn 

X I' giqin+l' ... , Pi fl +m), 
in+l • .. ,in+m 

n'm' Xa(Y) = . . (I !)(Y)(I g)(TaY). (7.4) 
(n + m)! 

Ifwe let 

"P(Y) = e-PIh<Y) (f dYo(YI)e-PIh<Y'Tl, (7.5) 

then Corollary 2 and the definition of correlation 
functions gives 

1 fd(X)n d(Y)mf(x)ng(Y)mP (t; (x)n U Ta(Y)m) 
(n + m)l 

= f dyoCY)"P(T-ty)Xa(Y) 

= . . dYo(Y)"P(T-tY)(I f)(Y)(I g)(TaY ) n'm' f 
(n + m)! 

(7.6) 
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for large a. Since any power of "P, I j, or 2 g is Yo· 
integrable, it follows from (7.1) that 

lim fd(X)n d(Y)m!(x)ng(Y)mP (t; (x)n U TaCY)m) 
!al .... oo 

= n! m! (f dyiY)w(lt y) '2 I(y») 

x (f dyo(Y) '2 g(y») 

= (f d(x)n!(x)np(t; (X)n)) 

x (fd(Y)mg(Y)mPo(Y)m) , 

which is just (7.2). 

8. REMARKS 

We have seen that the infinite-volume correlation 
functions pet; (x),,) are the correlation functions for 
a measure obtained by multiplying the equilibrium 
measure Yo by "P 0 r-t , where "P is defined in (7.5). 
We may define time-averaged correlation functions 

these are the correlation functions of the measure 
obtained by multiplying Yo by 

fiip = 11 SoT dtW 0 r-t• (8.2) 

By the mean ergodic theorem,I° 1pp converges in 
VeX. dyo} to some limiting function fiioo which has 
Yo-integral unity and is invariant under Tt. As in the 
proof of Corollary 2, the measure Yoo obtained by 
multiplying Yo by 1p"" has locally square-integrable 
correlation functions p(x)". Trivially, we have 

f d(X)nl( ) - () -
X "Poo X " -

n! 

fdYo1poo ! I = lim fdYo1pp '2 I 
T-+oo 

= lim f d(x)n l(x)"p(T; (x),,), (8.3) 
P-+oo n! 

i.e., 

in the sense of distributions. 
Moreover, the measure r 0() is time invariant and is 

obtained by multiplying Yo by a square-integrable 
function. Hence (Theorem 1): its correlation functions 

must satisfy the stationary BBGKY hierarchy. We 
have thus shown that the time-averaged correlation 
functions tend, as T ~ 00, to stationary correlation 
functions. Unfortunately, we do not know that these 
stationary correlation functions are the equilibrium 
ones.ll This would follow if it could be proved that 
the equilibrium measure Yo is ergodic with respect to 
Tt. The ergodicity of the low-activity equilibrium 
measures is the outstanding problem in the theory of 
the time evolution of I-dimensional systems, and no 
serious attack has yet been made on it. 

Recently, Ruellel2 has shown that, for a large class 
of potentials (the so-called superstable potentials) 
and for arbitrary temperature and activity, the finite
volume correlation functions satisfy an inequality of 
the form (5.5), where ~ may be chosen to be inde
pendent of A. One can construct infinite-volume 
equilibrium measures by taking limits along subse
quences of boxes converging to infinity; the equi
librium measures obtained in this way need not be 
unique (i.e., they may depend on the particular se
quence of boxes chosen), but anyone of them is 

concentrated on X, invariant under Tt and has corre
lation functions satisfying (5.5). It is easy to see 
that all our results, except those in Sec. 7, extend with 
appropriate modifications to apply to states obtained 
by making local perturbations on these equilibrium 
states. 

.. Alfred E. Sloan Foundation Fellow. also supported in part by 
U.S. Office Naval Research. Contract N OOO14-69-A.Q200-1002. 

t Supported in part by the U.S. Air Force Office Special Research. 
under Grant 68-]416. . 

1 D. Ruelle, Statistical Mechanics (Benjamin, New York. 1969). 
2 J. L. Lebowit:/; and E. Lieb, Phys. Rev. Letters 22, 631 (I969). 
a O. E. Lanford. Commun. Math. Phys. 9. 126 (1968); 11, 257 

(l969). 
'The existence of the eqUilibrium correlation functions for 

h ~ 0 for the systems considered here is a consequence of our 
general results. It may also be proven independently for all 
dimensions. 

'See, for example, N. N. Bogoliubov, J. Phys. USSR 10,265 
(1946) ("Problems of a Dynamical Theory in Statistical Physics," 
trans!. E. Gora, Providence College, Providence. R.I.. 1959.) 

I D. Ruelle. J. Math. Phys. 8, 1657 (1967). 
, D. Ruelle. Attn. Phys. (N.Y.) 25, 109 (1963). 
8 The last statement. which is the heart of the evolution theorem, 

means in effect that. if we concentrate our attention on the motion 
(during a finite time t) of the particles of a given configuration which 
are initially in a certain finite interval, their motion will not be much 
affected by the particles initially very far away (the actual size of the 
"region of influence" will. of course, depend on t and 6). It is this 
intuitively reasonable statement which provides the key to our 
ability of controlling the dynamics of our system at least to the 
extent of proving the rather primitive results of this paper. 

8 L. H. Loomis, Abstract Harmonic AnalYSis (Van Nostrand, 
Princeton. N..J;., 1953). 

10 See P. R: Halmos, Lectures on Ergodic Theory (Chelsea. New 
York, 1956). 

11 The fact that the equilibrium correlation functions. for low 
activity, satisfy the BBGKY hierarchy even in higher dimensions 
and for more general potentials has been proven by G. Gallavotti, 
Nuovo Cimento S2b, 208 (1968). 

18 D. Ruelle, Commun. Math. Phys., to be published. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME II, NUMBER 9 SEPTEMBER 1970 

Stationary States for a Nonlinear Wave Equation 

MELVYN S. BERGER* 

Belfer Graduate School of Science, Yeshiva University, New York, New York 10033 

(Received 10 February 1970) 

Global variational methods are used to derive mathematically rigorous results on the existence and 
nonexistence of stationary states for some nonlinear wave equations (e.g., the nonlinear Schrodinger 
equation and the complex nonlinear Klein-Gordan equation). A priori estimates useful in the study of 
stability of stationary states are also derived. 

INTRODUCTION 

A typical nonlinear wave equation to be discussed 
here can be written 

i au = ~u + f(lxl, luI 2)u, at (1) 

where x is a point in IR 3 , f(lxl, lul 2
) is a real-valued 

function, jointly continuous in x and lul 2 with 
f(lxl, s) = 0(1) as s -+ 00, and ~ denotes the 3-
dimensional Laplacian. A complex-valued function 
u(t, x) is called a stationary state for (1) if 

(a) u(t, x) satisfies (1) on IR 1 X IR 3 and 
(b) u(t, x) = eWv(x) where A. is some real number 

and vex) is a smooth real-valued function defined on 
IR 3 tending to zero exponentially as Ixl -+ 0, but not 
identically zero. 

We will suppose that fOxl , lul 2
) = kOxl) lui" with 

o < r1 < 4 and k(lxl) a Lipschitz continuous positive 
bounded function [with ° S kl s k(lxj) S k2 < 00 

for all IxlJ. Then we shall show that, for fixed A. < 0, 
Eq. (1) possesses a countably infinite number of 
distinct stationary solutions un(x, t) = ei.l.tvn{x). On 
the other hand, if (J ~ 4 with f(lxl, lul 2

) = lui" as 
above, we show that (1) possesses no stationary 
solutions for any A.. To demonstrate the existence of 
the desired stationary states, we shall find the station
ary states of (1) on a sequence of spheres SN == 
{x Ilxl s N} and find the desired result by letting 
N -+ 00. The negative result mentioned above is 
obtained by proving the existence of a simple 
"integral invariant" for solutions of (1) and showing 
that for (J 2 4 only u(x, t) == 0 satisfies such an 
equation. Analogous results for the nonlinear Klein
Gordan equation 

a2u ot2 = ~u - m 2u + fOxl, luI 2)u, m ~ 0, (2) 

are discussed in the Appendix. 

1. A VARIATIONAL PRINCIPLE FOR 
STATIONARY STATES 

Setting u(x) = ei·l.tv(x) in (1), we obtain the follow
ing equation for vex) and A.: 

~v + f(lxl, v2)v + AV = O. (3) 

By a result of Kato,l if vex) -+ ° exponentially as 
Ixl -+ 00, Eq. (3) has no nonzero solutions for A. > O. 
Furthermore, if we assume fOxl, v2

) is homogeneous 
of degree s > 0 in v2 and define the function F(x, v2) 

by the relations 

of av = f(lxl, V2)V, F(O) = 0, (4) 

then the following lemma holds. 

Lemma 1: Stationary states of (1) cannot exist for 
A > O. For fixed A S 0, the stationary states of (1) 
are (apart from a constant multiplier) critical points 
(which vanish exponentially at infinity) of the func
tional 

subject to the constraint 

f (VV)2 + IAI v2 = R, R a nonzero const. JIR3 
Proof: Indeed, any critical point described in the 

statement of the lemma vanishes exponentially at 
infinity, is nonzero, and satisfies an equation of the 
form 

~v - IAI v + q(lxl, v2)8 = 0, c ~ 0. (5) 

Since f is homogeneous of degree s, v = clsv satisfies 
(3). 

As in the Introduction, we shall assumef(lxl, v2) = 
k(lxj) Ivl". Then, in order to find radially symmetric 
stationary states v = v(/x!), we set Ixl = rand 

2906 
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rver) = w(r). Then w vanishes at x = 0 and satisfies 
the ordinary differential equation 

d2w - - IAI w + r-ak(r) Iwla w = O. (6) 
dr2 

The analog of Lemma 1 can then be stated. 

Lemma 2: The radially symmetric stationary states 
of (1) (apart from a constant multiplier) are in one
to-one correspondence with the critical points (which 
vanish exponentially at infinity) of the functional 

G(w) = L~' r-"k(r) Iwla+2 dr, 

subject to the constraint 

fl' (w2 + IAI w2
) dr = R, R = const. 

2. CRITICAL POINTS ON BOUNDED INTERVALS 

We approximate the critical points of Lemma 2 
(which we denote by Coo) by finding the critical 
points C N of the functional 

GN(w) = iN r-ak(r) Iwl a+2 dr, 

subject to the constraint 

1N(W2 + IAI w2
) = R, 

over the admissible class H N consisting of all abso
lutely continuous functions w(r) with square-integrable 
derivative over [0, N] such that w(O) = weN) = O. 
The class HN is a Hilbert space with respect to the 
inner product 

(u, V)HN = iN(uv + IAI uv) dr. 

Thus, the constraint 

f:(u 2 + IAI u2
) dr = R 

implies that we allow as admissible functions those 
functions u with IIullH2 = R. 

N 

In order to establish the existence of critical points 
eN in the class H N, we prove the following result. 

Lemma 3: (i) For each function w(x) E Hoo and 
o ~ (J ~ 4, IAI ¢ 0, 

where Ka .). is a constant independent of w. Further
more, 

Oi) the mapping £. of HN - L a+2 [0, N] {the space 
of functions u(x) whose «(J + 2)th powers are inte
grable over [0, N]) defined by £.U = ur-a/(a+2) is 
compact provided that 0 ~ (J < 4, and N is finite. 

Proof: (i) Since C~(O, 00) is dense in Hoo ' it suffices 
to prove (7) for w E C~(O, (0). Any function WE 

C~(O, 00) can be written w(r) = ru(r) where u(r) = 
u(lx\) E C~(1R3). Now for any function u E C~(1R3), 
an inequality of Nirenberg2 shows that 

lIulIL" ~ KiIlVu IlL2)"'(lIu IIL2)1-a 

for 2 ~ P ~ 6 with oc(p) = 3(t - p-1), where Kp is a 
constant independent of u. Since for a, b > 0 and 
o ~ oc ~ 1, a"b1-" ~ (a2 + b2)!, we obtain 

(1IuIlLY ~ Kp[(IIVuIlL2)2 + (1IuIIL2)2]. (8) 

Setting u = w(r)/r in (8), since 

we find, for p = (J + 2 with 0 ~ (J ~ 4, 

[100 

(;y+2r2 drr/(a+2) ~ Ka.2(i oo

(W2 + IAI w2) dr), 

where K",2 = K"+2 max (10, IAI-1). 
(ii) To prove the compactness of the map £.: HN -

L,,+2[O, N], we employ Kondrachev's lemma for 
functions u(x) (with square-integrable gradient) 
defined on the ball I:N = {x Ilxl ~ N}. Again, if 
w E C~ [0, N] we may write w(r) = ru(r) for some 
u E C~(I:N)' To show that the map £. is compact, it 
suffices to show that, for any sequence Wn E C~ [0, N] 
with HNnorms uniformly bounded, £.wn = wnr-,,/(aH) 
is strongly convergent in La+2[O, N]. Now as Wn has 
uniformly bounded H N norms, it follows that Un = 
wn/r and VUn have uniformly bounded ~ norms; 
hence by Kondrachev's lemma Un = wn/r is strongly 
convergent in Lp for 2 ~ P < 6. Setting p = a + 2 
with 0 ~ (J < 4, we obtain 

lim Ilun - umlIL"H 
m,n-+oo 

. (iN 1 Wn Wm la+2 2 )1/(a+2) = hm - - - r dr = O. 
m,n-+oo 0 r r 

So that, as n, m - 00, 

= __ n ____ m_ dr -0 (i N I w W .10+ 2 )1/("+2) 
o r"/(a+2) r"/(,,+2) . 



                                                                                                                                    

2908 MELVYN S. BERGER 

An immediate consequence of Lemma 3 is 

Lemma 4: The functional GN(w) is continuous with 
respect to weak convergence in H N for 0 ~ (J < 4. 

Proof' If Wn -- W weakly, by Lemma 3 CWn - Cw 
strongly in L a+2[O, N] for 0 ~ (J < 4. Hence 

IICwn - CwllL -- 0 a+B 

as n - 00. Now, since Ik(r)1 ~ k2 for all r, Holder's 
inequality and (7) implies for a constant k~ 

IGN(wn) - GN(W) I ~ k~LNIWn - wla+2 r-a dr 

= k~(IICwn - CWIILaH)",+2. 

Hence, GN(wn) -+ GN(w) as n - 00. 

We now prove the existence of a countable number 
of distinct critical points C N by means of the calculus 
of variations. First we find a "ground state." 

Theorem 1: 

CI(N) = sup LN r-ak(r) Iwla+2 dr 

over the admissible class 

a~R = {w IIIwllkN = R, const} 

is a critical value of GN(w) corresponding to a critical 
point wI.N(r) with nonnegative values on [0, N]. 

Proof' First note that, by Lemma 3, CI (N) is 
bounded above. Let Wn E a~R be such that GN(wn)-
CI(N). Clearly, wn has a weakly convergent subse
quence with weak limit W, and GN(w) = CI(N) (by 
virtue of Lemma 4). Since (1IwIIH)2 = R [otherwise, 
GN(w) -:;6 SUP~I:R GN(w)], w is the desired critical 
point wI.N(r). w(r):2: 0 on [0, N] since G(w) is a 
positive even function of w, so that we may assume 
Wn :2: 0 a.e. 

Next we establish the existence of an infinite 
number of distinct critical points in C N' 

Theorem 2: The functional GN(w) possesses an 
infinite number of distinct critical values Cn(N) over 
the admissible class a~ R' The associated critical 
points wn.N(r) satisfy the equation 

Hi - IAI W + (3n,Nr-ak(r) Iwla 
W = 0, (9) 

where the {3n.N are positive constants which tend to 
00 as n - 00 for fixed N. 

Proof: This result is a consequence of a topological 
theorem of Ljusternik (Ref. 3, Theorem 2, p. 26), 
since a~R is a sphere in the Hilbert space HN, and, 
by virtue of Lemma 4, GN(w) is continuous with 
respect to weak convergence. The smoothness of the 

functions wn.N(r) is a consequence of the classical 
regularity theory for such variational problems. 

3. PASSAGE TO THE LIMITS AS N ~ 00 

Here we show that as N - 00 the countably 
infinite number of approximate solutions Wn.N of 
(9) constructed in the last section converge to a limit 
wn •oo as N -- 00. Furthermore, the limit function has 
the following properties: (i) (1Iwn.ooIIHcxY = Rand 

(ii) wn •oo is a critical point of 

~(w) = Loo k(r) Iwla+2 r-a dr, 

subject to the constraint (11w11H )2 = R. 
00 

To this end, we derive the following inequalities for 
solutions u(r) of the equation 

ur• + (2/r)ur - IAI2 u + k(r) lula u = 0, 

u(N) = O. (10) 

(The proofs of Lemmas 5 and 6 below are due to 
L. E. Fraenkel.) 

Lemma 5: Any solution u(r) of (10) satisfies 

lu(r)1 ~ AI/r2, for 1 ~ (J ~ 4, 

~ A2/r, for 0 < (J < 1, 

where Al and A2 are constants independent of u and r. 

Proof: The Green's function g..(r, p) for the operator 

LJ..u = u.r + (2/r)ur - IAI2 u 

and the boundary condition u(N) = 0 can be written 

(
r ) _ p2 sinh IAI (N - r) sinh (IAI p) 

gJ.. ,p - IAI sinh (IAI N) r p' 

r :2: p, 

p2 sinh (IAI r) sinh IAI (N - p) 
= 

IAI sinh (lAI N) r p 

Hence, setting 

W(r) = f' k(r) lula+l p2 dp, 

Eq. (10) can be rewritten 

lu(r)1 

r ~ p. 

1 (Sinh IAI (N - r) (' sinh IAI p W'( )d 
~ ).sinh IAI N r Jo p p p 

+ sinh IAI ri
N 

sinh IAI (N - p) W'(p) dp). 
r r p 

Since (sinh p)/p increases with p, while 

[sinh IAI (N - p)]/p 
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decreases, we find after a simple computation 

lu(r)1 ~ 1 (Sinh Ar sinh IAI (N - r) WeN») 
A sinh (IAI N) r r 

WeN) em 
~ -

A sinh (IAI N) 4r2 

greatest r such that r = rq* IAI 1Ia, r1 E (b, N). By 
Lemma 5 above, Veri) == r1q* IAl11a ~ A2. Hence, r1 

is bounded independently of N. 
Now we bound 0, as follows. Let N - r == s (and 

N - rl == S1)' Then multiplying (11) by v. and inte
grating (ll) from s = 0 to a point s ~ S1' we obtain 

v~ = 02 + IAI v2 
- 1(s), (12) Now we note that by Ref. 2 for 1 ~ a ~ 4, there is a 

number A independent of Nand u such that where 

iaN k(p) lul17+! p2 dp ~ A. 

Hence, lu(r)1 ~ A/r2. 
For 0 < a < 1, we obtain a weaker result by 

considering the equation satisfied by u2
, namely 

t~u2 - IAI2 u2 + k(r) lu10'+2 - IVul 2 = O. 

Setting u2 = w, we find 
(13) 

Wrr + (2/r)wr - 21AI2 w + 2k(r) lu\17+1 - 21Vul2 = O· Hence, writingv(rI) = r1q* IApia = VI' we find, using 

Hence, defining 

Wir) = f k \ul 17+2 p2 dp 

and noting again by Ref. 2 that W *(r) ~ A inde
pendent of rand u, we find as above 

tu2 ~ iN g2ir, p)(k lu10'+2 - IVuI2) dp 

~IN g2).(r, p)k lu10'+2 dp ~ A~ . 
o 2r 

Hence, lui ~ A2/r where A2 is independent of u and N. 

Lemma 5 leads to the following result concerning 
exponential decay of solutions of (10). 

Lemma 6: For N sufficiently large, any solution 
u(r) of (10) satisfies the following inequality: 

lu(r)1 ~ Aa exp (-IAI! r) on r ~ A2[max (k(r»)]lIO', 
r r 11.\ 

where A2 is the constant of the previous lemma and 
Aa is a constant depending only on 1., k(r), and a. 

(12), 

+ - dv IVl( 1 1) 
o (0 2 + IA\ v2 

- 1)! ({)2 + \AI v2)! 

< _1_ sinh-1 IAI* (~) + rVl 

1 dv 
- IAI! () Jo 2(02 + 11.1 v2 

- 1)* . 

(14) 

To bound the last term in the above inequality 
independently of N, we find from (13) that both 

and 

2 vO'+2 
1(s) < -- --- since r ~ r 1 , 

- a + 2 (r1Q*)U' 

1(s) ~ _2_ IAI v2, 

a+2 Proof: Setting k(r) = [q(r»)-O' and ru = V, we see 
that (10) becomes So 

vrr - v[IAI - (Ivl/rq)O'] = 0, 

v(O) = v(N) = o. (11) 

If v satisfies (11), so does -v, and so we may assume 
that 0 = -viN) > 0 and is positive on some interval 
(b, N). Furthermore, where 0 < v < rq* IW/O', q* = 
minrq(r), Eq. (11) implies vr• > O. Hence, if r1 is the 
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(say). Thus, (14) yields 

! 
() S A21~1 , 

sinh IAI! (N - r1 - co) 

with r1 S A2/q* 1,1.1 1/0'; hence, 

() S Aa exp (-IAI! N), for N sufficiently large, (I 5) 

where Aa is independent of u(r) and N. 
Finally, we estimate u(r) in terms of the above 

estimate for (). Indeed, for v on (r1' N), 

v" - 1,1.1 c s ° with v 18=0 = ° and v. 1.=0 = 0. 

Hence 

v S () sinh siAl! 

S Aa exp (-IAlfN){t exp [IAli (N - r)]} 

by (I 5) and so 

u(r) = vCr) S lAa exp (-IAI! r) on (r1' N). 
r r 

Furthermore, for r 1 we have the estimate 

-1/a -1 (k(r»)I/O' 
r1 S A21AI q* s A2 m:x)):l . 

We now discuss the limit of the sequence of critical 
points Wn.N as N -* 00. 

Theorem 3: Provided that 0< a < 4, the sequence 
{wn.N(r), (N ~ No)} has a convergent subsequence 
with limit wn.ro(r). The function w".ro(r) is an element 
of O~R [i.e., I~(i'2 + 1,1.1 w2

) dr = R] and satisfies 
the equation 

w - 1,1.1 W + f3nr-ak(r) Iwl" = 0, (16) 
where 

f3" = lim f3",N' 

Proof' For fixed n, we extend the functions w",N(r) 
from [0, N] to [0, 00) by defining w",N(r) = ° for 
r E [N, 00). Furthermore, as N increases, 

iN
(Wn ,N)2 + 1,11 (W n ,N)2 R 

f3",N = (N - -(-) 
Jo r-"k(r) IW",NI"-2 C

n N 

decreases, but by (7) it remains greater than or equal 
to R/(KO',;.R)("+2)f2 > O. Hence f3n,N tends, as N ->- 00, 

to a unique nonzero limit f3n. Now we show that the 
functions {wn,N(r)} have a strongly convergent 
subsequence in H",. To this end, we show that the 
functions un.N(r) = w",N(r)/r extended to [0, (0) are 
conditionally compact when regarded as elements of 

L"+2(1R3). Since 

( s[u n ,N(lxl)],,+2 dx = r'" [Wn'N~)]"+2 dr 
JR Jo r 

by (7), where k* = min, k(r), it suffices by the classi
cal theorem of compactness of Tamarkin in Lv(IRN) 
(see Smirnov4) to show that the following limits are 
uniform (independent of n): 

(a) lim (",sIU",N(lx + hI) - un,N(lxIW+2 dx = 0, 
h--+O J Ik 

(b) lim {s IUn,N(/xl)l".+2 = 0, 
K""", JIR -:Ex 

where ~ K is the sphere with radius N and the origin 
as center. Since ID IVun,NI2 and ID IUn,NI".+2 are 
uniformly bounded for any bounded set D c fR 3 , 

Rellich's lemma implies that (a) holds for xED. On 
the other hand, given E > 0, D can be chosen so large 
that by Lemma 6, 

sup ( IUn,N(/X + hi) - un .N(lxl)l"+2 S KE, 
Ihl:$< JR 3_D 

where K is independent of n. Hence, (a) holds for 
x E 1R3. Furthermore, to demonstrate (b), we note 
that for K sufficiently large 

{s IU n,N(x)I".+2 JR -Ix 
S fro [Wn .N(r)],,+2 dr 

JK r" 

< A"'+2J"" exp [-(a + 2) IAIi- r] dr 
- 3 K r2".+2 (by Lemma 8) 

S A;+2K-2,,-2f: exp [-(a + 2) IAIi- r] dr 

S cK-2".-2, 

where c is a constant independent of n. Thus, the 
sequence {u",N(x) = wn.N(r)/r, (N = 0, 1,2, ... )} is 
conditionally compact in L"+2(1R3) and so has a 
strongly convergent subsequence with 

1
. wn.",(r)_ 
1m - Un."". 

r 
Now, since 
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we see that wn.N
j 
has a weakly convergent subsequence 

in Hoo with weak limit w".oo' Inequality (7) and the 
uniqueness of the weak limit imply w".oo = w".",(r). 
Furthermore, since 

f
oo wa+2(r) 
~dr>O 

a ' o r 

we have w",oo(r) ¢ O. Now let rp E C~(O, 00); then, 
for sufficiently large N;, by virtue of (7), W n.N

j 

satisfies the integral identity 

So'" (W".Nj~ + IAI W".N;rp) 

Letting N; - 00, we obtain 

foo k(r) - a-
= (3" -a IW".ool w".",rp. (17) 

o r 

Thus, since (17) holds for arbitrary rp E C~(O, (0), 
W".'" is the desired solution of (16). Furthermore, 
W",N

j 
- w",oo strongly, since (17) holds for rp = W".OO. 

Hence, W".N; - W".OO weakly, while Ilw".Njllkoo -

Ilwn.ooIIH oo" and so W".N j - w",oo strongly. The 
smoothness of the solutions wn.oo follow from the 
regularity theory for weak solutions of elliptic partial 
differential equations since wn,oo/r is a weak solution 
of the Eq. (5). 

Corollary 1: The number {3n - 00 as n - 00, so 
that an infinite number of the solutions wn.oo of (16) 
are distinct. 

Proof: For fixed R, we consider the sequence 
({3".N)-l defined by Eq. (9). By Theorem 2, for fixed N, 

lim ({3-;;~N) = O. 
""'00 

Hence it suffices to show 

1· l' 1 l' l' 1 1m 1m -- = 1m 1m --. 
N-+oo n-+oo f3n,.l'V n-+oo N-+oo {In,N 

This equality follows immediately from standard 
results5 since each of the single limits 

lim {J;.~N and lim {3-;;~ 
n-+a:> N-+oo 

exist, and ({3".N)-l tends monotonically to (3-;,I. 

4. NONEXISTENCE OF STATIONARY STATES 

Here, we investigate the stationary states for the 
equation 

i ~: = ~u + lul a u, Cf ~ 4. (18) 

Theorem 4: For Cf ~ 4, Eq. (18) has no nontrivial 
stationary states for any A ¥= O. 

Proof: Any stationary solution u(x) = ei).",v(x) 
satisfies the equation 

~v + AV + Ivl a v = 0, (19) 

and vex) - 0 exponentially as Ixl - 00. Again, by 
Kato,l only the case A ~ 0 remains to be proven. To 
prove the nonexistence of such solutions for (19) with 
A < 0, we first take the following result (which is 
proven below): 

Lemma 7: Any solution vex) vanishing exponentially 
at infinity and satisfying an equation of the form 
~v + f(v) = 0 also satisfies the integral identity 

6 r F(v) - r f(v)v = 0, 
JfR S JfRS 

where 

F(v) = ff(S) ds. (20) 

In the present case, f(v) = +AV + Ivl a v and F(v) = 
+tAv2 + (Cf + 2)-1 Ivl a+2, so that the identity (20) 
becomes 

Hence, for A < 0 and Cf ~ 4, this identity becomes 
impossible unless v == 0, so that u(x, t) == O. Hence, 
the theorem is demonstrated with the following proof. 

Proof: Set 

W(x) = (x. Vv)Vv, 

where x = (Xl' x2 , X3)' Then, by virtue of the 
exponential decay of vex), the divergence theorem 
yields S fRS div W(x) dx = O. By standard results of 
vector analysis, we obtain 

div W(x) 

= div [(x. Vv) Vv] 

= (x • Vv)~v + Vv • Vex • Vv) 

= -(x· Vv)f(v) + IVvl2 + ~ (Xi ~ vv) . Vv. 
; OX; 
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Thus, we obtain the following integral identity: 

- r (x. Vv)f(v) + r IVvl2 JR· JR3 
+ ± r Vv. (Xi ~ vv) = O. 

i=1JR3 oXi 

Evaluating each term separately via integration by 
parts, using the facts that Llv + f(v) = 0 and that 
v(x) -- 0 exponentially at 00, we obtain 

l 31 ov - (x. Vv)f(v) = - L Xi -f(v) R8 i=l R3 OXi 

= - i r Xi oP(v) = 3 r P(v), 
i=lJRS OXi JR3 

r IVvl2 = _ r vLlv = r vf(v) , JRS JR3 JR3 
i r sVv. (Xi ~ vv) 
i=lJR OXi 

= - i r 3(XiVV).,/. Vv 
i=lJR 

= -3 r sIVvl2 - .± Jxi(VV).,/. Vv JR .=1 
= -3 r vf(v) - ! ± JXi ~ IVvl2 JR3 i=l ox; 

= -3 JRsVf(V) + t J vf(v). 

Collecting these results, we find equality (20): 

6 r F(v) - r j(v)v = O. JRS JR3 
REMARKS 

If A = 0 and (1 = 4, then (19) has a family of solu
tions vc(x) = (lxI 2/3c + c)-! (where c is a constant). 
However these solutions do not decay exponentially 
at 00. A slight refinement of the proof shows that 
Theorem 4 holds if A = 0 and (1 = 4. 

Theorem 4 has also been obtained by Rosen6 by 
means of his "pseudo vi rial theorem." A virtue Qf the 
present proof is that it can be modified to yield 
analogous nonexistence results for solutions of semi
linear Dirichlet problems on bounded domains in [RN. 
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APPENDIX: RESULTS FOR THE NONLINEAR 
KLEIN-GORDAN EQUATION 

As mentioned in the Introduction, analogous 
results hold for the equation 

02U ot2 = Llu - m2u + f(lxl, luI2)u, m:> O. (21) 

Indeed, setting u = exp (iAt)V(X) in (21), one obtains 
the following equation for v: 

Llv + f(lxl, V2)V + (A2 - m2)v = O. (22) 

Thus, setting II. = A2 - m2 , we see that (22) becomes 
identical with (3). Indeed, the results of Theorem 2, 
Corollary 1, and Theorem 4 yield the following 
result. 

Theorem 5: Provided that IAI < m and 

j(lxl, lul 2
) = k(lx/) lui" 

with 0 < (1 < 4, Eq. (21) has a countably infinite 
number of distinct stationary solutions for fixed 1 If 
either IAI > m or (1 ~ 4, Eq. (21) has no stationary 
solutions whatsoever. 

Furthermore, decay estimates analogous to those 
of Lemma 6 also hold for any stationary solution. In 
a future paper, these estimates will be used to prove 
the Liapunov stability of these stationary states, 
provided that k{/x/) and (1 are sufficiently small for 
fixed m. 
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Positivity Constraints on Crossing-Symmetric Partial
Wave Expansions 

RALPH RosKlES· 
Gibbs Laboratory, Yale University, New Haven, Connecticut 06520 

(Received 25 February 1970) 

Based on positivity of the absorptive parts, constraints on the parameters appearing in Roskies' 
crossing-symmetric parametrization of the ,,0,,0 partial waves below threshold are derived. These are 
then expressed as constraints involving integrals over the ,,0,,0 s wave below threshold. 

1. INTRODUCTION 

It has recently been emphasized that rigorous 
constraints on the partial waves of the 11'11' scattering 
amplitudes below threshold can be of practical value 
in finding suitable parametrizations for the low-energy 
11'11' phase shiftsl and in evaluating models for low
energy 11'11' scattering. 2 A number of such constraints, 
based on crossing symmetry, analyticity, and the 
positivity of the absorptive parts of the amplitudes, 
have been derived by Martin and his collaborators.3 

A different approach to the problem of deriving 
such constraints has been developed by Roskies.2 •4 

Based on the work of Balachandran and Nuyts,5 he 
has developed a general parametrization of the 
partial-wave amplitudes consistent with crossing 
symmetry. The parametrization, valid in the region 
o < S < 4m~, gave rise to relations, each involving 
only a finite number of partial waves, which were 
both necessary and sufficient to ensure the crossing 
symmetry of the amplitude. However, while expressing 
the full content of crossing symmetry, this method 
ignored the implications of unitarity. In this paper, 
we examine some restrictions on the parametrization 
which are imposed by the positivity of the absorptive 
part of the amplitude. These restrictions can then be 
translated into inequalities involving integrals of the 
s-wave amplitude below threshold. For simplicity, we 
restrict our attention to 11'011'0 scattering. (Comments 
on the case for 11'11' scattering with isospin will be 
found in the conclusions). 

According to Ref. 4, the 11'011'0 partial waves can be 
parametrized as 

da] 

Ns) = ~lv=~a} 2(0' + 1)(c:)(b~)1 
X (1 - S)IP~~tl,O)(2s - 1), (1.1) 

where the c~ are arbitrary constants, the p~~-:-l,O) are 
Jacobi polynomials,6 the coefficients (b~)1 are com
pletely known 

(ba) = (0' - I)! (0' + I + 1)! 
vi (20'+ I)! 

X ftl(Z)(Z2 + 3)3v-a(1 - z2)a-2V dz, (1.2) 

with Pl(z) being Legendre polynomials; we have used 
the notation 

HO'} = (smallest integer;;:: 10'), 
[to'] = (largest integer ::5: to') (1.3) 

and have chosen units so that 

4m! = 1. (1.4) 

Whereas (1.1) with arbitrary c~ is consistent with 
crossing symmetry, we know7 that, in the region 
o < s < 1, we can also express Iz(s) (for I ;;:: 2) by a 
Froissart-Gribov formula, 

fzCs) = dtAt(s, t)QI -- - 1 , 4 foo ( 2t ) 
11'(1 - s) 1 1 - s 

1;;:: 2, (1.5) 
where 

Ab, t) = ! (21' + 1) Im f z.(t)PI' (1 +~) (1.6) 
I' t - 1 

with 

(1.7) 

Expansion (1.6) converges8 in the region 0 < s < 1 
for all t ;;:: 1. Equations (1.5)-(1.7) impose restrictions 
onlz(s) which must be reflected as restrictions on the 
arbitrary coefficients c~ in (1.1). Ideally, one should 
find the necessary and sufficient constraints on c~ to 
assure the validity of Eqs. (1.5)-(1.7), but this appears 
very difficult. Ynduniin9 and Common9 have found 
necessary and sufficient constraints onll(s) (for I;;:: 2 
and fixed s) that allow J,,(s) to be written, as in (1.5), 
with positive Ab, t). By rewriting/l(s) as in (1.1), one 
obtains conditions on the c~, but these are very 
difficult to analyze. 

The goal of this paper is much more modest. We 
shall find constraints on the c~, for 0'::5: 4, which 
follow from (1.5)-(1.7). These coefficients are impor
tant because they control the gross features of the s 
and d waves of 11'011'0 scattering. [Since the functions 
p~~il.O)(2s - 1) have 0' - I zeros in the interval 
o < s < 1, higher 0' corresponds to more oscillations 
in s and thus to the more detailed characteristics of 
of the partial-wave amplitudes.] The aim of much of 
the analysis of the partial-wave amplitudes below 

2913 
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threshold is to discover their general characteristics 
which one can either extrapolate above threshold to 
get a feeling for the physical phase shiftsl or which 
one can use as criteria for evaluating proposed models 
of the low partial waves of 7T7T scattering.2 For both 
these purposes, the coefficients c~ with small a are 
most important. Since one can express these c: as 
suitable integrals involving only the s wave, any 
restrictions on the c: can easily be translated into 
restrictions on such integrals. 

The paper is organized as follows: In Sec. 2, we 
develop a general technique for deriving inequalities 
on the c~. This technique is applied in Sec. 3 to derive 
appropriate inequalities on c~, ci, and c~. In Sec. 4, 
the results are presented as restrictions on integrals 
involving the s wave, and we comment on similar 
work by Piguet and Wanders.lo Appendix A contains 
useful properties of the Legendre functions Qz, while 
Appendix B contains expressions for the relevant 
Jacobi polynomials. 

2. GENERAL TECHNIQUE 

One can invert6 Eq. (1.1) to solve for c~ in terms of 
!L(S) , 

[ta] i1 I (c~)(b~)L = (1 - sy+lP~~il.0)(2s - l)Jz(s) ds, 
Il={la} 0 

(2.1) 

and, inserting the representation (1.5)-(1.7), one 
obtains, for I ~ 2, 

[ia] 4 100 

Y (c:)(b;)z = - I dt(21' + 1) Im/r(t)Bt';Z(t), 
1l={1a} 7T z' 1 

(2.2) 
with 

Br,l(t) = fdS(1 - s)IP~-'-il.0)(2s - 1) 

X Qz(~ - I)Pl'(1 + ~). (2.3) 
l-s t-l 

If we can find coefficients 'YJaZ such that 

I 'YJaIB~!(t) ~ 0, alII', t ~ 1, (2.4) 

then 
a.1 

because of the positivity of Im!I,(t). Equations (2.4) 
and (2.5) express the full content of the positivity of 
Im!,,(t) and will give the conditions on c~. However, 
we will not be able to find the most general 't}al 

satisfying (2.4), so that our results will be necessary 
but not sufficient. 

To proceed with the analysis, we use the following 
observations: 

(a) If!(s, t) ~ 0, ° ~ s ~ 1, t ~ 1, then 

l lPz'(1 + ~)f(S' t) ds ~ 0, for alII', t ~ 1. 
o t - 1 

This follows from the positivity Pz,(x) for x ~ 1. 
(b) If 

(lpl'(1 + ~)g(S' t) ds ~ 0, for aU I', t ~ 1, Jo t - 1 
then 

g(s, t) ~ ° near s = 1. 

This follows from the estimatell 

co(21 + 1)-1-[x + (x2 - 1)1-]1 

~ Pl(x) ~ [x + (x2 - 1)1-]1, X ~ 1, Co a constant, 

which establishes that, for large l', 

fl,(1 + 2s/(t - 1»/Pz,(1 + 2/(t - 1» 

has its support concentrated near s = 1. [It is assumed 
that g(s, t) is continuous in s.] 

(c) If h(s, t) satisfies 
(1) h(s, t) > 0, near s = 1, 
(2) h(s, t) has at most one zero in s in the interval ° < s < 1, and 
(3) H h(s,t) ds ~ 0, 

then 

(lh(s, t)Pz,(1 + ~\ ds ~ 0, for alII', t ~ 1. Jo t - 1) 
This follows because Pz(x) is an increasing function 
of x for x ~ 1. Thus, the Legendre function in the 
expression 

(\(s, t)Pz'(1 +~) ds Jo t - 1 

tends to emphasize the region oflarger s, where h(s, t) 
is positive by virtue of (1) and (2). 

(d) If k(s) satisfies 
(1) k(s) > 0, near s = 1, 
(2) k(s) has at most one zero III the interval 

0< s < 1, and 

(3) (1k(S)Qz(_2_ - 1) ds ~ 0, Jo 1 - s 
then 

i1k(S)Qz(~ - 1) ds ~ 0, for all t> 1. 
o 1 - s 

The proof is exactly analogous to the proof of (c) using 
the resuJt12 that 

Qz(2t/(1 - s) - 1)/Qz(2/(1 - s) - 1) 

is an increasing function of s for t > 1. 
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Our object is now to find 'Yja! such that (2.4) is valid. 
From (2.3), this means finding 'YJal such that 

faSPI'(1 + t ~ 1) ~ rJ~!(1- Syp~~il.O)(2s - 1) 

X Ql(~ - 1) ~ 0, all 1', t ~ 1. (2.6) 
1 - S 

By observation (b), we must have 

F(s, t, rJ) == I rJaz(l - Syp~~il.0)(2s - 1) 
a.! 

X Qz(~ - 1) ~ 0, near s = 1. 
1 - s 

(2.7) 

Moreover, we shall try to choose rJa! so that F(s, t, rJ) 
has at most one zero in s, for fixed t. Then, by (a) and 
(c), it will be sufficient to verify that· 

faSF(S, t, 'YJ) ~ O. (2.8) 

3. ANALYSIS 

As mentioned in the Introduction, we will restrict 
our attention to those terms with a ~ 4. Since a ~ [, 
we must have / ~ 4 and, since (2.2) is valid only for 
1 ~ 2, we have I = 2 or 4. Thus, the indices a/ take 
on the values 22, 32, 42, and 44. The corresponding 
expressions for p~:!.tl)(2s - 1) are listed in Appendix B. 

To begin, we consider only those terms with / = 2. 
As outlined in Sec. 2 we want to find coefficients rJ22' 
rJ32' and rJ42 such that 

F1(s, t) == [1122 + 'YJ32(7s - 1) + 'YJ42(36s2 - 16s + 1)] 

i.e., 

y 

(-6.21) 

-5 

20 

15 

1863 - 2752x - 875y = 0 

10 

FIG. 1. Allowable (x, y) values from I = 2 constraints. 

x 

is1122 - 3\rJ32 + S\1742 ~ O. (3.4) 

Using (2.5) and (1.2), we find that, if (3.2)-(3.4) are 
satisfied, then 

(3.5) 
i.e., 

rJ22Ci - trJ32C~ + 2\rJ42C~ ~ O. (3.6) 

Clearly, 1122 ~ 0 and rJS2 = rJ42 = 0 is consistent 
with (3.2)-(3.4) and, therefore, 

(3.7) 
X (1 - s)2Q2(2tf(1 - s) - 1) (3.1) Let us define 

satisfies 

(1) F1(s, t) ~ 0, near s = 1, (3.2a) 

i.e., 
(3.2b) 

(2) F1(s, t) has at most one zero in 0 < s < 1 for 
fixed t; i.e., either 

rJ42 ~ 0 (3.3a) 
or 

'YJ42 ~ 0 and 71]32 ~ 161]42 (3.3b) 
or 

'YJ42 ~ 0 and -'YJS2 ~ 81142 (3.3c) 
or 

rJ42 ~ 0 and V 1142 ~ 1]32 ~ -81142 
and 

rJ4('YJ2 + 6113 + 21rJ4) ~ [172 (rJa + 8rJ4)]2. (3.3d) 

(3) J~ F1(s, t) ds ~ 0, all t ~ l. 
By observation (d) this is equivalent to 

f F1(s, 1) ds ~ 0; 

x = c~/7c~, 

y = 4c~/21c~. 
Then we must have 

(3.8) 

(3.9) 

rJ22 - 1]32X + rJ42Y ~ 0 (3.10) 

if (3.2)-(3.4) are satisfied. Omitting (3.3d), one finds 
that (x,y) are contained in the triangle formed by the 
points Us, -Is), (-6,21), (_1;s9, - \On, while (3.3d) 
implies that 

36x2 + 40x - 49y - 27 ~ O. (3.11) 

The region of x and y is shown in Fig. 1. 
We turn now to incorporating the term with 

a = I = 4. Taking 1744 > 0, 1722 = rJ32 = 1742 = 0, we 
see trivially that F(s, t, rJ) defined in (2.7) is positive 
and, therefore, by (2.S) 

(3.12) 

i.e., 

c~ ~ 0, using (1.2), 
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i.e. 

y ~ 0, using (3.7), (3.9). (3.13) 

Now consider 

F2(s, t) = 1]22(1 - S)2Q2(~ - 1) 
1 - s 

+ 1]44(1 - S)4Q4(~ - 1) (3.14) 
1 - s 

= [~" + ~"(1 - <:i~ ~ : ~] 
x (1 - )2Q2(~ - 1). (3.15) 

1 - s 

Because we require F2(s, t) ~ 0 near s = 1, we need 

(3.16) 

If 1]44 > 0, then F2(s, t) is trivially positive, and no 
new results obtain. If 1]44 is negative, the first bracket 
in (3.15) is an increasing functionl2 of s, and thus 
F2(s, I) has at most one zero. It therefore suffices to 
verify that 

fdSF2(S, I) ~ 0, I ~ 1. (3.17) 

At t = 1, this implies that 

-1]44/1]22 ~ 25/9. (3.18) 

One can evaluate (3.17) for arbitrary I by using the 
expansionl2 

(n !)2 (2)"+1 
QI(Z - 1) = i ~(n _ 1)1 (n+l+l)l; , 

Z > 2. (3.19) 

With the value of 1]44 given by the equality in (3.18), 
(3.17) becomes 

il 4 00 1 (n!)2 
dsF (s t) - "911 ~ - --'---'---

2, - '/22~ n+l( +6)'( -2)' o n-2 tn. n . 

X (-2n2 + 28n + 15). (3.20) 

The summand on the right is positive for 2 ~ n ~ 14 
and negative for n ~ IS. The expression will be most 
negative if one can emphasize the higher values of n, 
and this means taking I as small as possible. But, 
by construction, the sum vanishes at I = I and is 
therefore positive for t> 1. Consequently, (3.18) 
suffices for all t and, by (2.5), this implies 

(3.21) 

There is no relation if one takes only 1]32 and 1]44 
different from zero, because it is impossible to make 

the corresponding F(s, I, 1]) satisfy (2.7) and (2.8) for 
large I. There is clearly no new result involving only 
1]42 and 1]44 since such a relation could only involve 
the sign of c: . 

Consider now the expression 

F3(s, I) = (1 - s)2QJ.21/(I - s) - 1) 

X [1]22 + 1]a2(7s - 1)] 

+ 1]4iI - S)4Q4(21/{l - s) - 1) (3.22) 

= /a(s, I)(l - s)2Q2(21/(I - s) - 1), (3.23) 
with 

/3(S, t) = 1]22 + 1]32(7s - I) + 1]44(1 - S)2 

X Q4(2t/(1 - s) - 1)/Q2(2t/(l - s) - 1). 

(3.24) 

F3(s, t) has the same zeros in 0 < s < 1 as /3(S, t). 
Noting that 

~ Ia(s, t) = 71]a2 + 1]44 ~ (1 _ S)2 Q4(2t/(1 - s) - 1) 
as as Q 2t/0 - s/ - 1) 

(3.25) 
and thatl2 

~ (1 _ S)2 Q4(21/(1 - s) - 1) 

as Q2(2t/(l - s) - 1) 
(3.26) 

is negative and monotonic increasing in s, we see that 
0/3(S, t)/os has at most one zero; thus,fa has at most 
one extremum (maximum if 1]44 < 0, minimum if 
1]44 > 0). Since /3(S, t) must be positive near s = 1, it 
has at most one zero if 

1]44 ~ 0 (3.27) 
or if 

1]44 ~ 0 and /3(0, t) ~ 0 (3.28) 
or if 

1]44 ~ 0 and /3(S, t) ~ 0, 0 ~ s ~ 1. (3.29) 

Considering first (3.27), we impose 

/3(l, t) ~ 0, i.e., 1]22 + 61]32 ~ 0 (3.30) 
and 

i1F3(S, 1) ds ~ 0, i.e., 118 1]22 - 3
121]32 + io1]44 ~ O. 

(3.31) 
These suffice for us to establish that 

J:F3(S, t) ds ~ 0, all t ~ 1, (3.32) 

using the techniques of Eqs. (3.19) and (3.20). Thus 
we obtain the constraint 

6 + x - fiisR.y ~ O. (3.33) 

No new results are obtained from conditions (3.28) 
or (3.29). Similarly, no new results are obtained by 
considering an expression with 1]32 = O. Moreover, it 



                                                                                                                                    

CROSSING-SYMMETRIC PARTIAL-WAVE EXPANSIONS 2917 

y 

y: 481875()(·6) 
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-1 
49y = 36x2. 40x - 27 

1 
175y = 256x - 81 

FIG. 2. Allowable (x, y) values from I = 2 and 1= 4 constraints. 
(Note the change in scale from Fig. I.) 

is not possible to take r122 = 0 and to insist that the 
corresponding F(s, t, 'f/) has only one zero in sand 
satisfies (2.8) for large t. I have not investigated the 
case in which all four 'f/al differ from zero. 

Gathering all the results, we find that x and yare 
restricted to lie in the region indicated in Fig. 2. 

4. CONCLUSION 

The restrictions on x and y which we have found 
can now easily be expressed as restrictions on the 
7T(J7T(J s wave below threshold. Writing (2.1) for 1= 0, 
we find from (3.8) and (3.9) 

t 1\1 - s)P~1,0)(2s - l)/o(s) ds 
X= , f(1 -s)P~1,O>C2s - 1)/o(s) ds 

(4.1) 

t E(l - s)Pil,O)(2s - 1)10(S) ds 

y= , 
J:(1 - s)P~1.0)(2s - l)/o(s) ds 

(4.2) 

and thus the restrictions on x and y indicated in 
Fig. 2 lead to inequalities on the s wave, which follow 
from crossing and positivity. The expressions for the 
Jacobi polynomials are listed in Appendix B. 

Mter completing much of this work, I received a 
preprintlO from Professor G. Wanders in which a 
similar analysis was applied to 7T7T scattering with 
isospin. Using the results of Ref. 2 and the techniques 
of the present paper, we can straightforwardly 
reproduce those results. However, there are differences 
between the techniques of Piguet and Wanders and 
those of the present paper. Instead of adopting the 
crossing symmetric parametrization and finding 
constraints on the ~ as in (2.2), these authors deter
mine positivity constraints on the functions 

d'n = I r1

dt(2l' + 1) Im/,.(t)R~'(t), (4.3) ,. Jo 

where 

Rv1(t) = ~ t ds(1 - S)'Q/(~ - 1) 
7T Jo 1 - s 

x P,.(l + ~)sn. (4.4) 
t - 1 

They do not impose the constraints of crossing on the 
din until they express their positivity constraints as 
constraints on the s-wave amplitudes. It seems to me 
more cumbersome to work with redundant variables 
which are eliminated at the end of the calculation, 
when they can be eliminated from the beginning. 
Secondly, they have found necessary and sufficient 
conditions on the din, for 1 + n S 3 (I] S 3 in the 
notation of the present paper), to assure the positivity 
of Imiz.(t), but ignoring all constraints on Im/I.(t) 
which arise from crossing. It should be stressed that, 
if one takes such crossing constraints into account, 
their results lead only to necessary, but not sufficient 
conditions on the c~. This can most easily be seen by 
comparing their result 

-6 < x < fa (4.5) 

with our stronger result 

-1.73 < x < -(s. (4.6) 

APPENDIX A 

We wish to establish several properties of the func
tions QI(X). 

(n !)2 (2)n+1 
(1) QzCz - 1) = t ~ (n _ 1)! (n + 1 + 1)!; , 

for z > 2. (Al) 

This follows from the representation13 

QzCz) = ! il Pz(x) dx, (A2) 
2 -1 Z - x 

so that 

Ql(Z - 1) = ! il Plx) . (A3) 
2 -1 z - (x + 1) 

Expanding the denominator into inverse powers of 
Z leads to the desired result: 

(2) 21 + 1 1 < Ql+l(Z) 

21 + 2 Z + (z2 - 1)* - Ql(Z) 

S 1 t' z~1. 
Z + (Z2 - 1) 

(A4) 
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Proof" We use the integral representation14 

Q!+1(z) = roo ( 1 t )!+2dt, 
Jo z + (Z2 - 1) cosh t 

(AS) 

Q!+1(z) ::;; roo 1 t( 1 1- )!+ldt 
Jo z + (Z2 - 1) z + (Z2 - 1) cosh t 

(A6) 

I 
::;; z + (Z2 _ 1)1- Qlz), (A7) 

which establishes the second inequality in (A4). To establish the first inequality, we write (AS) as 

x [rOO dt( 1 )!+1 + (Z2 _ 1)1- roo dt(l _ cosh t)( I )!+2J 
Jo z + (Z2 - 1)t cosh t Jo z + (Z2 - 1)1- cosh t 

(AS) 

= 1 [Qt(Z) + roo dt(cosh t _ 1) 1 !!...( 1 )!+1J 
Z + (Z2 - 1)1- Jo (l + 1) sinh t dt z + (Z2 - 1)1- cosh t 

(A9) 

Integrating the second term by parts gives 

1 [ 1 100 

1 ( 1 )!+1 ] Q!+1{z) = Qt(z) - -- dt 
z + (Z2 - 1)1- (l + 1) 0 (1 + cosh t) Z + (Z2 - 1)1- cosh t 

(AlO) 

(All) 

QED (AI2) 

(3) .!!.- Q!+1( z) ::;; 0, z ~ 1, (AB) 
and, consequently, we must establish that 

dz Q!(z) (l + 1 )y2 - yz(21 + 1) + I ::;; 0. (AlO) 

~ Q!+1(z) > ° 
dz 2 Q!(z) - , 

z ~ 1. (A14) But this follows immediately from (A4). QED 

Proof: (A13) has been proved by Martin.15 Using (4) 
the relationsI6 

~ (1 _ s) Qt+1(2t/(1 - s) - 1) < 0 (A21) 
ds Qt(2t/(1 - s) - 1) - , 

d 1 + 1 
-d QtCz) = -2-1 [Q!+1(Z) - zQlz)], (AI6) 

z z -

we see that (A14) is equivalent to 

(y - z)[(l + 1)y2 - yz(21 + 1) + 1] ~ 0, 

where we have defined 

y(z) = QI+1(Z)!Q!(z). 

Using (A4), one sees that 

y-z~O 

(A17) 

(A18) 

(AI9) 

~ (1 - s) Qt+1(2t/(1 - s) - 1) > 0 
ds2 Ql(2t/(1 - s) - 1) - , 

o ::;; s ::;; 1, t ~ 1. (A22) 

Proof: Defining z = 2t/(1 - s) - 1, we see that 
both statements follow immediately from (Al3) and 
(A14) and the positivity of Q!(z). 

(S) ~ (1 _ S)2 Q!+2(2t/(1 - s) - 1) ~ 0, (A23) 
ds Q!(2t/(1 - s) - 1) 

~ (1 _ S)2 Q!+2(2t/(1 - s) - 1) ~ 0, 
ds 2 Q!(2t/(1 - s) - 1) 

0::;; s ::;; 1, t ~ 1. (A24) 
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Proof: Both statements follow immediately from 
(A2l) and (A22). 

(6) :£ Q,(2t/(1 - s) - 1) ~ 0, ° ~ s ~ 1, t ~ 1. 
ds Q!(2/(1 - s) - 1) 

Proof: Defining 
z = 2/0 - s), 

and using (A16), we must establish that 

(A25) 

(A26) 

y~(.:..-tz_----,1):..---,,-Y-,-(z_----,I) z[1 - y(z - 1)] ...... ° + .:::., 
t-l z-2 

z ~ 2, (A27) 

where we have defined y(z) as in (A18). Using the 
mean-value theorem, we can write the first term of 
(A27) as 

d 
- y(tz - 1)lt=to, 1 ~ to ~ t; 
dt 

(A28) 

this expression is negative and monotonic increasing 
in to by virtue of (A13) and (AI4). Consequently, it 
suffices to establish (A27) at t = I, i.e., to show that 

(x - l)y'(x) + 1 - y(x) ~ 0, x ~ 1. (A29) 

Using (AI5) and (A16), we see that (A29) is equivalent 
to 

[(l + l)y2 - yx(21 + 1) + I] + (y - x) ~ 0, (A30) 

which follows from (A19) and (A20). 

JOURNAL OF MATHEMATICAL PHYSICS 

APPENDIX B 

Tabulation of some Jacobi polynomials: 

p~5.0)(2s _ 1) = p~9.0)(2s - 1) = 1, 

pi5•O)(2s - 1) = 7s - 1, 

p~5.0)(2s - 1) = 36s2 
- 16s + 1, 

p~1.0)(2s - 1) = 10S2 - 8s + 1, 

p~1.0)(2s - 1) = 35s3 
- 45s 2 + ISs - 1, 

p~1.0)(2s - 1) = 126s4 
- 224s3 + 126s2 

- 24s + 1. 
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1. INTRODUCTION 
Nonequilibrium thermodynamics is the macroscopic 

theory of irreversible processes. It concerns the gener
alized fluxes J which describe the rates at which the 
processes occur, and the conjugate generalized forces 
X which determine the fluxes through the equation 

J = LX. The operator L is characteristic of the system 
under consideration. It is positive definite because the 
rate of entropy production, (J = (X,1) = (X, LX) = 
(L-1J, 1), must be positive if X ¢ 0. For linear systems 
in the absence of magnetic fields and rotation, it is 
also symmetric, as a consequence of the Onsager 
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Proof: Both statements follow immediately from 
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reciprocal relations. The fluxes must also satisfy the 
"conservation" equations of mass, momentum, 
energy, etc. In addition, 'the forces must satisfy 
certain equations, such as equations expressing them 
in terms of potentials. Thus, J and X are determined 
by a set of equations which usually include algebraic 
equations, partial differential equations, boundary 
conditions, etc. The problem we consider is that of 
finding an alternative characterization of J and X by 
means of variational principles. 

One reason for considering this problem is to 
clarify "the principle of the minimum rate of entropy 
production" introduced by Prigogine1 in 1945. 
Another is to find variational principles which apply 
when this one does not. Despite its significance, this 
principle has not been stated precisely and generally 
nor has its validity been demonstrated in general. As 
a consequence, some confusion surrounds it, such as 
the doubt about whether it is a new law of nature or 
a consequence of known laws. 

We shall show that, for linear systems, J and X 
are the solutions of two reciprocal variational prob
lems. (See Ref. 2, pp. 252-257.) One of these is a 
minimum problem for X and the other is a maximum 
problem for J. Furthermore, the minimum value of 
the functional g(X) to be minimized in the first 
problem is equal to the maximum value of the 
functional I (J) to be maximized in the second problem. 
In certain special cases, 

I(J) = -(J, L-1J) + const = -(1 + const 

is minus the rate of entropy production plus a constant 
for any J, while in other cases g(X) = (X, LX) = (1 is 
the rate of entropy production for any X. Thus, in these 
cases one of our variational principles yields the princi
ple of the minimum rate of entropy production-in one 
case in terms of J and in the other in terms of X. This 
derivation shows that this principle, when it applies, 
is a consequence of known physical laws. 

There are still other cases in which the common 
extreme value of I(J) and g(X) is the rate of entropy 
production (1 for the extremizing functions, or differs 
from it by a known constant, but in which/(J) does not 
equal - (1 plus a constant for arbitrary J, and g(X) does 
not equal (I for arbitrary X. Thus, in these cases, as well 
as when the principle of the minimum rate of entropy 
production holds, we can find upper and lower bounds 
on (I from our two variational principles. We shall 
also show that for certain dynamical problems g(X) 
decreases in time, while for other problems I(J) 
increases with time. When g(X) = (lor when/(J) = 
- (1 + const, then (I decreases in time. The fact that 
(I decreases in time was shown for some particular 

problems by Prigogine,3 and was shown for slow 
incompressible viscous flows by Keller, Rubenfeld, 
and Molyneux.4 

As an application of the results just described, we 
obtain variational principles for a system of chemical 
components in which chemical reactions, diffusion, 
and heat conduction are occurring. By interpreting 
the fluxes and forces in two different ways, we obtain 
two different forms of these principles. We also show 
that in the time-dependent case g(X) decreases in 
time; thus, when g(X) = (1, (I decreases in time. 

As another example, we consider the convection as 
well as the diffusion and production of a single 
component, either matter or heat. We obtain similar 
results provided that the convection velocity divided 
by the diffusivity is irrotational. 

Finally, we consider the nonlinear case of chemical 
reaction, diffusion, and heat conduction. Under 
rather special conditions we again obtain reciprocal 
variational principles and show that in the time
dependent case g(X) decreases in time. 

A special case of the principle of the mInImUm 
rate of entropy production was first introduced by 
Helmholtz.5 This was the principle of the minimum 
dissipation rate for slow incompressible viscous flows. 
He proved that the dissipation rate was stationary, 
and then Korteweg6 proved that it was a minimum 
when the velocity on the boundary was prescribed. 
Recently Keller, Rubenfeld, and Molyneux4 have 
proved it for rather general boundary conditions and 
have extended it to cover flows containing moving 
solid particles, drops of liquid, and gas bubbles. 

Other variational principles and their applications 
are described in Donnelly, Herman, and Prigogine. 7 

In particular, Gage, Schiffer, Kline, and Reynolds 
[Ref. 6, pp. 283-286] proved that there is no varia
tional principle of a certain kind for general nonlinear, 
inhomogeneous problems. Because they consider only 
a very special type of principle, their result does not 
exclude the variational principle for the nonlinear case 
which we present in Sec. 5. 

In the course of this study, we have found that the 
theory of reciprocal variational principles2 is deriv
able, in part, from Fenchel's8 duality theorem in
volving convex functions. This is shown for quadratic 
variational problems in Appendix B and is discussed 
more generally by Brezis and Keller.9 

2. VARIATIONAL PRINCIPLES FOR 
LINEAR SYSTEMS 

Let us consider a dissipative thermodynamic system 
in which there are various generalized forces and con
jugate fluxes, represented respectively by the vectors 
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X and I in a real Hilbert space H. The flux I is related write (1(1) == (I, L-11) and (I(X) == (X, LX): 
to the force X by 

J=LX. (2.l) 

We assume that L is a bounded, symmetric, positive
definite linear operator independent of J and X. 
Therefore, we consider only linear systems in the 
absence of magnetic fields and rotation. The rate of 
entropy production (I is given by 

(I = (J, X). (2.2) 

A simple problem involving (2.1) is that of pre
scribing X = Xo and finding J. Another is that of 
prescribing J = Jo and finding X. A more general one 
is that of prescribing some components of X and the 
complementary components of J, and finding b~th 
J and X. We can state this problem as follows: Fmd 
X having certain components the same as those of a 
given vector Xo, and J having the rest of its compo
nents the same as those of a given vector 10 , and 
satisfying (2.1). 

To formulate this problem precisely, we introduce 
a subspace 1: of H and its orthogonal complement n, 
so that H = 1: + n. Then, for any two given vectors 
Xo and 10 in H, we define the sets 1:0 and no by 
1:~ = 1: + Xo and no = n + Jo. This means that any 
vector in 1:0 is the sum of Xo and any vector in 1:, 
while any element of no is the sum of Jo and any vector 
in n. Thus, X E 1:0 if X - Xo E 1: and J E no if 
J - Jo E n. Now we can formulate this problem, 
which we shall call: 

Problem P: Find an X E 1:0 and a J E no such that 
J=LX. 

When 1: = 0, then 1:0 = Xo and so X = Xo; this is 
the first problem above. When 1: = H, then n = 0 
and no = Jo, so J = Jo• Then this is the second 
problem above. 

Let us denote by J* and X* a solution of Problem P. 
We shall now show that X* is also the solution of a 
minimum problem, and that J* is the solution of a 
maximum problem. These problems are: 

Minimum Problem I: Among all X E 1:0 find one 
which minimizes 

g(X) = (X, LX) - 2(Jo, X - Xo). (2.3) 

Maximum Problem I: Among all J E no find one 
which maximizes 

/(1) = -(J, L-11) + 2(J, Xo). (2.4) 

In Appendix A, by using the method of Courant
Hilbert2 we prove the following theorem, in which we 

Theorem 1: 
(i) Minimum Problem I has a unique solution X*. 

(ii) Maximum Problem I has a unique solution J*. 
(iii) J* = LX*, so J* and X* constitute the unique 

solution of Problem P. 

(iv) 

f(J*) = maxf(]) = min g(X) = g(X*). 
JEOo XEEO 

(v) J* and X* are, respectively, the unique 
stationary points of/(I) and g(X). 

(vi) When Xo E 1:, then/(J) = -(1(1) + 2(Jo, Xo); 
and when 10 E n, then g(X) = (I(X). In these two 
cases, and only in these cases, the principle of the 
minimum rate of entropy production is valid. 

(vii) When 1: = 0, i.e., when X* = Xo, then 
j(J*) ";,, g(X*) = (I(X*). When n = 0, i.e., when 
J* = Jo, thenj(J*) = g(X*) = -(l(X*) + 2(10' Xo)' 

(viii) If J E no and X E 1:0 , then J* lies on the sphere 
with center ieJ + LX) and radius one-half the distance 
from J to LX in the L-1 metric, i.e., 

(J* - ] +2LX, I;"1[J* - J +2 LX]) 

= e -2 LX , L-1[J -2 LX]). 

Part (vi) of this theorem shows that the principle 
of the minimum rate of entropy production is valid if 
and only if either Xo E 1: or Jo E n. If Xo E 1:, then 
1:0 = 1:; while if Jo En, then no = n. Thus, the 
principle applies if and only if either the condition on 
X is homogeneous or the condition on J is homo
geneous. When the condition on X is homogeneous, 
the rate of entropy production (I(X) expressed in 
terms of X is minimized; while when the condition on 
J is homogeneous, then the entropy production rate 
a(1) expressed in terms of J is minimized. 

The two extremum problems can be made more 
symmetric by adding to j(J) and g(X) the constant 
-(10' Xo). Furthermore, by replacing g by -g andj 
by -j, we can obtain a maximum problem for X* 
and a minimum problem for J*. 

Let us now consider a dynamical problem in which 
J = J(t) satisfies the equation 

(2.5) 

Here, Po is the projection operator on n. We suppose 
that, at some time to, 

(2.6) 
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Then we can prove the following theorem: 

Theorem 2: If J(t) satisfies (2.5) and (2.6), then 
J(t) E no, df(f)fdt > 0 if J(t) ¥= J*, and df(f)/dt = 0 
if J = ]*. 

To prove that J(t) E no, we see from (2.6) that this 
is true at t = to, and from (2.5) dJ/dt En. By con
sidering the smallest value of It - tol for which 
J(t) ¢ no, we arrive at a contradiction, which proves 
the assertion. 

To prove the second part of the theorem we differ
entiate f(1) and use (2.5) to obtain 

df(]) = _2(dJ, L-1J - Xo) 
dt dt 

= 2(Po.[L-1J - X o], L 1J - Xo) 

= 2(Po[L1J - X o], Po[L1J - Xo]) ~ O. (2.7) 

The third equality follows from the fact that the 
component of L -IJ - Xo E ~ is orthogonal to any 
vector in n. The final inequality yields the theorem. 
This inequality shows that /(J) increases until 
L-l] - Xo E~. In the Appendix, in proving Theorem 
I, we have shown that L-IJ* - Xo E ~ and J* -
Jo E n. Therefore, when df/dt = 0, we have 

L-l(J* - J) E ~ and J* - J En, 

so (J* - J, L -1 (J* - 1]) = 0 because ~ and n are 
orthogonal. Thus, J* = J because L-l is positive 
definite, so f(J) increases unless J = J*, proving the 
theorem. 

In the same way we can prove this theorem: 

Theorem 3: Let X(t) satisfy 

dX = -Pr.CLX - Jo), (2.8) 
dt 

X(to) E ~o . (2.9) 

Then X(/) E ~o, dg(X)fdt < 0, if X(t) =;6 X* and 
dg(X)/dt = 0, if X(t) = X*. 

Theorem 2 shows that, when J satisfies the dynami
cal equation (2.5),f(1) increases toward its maximum 
value f(J*). Theorem 3 shows that, when X satisfies 
(2.8), g(X) decreases toward its minimum g(X*). In 
case Xo E~, we have f(J) = -u(1) + 2(Jo, Xo) and 
in case Jo En, we have g(X) = u(X). In these cases, 
Theorems 2 and 3, respectively, show that the rate of 
entropy production steadily decreases toward its 
minimum value. The fact that u decreases has been 
shown to be so for some particular irreversible 
processes by Prigogine3 and has been shown for slow 

flows of a viscous incompressible fluid by Keller, 
Rubenfeld, and Molyneux.4 

3. APPLICATION TO CHEMICAL REACTIONS, 
DIFFUSION, AND HEAT CONDUCTION 

Let us now treat a system of N chemical components 
in a domain D bounded by a surface B, in which k 
chemical reactions, diffusion, and heat conduction 
are occurring. At each point r of D there are N flux 
vectors Jl(r), ... ,IN(r) and k scalar fluxes I N+1(r), 
. .. ,IN+k(r), as well as N force vectors X1(r), ... , 
XN(r) and k scalar forces XN+1(r), ... ,XN+k(r). The 
heat flux is Jl , while Ji is the flux of the ith component, 
i = 2, ... , N, and J N+i is the rate of the jth chemical 
reaction, j = I, ... ,k. The Xi are the conjugate 
forces. The flux of the first component is determined 
by the fluxes of the other components, so it need not 
be considered explicitly. We suppose that each flux 
vector is related to all the force vectors at the same 
point, and that each scalar flux is related to the scalar 
forces at the same point by the equations 

N 

Ji(r) = I Lij(r)Xj(r), i = 1, ... , N, (3.1) 
j=1 

k 

] N+j(r) = I LN+j.m(r)XN+m(r), j = 1," " k. (3.2) 
m=1 

In (3.1), the Lij are matrices, while in (3.2) they are 
scalars. The Onsager reciprocal relations assert that 
the st element of Lij in (3.1) is equal to the ts element 
of Lii , while LN+n .m = LN+m .n in (3.2). 

When the jth chemical reaction is proceeding at unit 
rate, component i is assumed to be produced by it at 
the rate 'Pii per unit volume and heat at the rate 
'P11' j = 1, ... ,k. We include the possibility that 
heat and the various components are also produced 
by some other source at the rate Pier) per unit volume, 
i = I, ... ,N. Then conservation of energy and of 
the masses of the various components requires that 
the following equations hold: 

k 

V· J i - I'PijJN+i = Pi, i = 1, ... , N. (3.3) 
j=l 

All the forces are assumed to be expressible in terms 
of N scalar potentials cP ir), j = 1, ... ,N by the 
relations 

X j = VCPj, j = 1," " N, (3.4) 
N 

X N+m = ! 'PtmCPt, m = I, ... , k. (3.5) 
t=l 

The potentials are related to the temperature T(r) 
and the chemical potential !ti(r) of component i by 
CPl = ]'-1, CPi = ]'-l(!ti - !tl), i = 2, ... , N. 

To complete the description of the system, we must 
prescribe boundary conditions on B. We suppose that, 
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for each i, B is decomposed into two parts Btl and Bi2' 
i = 1, ... , N. Then we take as boundary conditions 

n • Ji(r) = (Xi(r), r on Bil , i = 1, ... ,N, (3.6) 

'Pi(r) = {Mr), ron Bi2' i = 1, ... , N. (3.7) 

In these conditions the functions (Xi and Pi are sup
posed to be given, and n denotes the outward normal 
to B. 

To determine the forces, fluxes, and potentials we 
must find Xi' Ji , i = 1,'" ,N + k, and 'Pi' j = 
1, ... , N satisfying (3.1)-(3.7). The Lij , Pi' 'Vii' (Xi' 
and Pi are assumed to be given. This can be reduced 
to the problem of finding the potentials alone, since 
(3.4) and (3.5) give the Xi in terms of the 'Pi' while 
(3.1) and (3.2) give the Ji in terms of the Xi and 
therefore in terms of the 'Pi' Upon eliminating the 
Ji in this way, we can write (3.3) and (3.6) as follows: 

N N 
V' '2, LijV'Pj - 2,Sij'Pj = Pier), i = 1, ... ,N, (3.8) 

j=l i=l 

N 

n • 2,Li;V' 'Pi = (Xi(r), ron Bi1' i = 1, ... , N. 
j=l 

(3.9) 
In (3.8) we have introduced silr), defined by 

k k 

Sij = 2, 2, 'VinLN+n.m'Vjm., i, j = 1, ... , N. (3.10) 
n=l m=l 

The problem for the potentials is thus that of solving 
(3.8) subject to the boundary conditions (3.7) and 
(3.9). 

We shall now show that the problem (3.1)-(3.7) 
for the Xi' Ji , and 'Pi is a special case of Problem P 
formulated in Sec. 2. Then Theorem 1 will hold for 
the present problem, and will yield a minimum and 
a maximum problem equivalent to it. First, we must 
define the Hilbert space H in which J and X lie. The 
elements of H are real vector functions of r, defined 
for r in D and having N + k components. The first N 
components are 3-component vectors, while the last 
k components are scalars. The inner product of two 
elements of J and X is defined by 

(J, X) = ID J(r). X(r) dr = In 1>;(r). Xir) dr. 

(3.11) 

AIl continuously differentiable vectors are contained 
in H, which is assumed to be complete with respect 
to the inner product (3.11). 

Next we define the subspace ~ to consist of all X 
in H that can be written in the form (3.4) and (3.5) 
in terms of N potential functions 'Pi satisfying 'Pi(r) = 
0, for r on Bi2 , i = 1,"', N. The vector Xo is 
expressed in terms of some particular set of potentials 
'P~o) which satisfy (3.7). Thus ~o consists of all X of 

the form (3.4) and (3.5) for which the 'Pi satisfy (3.7). 
The subspace .0 is defined to consist of all J in H 
which satisfy (3.3) with Pi = 0 and (3.6) with (Xi = O. 
The vector Jo is some particular vector satisfying (3.3) 
and (3.6). Thus the set no consists of all J in H 
satisfying (3.3) and (3.6). 

To show that X E ~ and J E .0 are orthogonal, we 
write (3.11) in the form 

(J, X) = In (~/i . Xi + J/ N+iX N+j) dr. (3.12) 

Since X E~, X is given by (3.4) and (3.5), so (3.12) 
becomes 

(J, X) = In (~/i . V'Pi + ~/ N+j tt
1
'Vtj'Pt) dr. (3.13) 

Now Ji • V'Pi = V . ('PiJi) - 'PS . Ji . Because J En, 
Ji satisfies (3.3) with Pi = 0 and we have 

k 

Ji ' V'Pi = V· ('P;Ji) - 'Pi2,'VijJN+j . (3.14) 
j=l 

By using (3.14),we can write (3.13) as follows and then 
use Gauss's theorem to get 

(J, X) = L i~l V . ('PiJi) dr = i~ IB 'Pin· Ji dS. (3.15) 

Each of the surface integrals in (3.15) vanishes since 
n . Ji = 0 on Bil and 'Pi = 0 on Bi2 , according to the 
definitions ofn and ~. Thus, we obtain from (3.15) 
the desired orthogonality: 

(J, X) = o. (3.16) 

To prove that H = ~ + .0, we must show that 
every vector in H has a unique representation as the 
sum of some J E .0 and some X E ~. The uniqueness 
follows from the orthogonality of ~ and n. To 
demonstrate the existence of the representation, we 
let K be any element of H, with components K;(r), 
i = 1, ... , N + k, and we seek Ji and 'Pi such that 

Ki=Ji+V'Pi, i=I,"',N, (3.17) 

N 

K N+j = J N+j + 2, 'Vtj'Pt, j = 1, ... , k. (3.18) 
t=l 

We now take the divergence of (3.17) and use (3.3) 
with Pi = 0 to eliminate V . Ji , with the result 

k 

V' Ki = 2, 'VijJ N+j + fl'Pi, i = 1, ... , N. (3.19) 
;=1 

Now we eliminate I N +j from (3.19) by using (3.18), 
which yields 

k N k 

fl'Pi - 2, 'Vi; 2, 'Vtj'Pt = V . Ki - 2, 'Vi;K N+;' 
j=l t=1 ;=1 

i = 1, ... , N. (3.20) 
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Equations (3.20) are a linear elliptic system of N 
equations for the N functions fIJi' In order that X be 
in ~, fIJi must vanish on Bi2' while, in order for J to 
be in n, it follows from (3.6) with (Xi = 0 and from 
(3.17) that n . V fIJi = n . K; on Bi1 . This boundary
value problem always has a solution, provided the 
coefficients and the boundary satisfy appropriate 
regularity conditions, as we assume. Then, if X is 
given by (3.4) and (3.5), and if Jis given by (3.17) and 
(3.18), it follows that X E ~, J E n, and K = J + X, 
as we wished to show. 

With the above definitions, (3.1)-(3.7) is an 
instance of Problem P of Sec. 2, for J and L are 
required to be related by (3.1) and (3.2), which is of 
the form (2.2). For each r the coefficient matrix L in 
(3.1) and (3.2) is assumed to be symmetric and positive 
definite, and therefore invertible. The requirement 
that J satisfy (3.3) and (3.6) is just the same as the 
condition that J E no. The requirement that X satisfy 
(3.4) and (3.5) and that fIJI satisfy (3.7) is exactly the 
same as the condition that X E ~o. Thus, the problem 
is an instance of Problem P. As a consequence, 
Theorem 1 applies to the present problem, showing 
its equivalence to the maximum and minimum 
problems of Sec. 2. 

We shall now write out for the present case the 
variational expressions J(1) and g(x) which occur in 
those problems. From (2.3) and (3.11) we have 

j(J) = - L[~/;(r) '~I(L-1)ii(r)J,(r) 

+ ~/n+i(r) 11(L-
1
)N+i.m(r)JN+m(r)] dr 

+ 2 JD[~/i(r) . V fIJ\O)(r) 

+ it/ N+i(r) t~ vtifIJ~o>cr)] dr. (3.21) 

In (3.21) we have written Xo by means of (3.4) and 
(3.5) in terms of some particular potentials fIJ~O) which 
satisfy (3.7). Next, from (2.4) and (3.11) we obtain 

g(X) = - fn[i1Xlr) • ~lLi/r)X;(r) 

+ i1xN+;(r) i1LN+i.m(r)XN+m(r)] dr 

- 2 JDCfJ~O\r). X;(r) 

N 
- 2 ! J~O)(r) • V fIJ\O)(r) 

i=l 

- 2 i:/~L(r) ~1 VtifIJ~O)(r)] dr. (3.22) 

Here J(O) is a particular vector satisfying (3.3) and (3.6). 

The extremum problems are now the following: 

Minimum Problem II: Among all vectors Xi(r) , 
i = 1, ... , N + k, in H of the form (3.4) and (3.5) 
in which the fIJi satisfy (3.7), find one which minimizes 
g(X). 

Maximum Problem II: Among all vectors Ji (r) , 
i = 1, ... , N + k, in H satisfying (3.3) and (3.6), 
find one which maximizesJ(1). 

Theorem 1 applies to these two problems. 
It is of interest to note that we can choose fIJ~O) == 0 

if Pier) = 0 on Bi2' i = 1, ... , N. In this case Xo = 0 
and part (vi) of Theorem 1 shows that J(1) = -(1. 

Similarly, we can choose Jo = 0 if Pi = 0 and CXi = 0, 
i = 1, ... ,N. Then part (vi) shows that g(X) = (1. 

Thus in both of these cases we obtain the principle of 
the minimum rate of entropy production. 

We shall now show that the functions fIJ~O) and Jo, 
which are largely arbitrary, can be essentially elimi
nated from (3.21) and (3.22). We begin with the last 
integral in (3.21) and write 

Ji . V fIJ\O = V . (fIJ\O) Ji ) - fIJ\OlV . Ji 
k 

_ 't'7 • ( (OlJ) (0) (0) ~ J 
- V fIJi i-fIJi Pi - CPi k Vii N+i' 

i=1 

(3.23) 

The last equality follows from (3.3). When (3.23) is 
used in (3.21), the final sums cancel. Then use of the 
divergence theorem and the boundary conditions (3.6) 
and (3.7) yields 

j(J) = - JD[~/i '~1(L-1)iiJi 

+i~JN+ii/L-1)N+i.mJN+m + 2i~ cp!Olpi] dr 

+ 2.f [r CP\O)CXi dS + r Pin· Ji dS]. 
.=1 JBa JB;z 

(3.24) 

We see that, although cp!O) still occurs in (3.24), it 
occurs only in constant terms, i.e., in terms inde
pendent of J. 

Similarly, to eliminate Jo from (3.22), we use (3.4) 
and (3.5) to express X in terms of the CPi' We then 
write the ith component of Jo as J!O) and we have 

J~O) . V( CPi - fIJ\O» = V . [( CPi - cpIO»)J~Ol] 
k 

( 
(0» ~ J(O) ( (0) - CPi - CPi k Vii NH - CPi - cP; Pi . 

i=l 
(3.25) 

Now we use (3.25) in the last integral in (3.22), use 
the divergence theorem and boundary conditions, and 
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eliminate X from the first integral to obtain 

g( <p) = r . i [V' «Pi . LijV' 'P,i + Sij«Pi«P j] dr JD •. J=l 

- 2 i~ [fEn( «Pi - «p~O»lXi dS 

- fD (<<Pi - «P~O»Pi dr l (3.26) 

We have writteng( «p) instead of g(X) because only the 
«Pi occur in (3.26). Again the «plO) occur only in 
constant terms, i.e., in terms independent of the «Pi' 

We shall conclude this section by stating the 
consequences of Theorem 1 for the present case, 
assuming that all the prescribed functions are suffi
ciently regular. First we reformulate the minimum 
problem: 

Minimum Problem III: Among all «P = (<<PI"'" «PN) 
satisfying (3.7), such that X given by (3.4) and (3.5) is 
in H, find one which minimizes g(<<p) given by (3.26). 
Now we can state the following theorem: 

Theorem 4: (i) Minimum Problem III has a unique 
solution «P* = (<<pi, ... , «p~) which is the solution of 
(3.7)-(3.9). 

(ii) Maximum Problem II has a unique solution J*. 
(iii) The solution J* is given by (3.1) and (3.2) in 

terms of X*, which in turn is given by (3.4) and (3.5) 
in terms of «p*. ThusJ* is related to «P* by (3.1), (3.2), 
(3.4), and (3.5). 

(iv) f(J*) = g(<<p*). 
(v) J* and «P* are the unique stationary points of 

f(J) and g( «p), respectively. 
(vi) If Pier) = 0 on Bi2' i = 1, ... ,N, then we 

can choose «p~o) = 0 and f(J) is minus the rate of 
entropy production, f(J) = -a. If Pi = 0 and 
IX, = 0, i = 1, ... ,N, then we can choose J!O) = 0 
and g(<<p) is the rate of entropy production, g(<<p) = a. 
In both these cases the principle of the minimum rate 
of entropy production applies. 

Part (vii) is not applicable in the present case since 
neither ~ nor n is zero. Part (viii) is applicable, but 
we shall not write out the resulting equation. The fact 
that the rate of entropy production is stationary in this 
case was shown by de Groot and Mazur10 under 
slightly more restrictive conditions. 

We shall now obtain some different extremum 
problems governing diffusion, chemical reactions, 
and heat conduction. To do so we introduce the 2N 
component vector J = [J1(r), ... ,Jm(r)]. The first 
N components of J are 3-component vectors and the 
last N components are scalars. We interpret J1(r) as 
the heat-flux vector at r, J,(r) as the flux vector of 

component ifor i = 2, ... , N,JN+l(r) as the total rate 
of heat production at r by chemical reactions and 
IN+i(r) as the total rate of production of component 
i at r by chemical reactions i = 2, ... ,N. Similarly, 
X is a 2N-component vector, the first N components 
of which are 3-component vectors and the last N 
components of which are scalars. We write 

X = {X1(r), ... ,XN(r), «pI(r), ... , «PN(X)] 

to indicate that the Xi are the forces introduced 
previously and the «Pi are the potentials, which are 
now viewed as forces conjugate to the rates of pro
duction J N+i' i = 1, ... , N. 

The linear relation between J and X is still given by 
(3.1) for the vector components i = 1, ... ,N, and 
the scalar components are related by 

N 
J N+;(r) = ~;Si1(r)«pj(r), i = 1, ... ,N. (3.27) 

j=1 

Here the siir) are the elements of a positive-definite 
invertible symmetric matrix S. They are related to 
the previously defined quantities 'Pin and LN+n.m(r) 
by (3.10). The space H is the completion of the set of 
2N-component vector functions of finite norm, with 
the inner product defined by 

(J, X) = LJ(r). X(r) dr =L~/,(r). X,(r) dr. 

(3.28) 
The subspace ~ consists of all X in H for which (3.4) 
holds with «pi(r) = 0 for r on Bi2' i = 1, ... , N. The 
subspace n consists of all J in H such that n . Jlr) = 0 
for r on Bn and 

V' • Ji = J N+i' i = 1, ... , N. 

The operator L is a matrix defined by (3.1) and (3.27). 
Essentially the same proof as that given before shows 
that n and ~ are orthogonal and that H is their 
direct sum. 

We choose for Xo any vector in H such that 
«p!O)(r) = flier) for r on Bt2' = 1, ... , N. For Jo we 
choose any vector in H such that n· J!O)(r) = lX.(r) 
for r on Bn and 

V'. J!O) = J~~i + Pi' i = 1,' .. ,N. (3.29) 

Then Problem P of Sec. 2 is that of finding J and X 
such that J - J(O) E n, X - X(OJ E ~ and J = LX. 
The relation J = LX is given by (3.1) and (3.27) and 
the condition J - J(O) E n implies that 

v . J i = J N+i + Pi' i = 1, ... , N, 
o . Ji = IX" r on Bn , i = 1, ... , N. 

The condition X E I:o implies that 

Xi = V' «Pi' i = 1, ... , N, 

«Pi = Pi' r on Bi2' i = 1, ... , N. 

(3.30) 
(3.31) 

(3.32) 

(3.33) 
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Upon eliminating J and the Xi from these equations, 
we find that the qJi again satisfy (3.7), (3.8), and (3.9), 
so they are the same as the potentials determined by 
the problem previously formulated. It follows that the 
Ji and Xi' i = 1, ... , N, are also the same as the 
corresponding quantities in the previous problem. 

We can now formulate Minimum Problem I and 
Maximum Problem I of Sec. 2 for the present case. 
Minimum Problem I becomes identical with Minimum 
Problem III when Xl,"', X N are eliminated. 
Maximum Problem I becomes, when Xo and Jo are 
essentially eliminated, the following problem: 

Maximum Problem IV: Among all Jl(r), ... ,J2N(r) 
in H satisfying (3.30) and (3.31), find one which 

Here the Mik are the elements of a positive-definite 
matrix M(r, t), and the Ti(r) are given initial values. 

Let qJ(r, t) = [qJ1(r, t), ... , qJN(r, t)] be a solution 
of (4.1), (4.2), (3.7), and (3.9). We assume that 
L i ;, SiP the boundary values oci(r) and Pier), and the 
source functions Pier) are all independent of t. Then 
we denote by qJ*(r) the solution of the steady-state 
problem (3.7)-(3.9). We use the solution qJ in (3.26) 
to evaluate g[qJ(r, t)]. We shall now prove the follow
ing theorem: 

Theorem 5: If OC i = ° and if qJ!O) is independent of 
t, i = 1, ... , N, then 

maximizes j(J) given by and 

dg[ qJ(r, t)] < ° if qJ(r, t) ~ qJ*(r) 
dt 

j(J) = i~ {-L[Ji '~l(L-l)iiJ; 
+ IN+ii~(S-l)iiJN+; + 2qJ~0)Pi] dr 

+ 2 r qJ~O)OCi dS + 2 r Pin· Ji dS}. (3.34) JBi. JBi. 
Theorem 1 applies and relates the solutions of 
Minimum Problem III and Maximum Problem IV 
to the solution of the problem formulated above. 
As in the case of Theorem 4, the principle of the 
minimum rate of entropy production applies when 
Pi = ° and OCi = 0, i = 1, ... ,N, or when Pi = 0, 
i = 1, ... ,N. Although this second formulation is 
more symmetric than the first one, the vector J has 
more components in it than in the first formulation if 
N> k, i.e., if the number of chemical components 
exceeds the number of chemical reactions. However, 
if N < k, J in the second formulation has fewer 
components than in the first formulation. In (3.34), 
qJ~O) only enters a constant term, i.e., a term inde
pendent of J, just as in (3.26). 

4. TIME-DEPENDENT DIFFUSION, HEAT CON" 
DUCTION, CHEMICAL REACTION, AND 

CONVECTION IN A LINEAR SYSTEM 

Let us consider the time-dependent processes of 
diffusion, heat conduction, and chemical reaction in 
a fixed domain D. We suppose that the potentials 
qJ1' ... , qJ N satisfy the boundary conditions (3.7) and 
(3.9) and the differential equations 

N o~ N N 
IMik(r, t) --;- = V . I LiiV'P; - ISii'Pi - Pier), 
k=l vt i=l ;=1 

i = 1,"',N, (4.1) 

qJi(r,O) = Ti(r), i = 1, ... , N. (4.2) 

dg[qJ] = ° if * dt qJ = qJ • 

If in addition Pi = 0, i = 1,"', N, then g = (1, so 
the rate of entropy production decreases toward its 
minimum. 

To prove the first part we differentiate the expression 
(3.26) for g[qJ] and obtain 

dg[qJ] = 2 r { f [V OqJi. LiiVqJi + OqJi Si;qJi] 
dt JD i.i=l at at 

+ f OqJi Pi} dr 
i=1 at 

= 2 r { f OqJi [-V· LijVqJ; + Si;qJj] 
JD i.i=lOt 

+ f OqJi Pi} dr. 
i=l at 

(4.3) 

The second form of the right-hand side is obtained by 
applying Gauss's theorem to the first term of the first 
form on the right. The boundary terms vanish 
because OqJi/Ot = aPi/at = ° on Bi2 and 

N 

n· I Li;VqJj = OCi = ° 
;=0 

on Bn. Next we use (4.1) in (4.3) to obtain 

dg[qJ] = -2 r 5: OqJi Mik OqJk dr. (4.4) 
dt JD i.k=1 at at 

The right-hand side of (4.4) is negative if OqJi/Ot ~ 0, 
because Mik is positive definite, and it vanishes only 
if OqJi/Ot = 0, i = 1,"', N. From (4.1), this occurs 
only when the right side of (4.1) vanishes, ,and that 
yields (3.8). Thus the right side of (4.4) vanishes if 
and only if qJ satisfies (3.7)-(3.9), which implies that 
qJ = qJ *. This completes the proof of the first part. 
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When Pi = 0, i = 1, ... , N, since we have already 
assumed that rx.i = 0, i = 1, ... ,N, we see from 
(3.26) or from part (vi) of Theorem 4 that g[cp] = (J. 

Thus in this case the rate of entropy production (j 

decreases toward its minimum, which it attains in 
the steady state. This completes the proof of the 
theorem. The steady state is maintained by the pre
scribed values (Ji(r) of CPi on Bil , i = 1, ... , N. This 
result, which is analogous to Theorem 3, shows that, 
in a time-dependent process, g[cp] decreases toward 
its minimum value, which it attains in the steady state. 

We shall conclude this section by including the 
effects of convection as well as diffusion and produc
tion. For simplicity we shall consider a system con
sisting of a single component, which may be either 
matter or heat. Let cP denote the concentration of this 
component if it is matter, or the temperature if the 
component is heat. Let k(r) denote the ditfusivity, 
u(r) the convection velocity, and -s(r)cp + per) the 
rate of production. Then cP satisfies the equation 

CPt + V' . (-kV'cp + ucp) + scp = P, r in D. (4.5) 

We note that the signs in (4.5) differ from those in 
(4.1) because cP now represents T rather than T-I, etc. 
As initial and boundary conditions we take 

cp(r, 0) = T(r), (4.6) 

cp(r, t) = (J(r), ron B2 , (4.7) 

ocp 
-k - (r, t) = rx.(r), ron B1 • (4.8) on 

The steady-state equation obtained by setting 
CPt = 0 in (4.5) can be made self-adjoint by multiplying 
it by a factor 1per) if and only if there exists a 1p(r), 
such that 

k-1u = - V' log 1p. (4.9) 

When (4.9) holds, k-1u is irrotational. Only self
adjoint linear equations are derivable from variational 
principles. When (4.9) holds, we can find variational 
principles equivalent to the steady-state problem (4.5) 
with CPt = 0, (4.7) and (4.8). To do so we multiply 
(4.5) with CPt = 0 by 1p and obtain 

V'. (-1pkV'cp) = -1p(s + V' 'u)cp + 1pp. (4.10) 

Let us introduce the vector flux J1 and scalar flux J2 , 

and the vector and scalar forces Xl and X2 defined by 

J1 = -1pkV'cp, J2 = -1p(s + V'. u)cp, (4.11) 

Xl = -V'cp, X 2 = -cpo (4.12) 

Then J1 = LnXl and J2 = snX2 with Ln = 1pk and 
Sn = 1p(V' • u + s). With these definitions the present 
problem is an instance of the second formulation in 

the previous section with N = 1, PI = 1pP, rx.1 = 1prx., 
and {JI = (J, provided that 1p > 0 and V' • u + s > O. 
Therefore, the solutions of Minimum Problem III 
and Maximum Problem IV are related to the solution 
of the present problem by Theorem 1. 

The functional g( cp) given by (3.26) now becomes, 
with cp replaced by - cp, 

g(cp) = JD1p[k(V'CPl + (s + V'. U)cp2 

- 2(cp - cp(O)p] dr + 211p(cp - cp(O)rx. ds. (4.13) 
Bl 

When cp(O) is independent of t, and when cp(r, t) 
satisfies (4.5), differentiation of (4.13) with respect to 
t and use of (4.5), (4.7), and (4.8) shows that 
dg(cp)jdt < 0 if CPt:;i: O. 

5. EXTREMUM PRINCIPLES FOR A NON
LINEAR CASE OF DIFFUSION, HEAT 

CONDUCTION, AND CHEMICAL 
REACTION 

So far we have considered only linear systems. 
We shall now reconsider the processes considered in 
Sees. 3 and 4 for nonlinear systems. To do so we 
permit Lij and sij to be functions of the potentials 
cp = (CPI, ... ,CPN), but Lij may not depend upon 
the position vector r. Thus, Lij = Lij(cp) and Sij = 
su( cp, r). We also require Lij to be a scalar rather than 
a matrix. Then the CPi satisfy the nonlinear system of 
equations, (3.8) and (3.9) .. 

To treat this system, we impose the restrictive 
conditions 

oLij OLik .. ;- = -, I,), k = 1,' .. ,N. (5.1) 
UCPk ocpj 

These conditions imply that for each i there exists a 
scalar function F;( cp) such that 

OFi(CP) .. 
LiJ(cp) = - ... -, I,) = 1,' .. ,N. (5.2) 

ocpj 

Since the matrix Lij is invertible, the determinant of 
the Lij is not zero. By (5.2), this is the Jacobian of the 
transformation from cp to F = (Fi' ... , F N), so 
this transformation can be inverted to give 

cp = cp(F) or CPi = CPi(F). (5.3) 

Then (3.7)-(3.9) can be written in the form 
N 

D.Fi - !sij[cp(F), r]cpj(F) = Pier), i = 1, ... ,N, 
j=l 

(5.4) 
of; . - = rx.i(r), ron Bi1' 1 = 1, ... ,N, (5.5) on 

Fi = Fi[{J1(r),' .. ,(IN(r)], ron Bi2' 
i = 1, ... ,N. (5.6) 
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We can view (5.4)-(5.6) as a nonlinear boundary
value problem for the functions Flr). To obtain 
variational principles equivalent to it, we impose the 
additional conditions 

o NON 
oFk i~/dtp(F), r]tp;(F) = of; ;~1Ski[tp(F), r]tp;(F), 

i, k = 1, ... ,N. (5.7) 

These conditions imply the existence of a function 
P(F, r) such that 

N oP(F, r) 
~>;i[tp(F), r]tp;(F) = , i = 1, ... ,N. 
j=1 of; 

(5.8) 

To guarantee that the function P(F, r) is convex in F, 
we require that the matrix of second derivatives of P 
with respect to F be positive definite. The elements of 
this matrix are given by either side of (5.7). By using 
(5.2) in (5.8), we find that these conditions can be 
expressed in terms of the original quantities Si; and 
L;; by requiring the following matrix to be symmetric 
and positive definite: 

NON 2 [L-tc tp)]tk - 2Si;( tp, r)tp;(symm. pos. def.). (5.9) 
t=1 otpt i=l 

When this condition holds, (5.4) can be written 

I:!.Fi - oP = Pi(r) , i = 1, ... , N. (5.10) 
OFi 

We shall now formulate the following problem: 

Minimum Problem V: Among all piecewise con
tinuously differentiable functions F = [Fl(r), ... , 
FN(r)] satisfying (5.6), find one which minimizes G(F) 
defined by 

G(F) = L{~1[(VFi)2 + 2piFi] + 2P(F, r)} dr 

- 2i~JB/lFi~i dS. (5.11) 

The Euler equations of this problem are just (5.10), 
and the natural boundary conditions are just (5.5). 
Furthermore, the minimum problem has a unique 
solution because the functional G(F) is convex and 
bounded below. Therefore we have proved the 
following theorem: 

Theorem 6: Minimum Problem V has a unique 
solution F* which is the solution of (5.10), (5.5), and 
(5.6) and is also the unique stationary point of G[F]. 

The potentials tp are determined uniquely in terms 
of the solution F* by (5.3). 

The maximum problem reciprocal to Minimum 
Problem V can be found by using the Friedrichs 
transformation (Ref. 2, pp. 233-238). To formulate 
it we consider the class no of 2N component vectors 
J(r) satisfying (3.30) and (3.31). Then we introduce 
the function 

H(J) =1 [~(-J~ - 2Fi(JN+;,r) oP[F(JN+i , r), r)) 
D >=1 OFi 

+ 2P[F(J N+i' r)]] dr + 2 i~ !nt/iJi • n dS. 

(5.12) 

Here, Fi(JN+l"" ,J2N , r) 
system of equations 

oP(F, r) 
I N .= 

+> of.' , 

is the solution of the 

i = 1, ... , N. (5.13) 

That this system is solvable for F follows from the 
fact that P is a convex function of F, so its matrix of 
second derivatives with respect to F is positive 
definite. Therefore, the Jacobian of the right-hand 
side of (5.13) is not zero, so (5.13) can be solved for 
F. Now we have the reciprocal problem: 

Maximum Problem V: Among all J in no, i.e., 
among all J satisfying (3.30) and (3.31), find one 
which maximizes H(J). 

The Euler equations and natural boundary con
ditions of this problem can be obtained by using the 
method of Lagrange multipliers to take into account 
the conditions (3.30) and (3.31). After some simplifi
cation, they show that the solution J* of Maximum 
Problem V is given by 

Ji = VFi*' i = 1, ... ,N, (5.14) 
N 

J1.+i = 2Sii[tp(F*), r)tp;(F*), i = 1, ... ,N. (5.15) 
;=1 

Here F* is the solution of (5.4)-(5.6), which is also 
the solution of Minimum Problem V. The use of this 
solution in (5.12), or use of the theory of the 
Friedrichs transformation, shows that H(J*) = G(F*). 
We can summarize these results as follows: 

Theorem 7: Maximum Problem V has a unique 
solution J* given by (5.14) and (5.15), which is also 
the unique stationary point of H(J). Furthermore, 
H(!*) = G(F*). 

Let us finally consider the time-dependent case in 
which the potentials tpi(r, t) satisfy (4.l) with L i ;( tp) 
a scalar satisfying (5.1) and with Sii = Sii(tp, r) such 
that (5.9) holds. The coefficient matrix Mi;(tp, r, t) 
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may depend upon q;, r, and t, and we require that the 
matrix LM-I be positive definite. Then, by setting 
q; = q;(F) in (4.1) and using (5.2), we obtain 

N of N 

~ M;i(r1)ik-k = ().Fi - ~Sii[q;(F), r]q;;(F) - plr), 
i.k-1 at ;=1 

i=l,···,N. (5.16) 

The boundary conditions (3.7) and (3.9), which we 
assume to hold, become (5.5) and (5.6). 

We now evaluate G[F(r, t)], where F(r, t) satisfies 
(5.16), (5.5),and (5.6) and G is given by (5.11). Then 
differentiation of G yields 

dG(F) = 2 r 5: (\1F
i

' \1 of; + Pi OFt + oP OF;) dr 
dt JD ;=1 at at oFi at 

- 2 i f ott of; dS 
i=1 Bit at 

= 2 r 5: (-()'Fi + Pi + oP )OF; dr 
JD;=1 of; at 

+ 2 i [r (OF; - oti)OFi dS 
;=1 JBn an at 

+ r of; oFi dS]. 
JBu an at 

(5.17) 

The second form of the right-hand side results from 
applying Gauss's theorem to the first term in the 
first integrand. From (5.6) we find that of;{ot = 0 on 
Bi2' so the last integral in (5.17) vanishes; from (5.5) 
we see that the second integral also vanishes. We then 
calculate oFJot from (5.16) and use it in (5.17) to 
obtain 

dG(F) = -2 r i (()'F; _ Pi _ OP) 
dt JD i.i.k=1 of; 

X Li;(M-I)ik(().Fk - Pk - OP) dr 5: O. 
oFk 

(5.18) 

Here we have used (5.8) to simplify the integrand. 
The inequality follows from the assumed positive 
definiteness of LM-l. The equality holds only if F 
satisfies (5.4), in which case F = F*. 

It is to be noted that, by setting F = F( p) in G, 
we obtain a functional G[F(q;)] for which dG/dt 5: O. 
Furthermore, Minimum Problem V could be formu
lated for this functional, in terms of q;. Thus we have 
proved the following theorem: 

Theorem 8: Let ({li(r, t) satisfy (4.1), (3.7), and 
(3.9) with Lii(q;) a scalar satisfying (5.1). Let s;;«({l, r) 

and Mi;(q;, r. t) be such that (5.9) holds and that 
L -1M is positive definite. Then 

and 

dG[F(q;)] = 0 if q; = q;*. 
dt 

APPENDIX A: PROOF OF THEOREM 1 

To prove Theorem 1 we recall that L is positive 
definite and bounded and therefore L-l is also 
positive definite and bounded. The positive definite
ness and boundedness of Land L-l show that g(X) is 
bounded below and that I(!) is bounded above. 
Therefore, g(X) has a greatest lower bound, and 
that bound is attained at some point X = X* E I:o 
because g(X) is continuous, the set I:o in the Hilbert 
space is complete, and g -+ 00 as Ixl -+ 00. Simi
larly, I(!) attains its least upper bound at some point 
J* E no. 

In order to show that J* is unique, we consider any 
J E no. Since J - Jo E nand J* - Jo En, it follows 
that J* - J E n. Therefore any J E no can be written 
as J = J* + co, where co E n. Then 

I(!) = I(J* + co) 

= I(J*) - 2(00, L-IJ* - Xo) - (00, L-lw). (AI) 

In order that I(!) attain its maximum value at J* or 
that it be stationary at J*, the term in (AI) which 
is linear in 00 must vanish. Since 00 is any element of 
n, this implies that L-1J* - X(J'E I:. If the maximum 
were also attained at J', then L-IJ' - Xo E I:. There
fore L-l(J* - J') E I:, but we also have J* - J' En. 
In view of the orthogonality of nand I:, it follows 
that (J* - J', L -I[J* - J']) = O. Since L -1 is positive 
definite, this shows that J* - J' = 0, so J* is unique. 
In the same way it follows for the minimum problem 
that LX* - Jo E n and LX' - Jo E n if X' is also 
a minimum point. But then L(X* - X') E n; and 
since X* - X' E I:, it follows that 

(X* - X', L[X* - X']) = O. 

Since L is positive definite, X* - X' = 0, so X* is 
unique. Thus we have proved parts (i), (ii),and (v) of 
Theorem 1. 

To prove part (iii) we observe that in proving the 
uniqueness of J* we showed that L-1]* - Xo E I:, 
while admissibility of X* requires X* - Xo E I:. There
fore L -IJ* - X* E I:. In proving the uniqueness of X* 
we found that LX* - Jo E n, while admissibility of 
J* requires J* - Jo E n. Therefore J* - LX* E n. 



                                                                                                                                    

2930 JOSEPH B. KELLER 

Since 0 and ~ are orthogonal, these two results 
yield (J* - LX*, L-l[J* - LX*D = O. Because L-ljs 
positive definite, it follows that J* = LX*, which 
proves part (iii) of the theorem. 

We now use the orthogonality of J* - Jo, which is 
in 0, and X* - Xo = L-IJ* - Xo, which is in ~, 
to obtain 

0= 2(J* - Jo, L-IJ* - Xo) 

= 2(J*, L-IJ*) - 2(J*, Xo) - 2(Jo, L-IJ*) 

+ 2(Jo, Xo). (A2) 

Next we add (A2) to f(J*), which given by (2.4) with 
J = J*, to obtain 

f(J*) = (J*, L-IJ*) - 2(Jo, L-IJ*) + 2(Jo, Xo). 

(A3) 

Upon setting J* = LX*, we see that the right-hand 
side of (A3) is just g( X*) given by (2.3) with X = X*. 
Thus f(J*) = g(X*), which proves part (iv) of the 
theorem. 

When Xo E~, we can evaluate (J, Xo) for J E 0 0 by 
writing J = Jo + ro, where ro EO. Then we have, 
upon using the orthogonality of ro and Xo, the result 
that 

(J, Xo) = (Jo + ro, Xo) = (Jo, Xo). (A4) 

By using (A4) in (2.4), we obtain f(J) = -.a(J) + 
2(Jo, Xo), which proves the first statement m part 
(vi). Similarly, when Jo E 0 and X E :So, we have 
X - Xo E~. Then, from the orthogonality of Jo and 
X - Xo' we obtain 

g(X) = a(X) - 2(Jo, X - Xo) = a(X). (AS) 

This proves the second statement in part (vi). To 
prove the "only if" statement we ~ust show that 
(J, Xo) is constant for J E 0 0 only If Xo E~, an~ 
that (Jo, X - Xo) is constant for X E ~o only If 
Jo EO. These conclusions follow at once from the 
fact that ~ and .0 are orthogonal complements of 
each other, which completes the proof of part (vi). 

When ~ = 0, then the only X in ~o is Xo, so X* = 
Xo. From (2.4) the second term in g(X*) vanishes, 
and g(X*) = a(X*). When 0 = 0, then J* = J~ ~nd 
(2.4) yields f(J*) = -a(J*) + 2(Jo, Xo). Combmmg 
the results with part (iv) yields part (vii). 

To prove part (viii) we note that if J E 0 0 and 
X E:S then J* - J E 0 and L-IJ* - X E~. There-0, 

fore, J* - J is orthogonal to L-IJ* - X, i.e., 

(J* - J, L-l[J* - LX]) = 0. (A6) 

Now we use (A6) to obtain 

(J* - J +2 LX, L-1[J* - J +2 LX]) 
= !(J* - J + J* - LX, L-1[J* - J + J* - LX]) 

= !(J* - J, L-1[J* - J]) 

+ !(J* - LX, L-1[J* - LX]) 

= HJ - J*, L-1[J - J*]) 

+ !(J* - LX, L-1[J* - LX]) 

= t(J - LX, .r;-1[J - LX]). (A7) 

This proves part (viii) and completes the proof of the 
theorem. 

APPENDIX B: RELATION BETWEEN COVRANT
HILBERT'S RECIPROCAL QUADRATIC VARIA
TIONAL PROBLEMS AND FENCHEL'S DUALITY 

THEOREM INVOLVING CONJUGATE 
FUNCTIONS 

In 1953 Fenchel8 proved a general duality theorem 
which states that the minimum value of a function in 
a certain minimum problem is equal to the maximum 
value of a different function in a related maximum prob
lem. A particularly clear presentation of this theorem 
and its proof is given by Karlin,11 By examining 
that proof, we observe that the theorem is true for 
functions of vectors X in a Hilbert space, and not 
merely for functions of vectors in a finite-dimensional 
Euclidean space. We shall now relate to this theorem the 
reciprocal quadratic variational problems considered 
by Courant-Hilbert2 and employed in Sec. 2. 

To state Fenchel's theorem we consider a convex 
function cp(X) defined for X in a convex set C in a real 
Hilbert space H, and a concave function "P(X) defined 
for X in a convex set D in H. The conjugate functions 
of cp and "P are denoted by cp*a) and "P*(~), respec
tively, and their domains of definition are C* and D*, 
respectively. These quantities are defined as follows: 

C* = {~ I i~~ [(~, X) - cp(X)] < oo}, (Bl) 

cp*a) = sup [(~, X) - cp(X)], (B2) 
XED 

D* = {~I~~~[(~' X) - "P(X)] < oo}, (B3) 

"P*(~) = inf [(~, X) - "P(X»). (B4) 
XeD 

Now we consider the following two extremum prob
lems, assuming that C n D is not empty: 

Maximum Problem: Among all X E C n D, find 
one which maximizes "P(X) - cp(X). 

Minimum Problem: Among all J E C* n D*, find 
one which minimizes cp*(~) - "P*(~). 
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Then we have the following theorem: 

Theorem 9: Each of these problems has a unique 
solution and 

min [tp(X) - "P(X)] = max ["P*(~) - tp*(~)]. 
XeOIlD 4eO*IlD* 

(B5) 
Let us now define tp, "P, C, and D as follows: 

tp(X) = (X, LX) - 2(X, Jo) + 2(Jo, Xo), C = H, 

(B6) 

"P(X) = 0, D = :Eo. (B7) 

Here L is an invertible symmetric, positive-definite 
operator, J o and Xo are given vectors in H, and 
:Eo = :E + Xo, where :E is a linear subspace of H. By 
using (B6) in (Bl) and (B2), we find that 

tp*(~) = H~, L-1~) + (~, L-1JO) + (lo, L-1JO) 

- 2(l0, Xo), C* = H. (B8) 

Then by using (B7) in (Bl) and (B2) we find that 

"P*(~) = (~, Xo), D* = n. (B9) 

Here n is the orthogonal complement of:E in H. Now 
the extremum problems formulated above become the 
following: 

Minimum Problem: Among all X E 1:0 , find one 
which minimizes (X, LX) - 2(X, Jo) + 2(Xo, Jo). 

Maximum Problem: Among all ~ En, find one 
which maximizes 

-H~, L-1~) - a, L-1JO) - (lo, L-1JO) + 2(Jo, Xo)· 

If we define J = $(2 + Jo and no = n + Jo, then the 

maximum problem becomes the following problem: 

Maximum Problem: Among all J E no, find one 
which maximizes -(J, L-1J) + 2(J, Xo). 

Comparison shows that the minimum problem 
above and the last form of the maximum problem are 
identical, respectively, with Minimum Problem I 
and Maximum Problem I of Sec. 2. Then the theorem 
above yields parts (i), (ii), and (iv) of Theorem 1 of 
Sec. 2, i.e., the existence of unique solutions to the 
two problems and the equality of the maximum and 
minimum values. However, it does not yield part (iii), 
which is the relation J* = LX* between the solutions 
X* and J* of the two problems. 
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A group-theoretical study has been employed in an effort to uncover the suggestive operator, if it 
exists, of the form L" + 6 which commutes with the Hamiltonian of an electron moving in the many
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I. INTRODUCTION 
In recent years considerable interest has been drawn 

to uncover the symmetry properties in molecules by 
using the group-theoretical technique.1 But Wulfman 
and Takahata2a have formulated the problem of one 
electron moving in the field of many stationary nuclei 

in terms of the operations of the Lie algebras of 
E4 , R 4 , R s , and 0 4 ,1, all noninvariance groups of 
quantal electrostatics. The authors strongly suggest 
the existence of an invariant for the Hamiltonian. 
In the present work, an investigation has been carried 
out to single out the invariant, if it exists. An exclusive 
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Then we have the following theorem: 

Theorem 9: Each of these problems has a unique 
solution and 

min [tp(X) - "P(X)] = max ["P*(~) - tp*(~)]. 
XeOIlD 4eO*IlD* 

(B5) 
Let us now define tp, "P, C, and D as follows: 

tp(X) = (X, LX) - 2(X, Jo) + 2(Jo, Xo), C = H, 

(B6) 

"P(X) = 0, D = :Eo. (B7) 

Here L is an invertible symmetric, positive-definite 
operator, J o and Xo are given vectors in H, and 
:Eo = :E + Xo, where :E is a linear subspace of H. By 
using (B6) in (Bl) and (B2), we find that 

tp*(~) = H~, L-1~) + (~, L-1JO) + (lo, L-1JO) 

- 2(l0, Xo), C* = H. (B8) 

Then by using (B7) in (Bl) and (B2) we find that 

"P*(~) = (~, Xo), D* = n. (B9) 

Here n is the orthogonal complement of:E in H. Now 
the extremum problems formulated above become the 
following: 

Minimum Problem: Among all X E 1:0 , find one 
which minimizes (X, LX) - 2(X, Jo) + 2(Xo, Jo). 

Maximum Problem: Among all ~ En, find one 
which maximizes 

-H~, L-1~) - a, L-1JO) - (lo, L-1JO) + 2(Jo, Xo)· 

If we define J = $(2 + Jo and no = n + Jo, then the 

maximum problem becomes the following problem: 

Maximum Problem: Among all J E no, find one 
which maximizes -(J, L-1J) + 2(J, Xo). 

Comparison shows that the minimum problem 
above and the last form of the maximum problem are 
identical, respectively, with Minimum Problem I 
and Maximum Problem I of Sec. 2. Then the theorem 
above yields parts (i), (ii), and (iv) of Theorem 1 of 
Sec. 2, i.e., the existence of unique solutions to the 
two problems and the equality of the maximum and 
minimum values. However, it does not yield part (iii), 
which is the relation J* = LX* between the solutions 
X* and J* of the two problems. 
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use of the Lie algebra and commutator relations has 
been made. In Sec. II, a brief review of the field is given 
so that a systematic development of the current work 
becomes plausible. Section III, however, is entirely 
devoted to give the detailed algebra of the present 
analysis. Finally ,a brief discussion is added to the 
concluding Sec. IV. 

II. BRIEF REVIEW OF THE FIELD 

In the study of the dynamical group of the many
nucleus I-electron problem, it is found possible to 
transform2b the molecular Schrodinger equation into 
an equation involving ten operators which together 
form a Lie ring and generate a Lie algebra and its 
corresponding 10-parameter-continuous group. 

The equation for the motion of an electron in the 
field of several stationary nuclei is given by the eigen
value equation2 

PO.Oll'Y(p) = Po'Y(p), (1) 

where Po = J -E is the root-mean-square (rms) 
momentum of the electron, and where 'Y(p) , which is 
the momentum space eigenfunction of the electron, 
depends parametrically on the nuclear co-ordinates 
R j • In atomic units; the rms momentum operator 
PO,Oll is given by 

PO,Oll = ~ 'j[exp (-ip· Rj)]II[exp (+ip· Rj)] (2) 
j 

and the Hamiltonian is given by 

:Ie = -tP~,op. (3) 

In Eq. (2), 'j is the charge of nucleus j and II is the 
hydrogen atom rms momentum operator, whose 
eigenvalues are l/n, if n is the principal quantum 
number. 

Also, it is now well known that3 if Jab is the Hermit
ian rotation operator in the (a, b) plane of Fock's 
4-space,4 then 

(4) 

and 

Jab = -i(Xa~ - Xb~) = -Jba . (5) 
oXb oXa 

From the defining relations of Fock's stereographic 
projection onto hypersphere x~ + x~ + x~ + x: = I, 
it follows that 

(6) 

if X4 is in the direction "perpendicular" to the 3-space 
of p. Thus, in Fock's 4-space, the only operators 
required for the expression of Po,op are the six rotation 
operators Jab and the four translation operator Xc, 

which together generate the 4-dimensional Euclidean 
group E4 • But all Hermitian representations of E4 are 
infinite dimensional. It is, therefore, not a very 
desirable group. However, E4 may be obtained via a 
Wigner-Inonii contractionS from the groups Rs (5-
dimensional rotation group) and 0 4,1 (de Sitter group) 
which have been shown to be appropriate to the Kepler 
problem. All of the Hermitian representations of Rs 
are of finite dimension. Therefore, R5 is the most 
desirable group; it is the group of linear substitutions 
of positive determinant that leave invariant the 
quadratic form 

x~ + x~ + x~ + x! + x:. 

In the corresponding 5-space, there are ten 2-planes 
a: b, and in each of these planes the Hermitian opera
tor of an infinitesimal rotation is Jab given in Eq. (6). 
The Jab'S satisfy the commutation relations 

(7) 
and 

[Jab ,lac] = iJbc , if b =;f c. (8) 

It has become customary to define the following 
operators: 

L = (L." Ly, Lz) = (J23 , J31 , JI2), (9a) 

A = (A." Ay , Az) = (J14' J24 ,J34), (9b) 

B = (B." By, Bz) = (J15, J2S ' J3S), (9c) 

S=~. ~~ 

L may be interpreted as an angular momentum opera
tor, and within the Rs subgroup of Rs , L, A, and B 
transform as vectors, while S transforms as a scalar. 
The Lie group Rs has a subgroup R4 , and considerable 
simplifications are introduced if we make use of the 
fact that R4 is locally isomeric with the Kronecker 
product of Rs itself.s 

In Sec. III, we will give complete treatment to show 
how the present analysis is developed. 

III. PRESENT ANALYSIS 

For an electron moving in a spherically symmetric 
field, L2 is the invariant for the Hamiltonian. But, in a 
many-nucleus Coulomb field whose spherical symmetry 
is generally lost, the operator L2 is obviously suspected 
not to be invariant for PO,Oll' On the other hand, it is 
agreed that the commutator 

[PO,Oll' L2] =;f 0 (10) 

must have some definite value. Here the attention has 
therefore been diverted to evaluate its value. In doing 
so one needs to work out some fundamental or key 
commutators like [L\Pl] , [L2, P2], [L2, Ps], etc., 
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because one can easily express the commutator 
sought in Eq. (10) in terms of those commutators. 
In laying out the ground work, we here sort out the 
following relations: 

[Jab' Pc] = 0, if c =F a or b, (lla) 

[Jab' Pa] = iPb' if a, b = 1,2,3, (llb) 

[Ja4 , Pa] = i(p! + P4), (llc) 

[Ja4 , P4] = i(PaP4 - Pa), (lld) 

[Ja4 , Pb] = iPaPb' if b :;!: 4 or a, (lle) 

p~ + p~ + p~ + 2P4 = 1, (llf) 
and 

[L2 ,TI] = 0, (llg) 
where 

L2 = J~3 + J~l + J~2' (12) 

A2 = J~4 + J~4 + J~4' (13) 
and 

TI = [1 + (L2 + A2)rl. (14) 

Next, by using the relations given in Eqs. (lIa)-(I2), 
one can, however, work out that 

[,'}, Pa] = 2Pa + 2i(PbJab - polca), (15) 

where (a, b, c) are (1,2,3), (2,3,1), and (3,1,2); 
PI , P2' and Pa are three components of p [given in 
Eq. (6»). Multiplying Pa by R ja , ath component of 
Rj(Rj1 , Rj2' R ja), we replace Eq. (15) by 

[U, (PaRja)] = 2(PaRja) + 2i(PbRjaJab - PcRjaJca). 

(l5') 

Then we combine [U, (PIRjl»), [U, (P2Rj2)], and 
[U, (PaRja)] given in Eq. (15') to obtain the commuta
tor 

[U, (p. Rj )] = 2(p· RJ - 2i[(p x Rj). L), (16) 

which, of course, depends upon the orientation of Rj 

with respect to p. We substitute 

and 
(17a) 

(17b) 

and then Eq. (16) and the commutator given in Eq. 
(10) turn out to be of the following form, respectively: 

and 
(18) 

(10') 

Case 1: When R j is either parallel or antiparallel to 
p, the term involving Aj in Eq. (18) is zero. Therefore 
we get 

(18') 

Extending further the use of the commutator given in 
Eq. (18'), one can also show that 

[L2
, e±fll] = ±2fJ;e±P'. (19) 

Once the key commutators are evaluated, we are then 
ready to work out the value of the commutator 
sought in Eq. (10'). After carrying out the usual 
simplification in combining with Eqs. (llg), (19), 
etc., we obtain the value of the commutator 

[(e-flITIefll ), m = -[(e-flITIefll), (2fJj)], (20) 

which leads to the following commutation relations: 

(21) 
or 

[(e-iP.RITIe+iP.RI), (I! + 2(ip • R
j
»] = O. (22) 

Thus, the invariant operator Q is expressed here by 

Q = U + 2(ip • R j ), 

where 
(23) 

(23') 

Case 2: When Rj is neither parallel nor antiparallel 
to p, the term involving Aj in Eq. (18) is nonvanishing. 
However, its value ought to be sufficiently small. 
Because the expression for the invariant Q shows that 

Q = U + 2{Jj, for Rj is either tt or ~t p, 

and 
Q = L2 when R j is .1. p, 

obviously Q fluctuates between two extreme limits of 
(U + 2{Jj) and U for any other orientation of Rj 

with respect to p. Since 

(24) 

the fluctuating term involving Aj is quite small, and 
hence it is assumed reasonably kosher to throwaway 
any term involving A.; or higher powers of Aj • Keeping 
this assumption in mind, we move ahead to evaluate a 
general expression for Q. 

Therefore, the expression in Eq. (18) is used to 
evaluate requisite commutators such as 

[L2, e±fll] = ±2fJje±fll 1= ie±fll(A;' L) - e±fll.1~ (25a) 

in which the last term, quadratic in Aj , is to be 
neglected. Thus, instead, the expression that we will 
use is 

[L2, e±Pl] = ±2fJje±P'1= ie±p'(Aj • L), 

and similarly we show that 

[e±Pl, (A j ' L)] = ±i.1~e±P'""", o. 

(25b) 

(26) 
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Now, using the commutators given in Eqs. (25b), (26), 
and (llg), we again work, out the said commutator: 

[(e-PiIIePi ), IJ] = - [(e-PiIIePi), 2pj] 

+ 2i[(e-Pi IIePi ), (Aj • L)]. (27) 

This immediately leads to 

[(e-PiIIePI), {r: + 2pj - 2i(A j ' L)}] = 0 (28) 

or 

[( e-iP.RiIIe+iP.Ri), 

{L2 + 2i(p. Rj ) + 2[(p· R j ) • L]}] = O. (29) 

Thus, the general form of the operator Q is given by 

Q = £2 + 2(ip. Rj ) + 2[(px Rj )· LJ, (30) 

which satisfies all cases relating to the orientation of 
R j with respect to p. Finally, we replace (ePIIIePI) by 
({je-PiIIePI) in Eq. (28) and take the summation over 
j to obtain 

[Po•oP ' IJ] + 2 I [({je-PiIIePI), {Pj - i(Aj' L)}] = ° 
i 

(31) 
or 

[Po•oP ' {r: + 2Pk - 2i(Ak ' L)}] + 2 I [((je-PIIIePI), 
i 

from which one obviously notes that the second 
commutator of Eq. (31) does not in general reduce 
to the form 

[Po•oP ' 6] and 6 = f(R j , p, L, etc.), 

so that one will have for po•oP the desired invariant 
£2 + 6. On the other hand, one can very easily show 
from Eq. (32) that, in few special cases where Pk = Pi 
and Ak and Aj are perpendicular to L for all values of 
k andj, 

[Po.oP ' {£2 + 2Pk - 2i(Ak • L)}] = 0, (33) 

that is, one finds the desired invariant £2 + 6 for 
po.op • Thus, it appears quite obvious that such a 
desired invariant £2 + 6 does really not exist for 
general cases of arbitrary stationary nuclei, although 
one can find them (invariants) in exceptional cases 

which have special geometrical symmetry, satisfying 
all the conditions to have £2 + 6. 

IV. DISCUSSION 

Our analysis in the previous section makes it quite 
clear that dynamical symmetry is not independent of 
geometrical symmetry. Equations (29)-(33) confirm 
one fact: there exists a dynamical invariant £2 + 6 
for two stationary nuclei. But a system of two station
ary nuclei has well-known geometrical symmetry. For 
a system of more than two nuclei, one may have an 
invariant £2 + 6, if all the nuclei lie in one plane, if 
one nucleus lies at the center and the rest of the nuclei 
lie on the circumference of a circle, and if L is per
pendicular to the plane formed by p and Rj . That 
means that the system should have well-specified 
geometrical symmetry. Thus, in conclusion, one may 
say that, for a system of many stationary nuclei 
which has no built-in geometrical symmetry, mother 
nature forbids it to have any dynamical symmetry. 

Finally, we should also have a limit to the number 
of nuclei in order to maintain some sort of geometrical 
symmetry. As the number increases,so the symmetry is 
destroyed. 
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